
Generic Tools,
Specific Languages
Markus Voelter

Generic Tools, Specific
Languages

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof.ir. K.Ch.A.M. Luyben
voorzitter van het College voor Promoties,

in het openbaar te verdedigen
op woensdag 18 juni 2014 om 12.30

door Markus VOELTER
Diplom-Ingenieur Physikalische Technik (FH),

Fachhochschule Ravensburg-Weingarten
geboren te Heidenheim a. d. Brenz, Duitsland

Dit proefschrift is goedgekeurd door de promotoren:
Prof. Dr. A. van Deursen
Prof. Dr. E. Visser

Samenstelling promotiecommissie:
Rector Magnificus voorzitter
Prof. Dr. E. Visser Delft University of Technology, promotor
Prof. Dr. A. van Deursen Delft University of Technology, promotor
Prof. Dr. K. G. Langendoen Delft University of Technology
Prof. Dr. Ir. P. Jonker Delft University of Technology
Prof. Dr. F. Steimann Fernuniversität Hagen
Prof. Dr. J.J.M. Hooman Radboud University Nijmegen
Prof. Dr. K. Ostermann Universität Marburg

The development of mbeddr was supported by the German BMBF, FKZ 01/S11014.

Copyright © 2011 - 2014 Markus Voelter
Printed and bound in The Netherlands by CPI Wöhrmann Print Service.
ISBN 978-94-6203-586-7

Acknowledgments

First and foremost I want to thank the mbeddr team. While the idea for Ge-
neric Tools, Specific Languages and mbeddr was mine, realizing a system of this
scope and size is impossible for one person alone. This is true in terms of
the necessary amount of work, but also in terms of the necessary (more de-
tailed) ideas and concepts that need to be tackled during realization. Hence
I am grateful to the mbeddr team: Bernd Kolb (who was the mother of the
project if I am the father), Dan Ratiu (who contributed his experience for for-
mal methods), Domenik Pavletic (who implemented the debugger and fought
with the build server), Kolja Dumman (who joined after the research project,
but nonetheless made his mark on mbeddr), Sascha Lisson (who built the sup-
port for prose and tables in MPS in his spare time before we hired him into
the mbeddr team where he now deals with MPS details), Zaur Molotnikov
(who helped with the formal methods), Federico Tomassetti (who worked on
the initial variant-aware legacy code importer) as well as Stephan Eberle, Bir-
git Engelmann, Stefan Schmierer, Aykut Kilic, Daniel Stieger and Bernhard
Merkle who actually used mbeddr to build real software systems and prov-
ided critical feedback. Finally, I want to thank Bernhard Schätz for helping
with the formal aspects of the research project and just generally for his sup-
port!

I also want to thank Wolfgang Neuhaus as a representative of itemis man-
agement for giving us the freedom to work on an innovation project like
mbeddr. While we did get government funding as part of the LW-ES research
project, Domenik, Bernd and myself spent much more time on mbeddr than
what was backed by government funding. Without these additional resources,
mbeddr would not be where it is today. Similarly, I want to thank Swami-
nathan Gopalswamy and Sundu Sundaresan, both of Siemens PL (LMS), for
indirectly supporting the continued development of mbeddr through their
investment into ACCEnT (which builds on top of mbeddr).

I also want to thank the JetBrains MPS team. They created a very pow-
erful tool that was used as the platform for mbeddr, and they supported
(and continue to support) us relentlessly. They answered questions, dis-
cussed and fixed bugs, and reprioritized the MPS roadmap to better fit our
needs. Without this close collaboration, mbeddr would not have been possi-
ble. In particular, I want to thank the team lead Alexander Shatalin (who was
tirelessly available via Google Chat and Skype), Konstantin Solomatov (who
was Alexander’s predecessor and helped start the mbeddr project) as well as
Sergey Dmitriev (JetBrains founder and president, as well as the originator of
MPS).

I want to thank Eelco Visser and Arie van Deursen for giving me the chance
to pursue a PhD remotely, and based on my own ideas. Even though re-
mote collaboration isn’t always easy I enjoyed the experience thoroughly and
learned a lot. And I am sure my writing has become less "sales-oriented" in

iii

the process :-) Thank you very much! I also want to thank Eelco’s research
group for always welcoming me in Delft, for inspiring discussions on lan-
guage engineering and for the occasional help with the PhD process.

I am glad to have a great committee consisting of Jozef Hooman, Pieter
Jonker, Koen Langendoen, Klaus Ostermann and Friedrich Steimann (plus,
of course, Eelco and Arie). Thank you for serving, and thank you for the
feedback!

I also want to thank Tamara Brusik, the TU Delft’s Office of the Beadle
and again, Eelco Visser, for helping me with the remoteness of the thesis. For
example, Tamara and Eelco printed the thesis three times and brought it to
the Beadle’s Office, and the Beadle’s Office agreed to do some of the process
via phone instead of me showing up in the Office in person. Thank you!

I want to thank Eugen Schindler for translating the Summary at the end
of the thesis into Dutch – a small piece of the overall puzzle that made a big
difference.

Steve Rickaby, who has copyedited all my English language books before,
has also performed his magic with regards to fixing problems with my English
on this text. Thank you very much, Steve!

Last but not at all least, I want to thank Nora who often just saw my back
hunched over the notebook, because I was coding for mbeddr, or writing a
paper or this thesis. Apparently she also had to suffer through any number of
look-at-this-new-thing-we-built-and-praise-me episodes. Thank you for your
patience, support and love!

Markus Völter
April 2014

Stuttgart, Germany

The cover and back cover pictures are in line with the covers of my previous books DSL Engi-
neering and Model-Driven Software Development in that they show gliders. The picture on the cover
shows as ASH-26E breaking away from a Duo Discus, from which the photo was taken. The
back cover shows the same Duo Discus flying closely behind the ASH-26E, from which I took the
picture. I think both pictures were taken on the same autumn day over the Schwäbische Alb in
Southern Germany.

iv

Contents

I Generic Tools, Specific Languages 1

1 Introduction 3
1.1 Overview and Contribution . 3
1.2 My Personal Contribution . 8
1.3 Publications . 8
1.4 A Note on Style . 10

2 Generic Tools, Specific Languages 11
2.1 The Role of Tools . 11
2.2 Command-Line vs. GUI Tools . 12
2.3 Domain-Specific Tools . 13
2.4 Problems with Today’s Extensibility 16

2.4.1 Example 1: Physical Units: 16
2.4.2 Example 2: State Machines 18
2.4.3 Example 3: Requirements Tracing 20
2.4.4 Kinds of Extensions . 21
2.4.5 Combining Extensions . 21
2.4.6 Another Example: Requirements Engineering 22

2.5 Generic Tools, Specific Languages 22
2.6 Research Questions . 25

3 Application to Embedded Software Development 27
3.1 Embedded Software . 27
3.2 Challenges in Embedded Software 28
3.3 The mbeddr Solution Approach 32
3.4 The State of the Art . 38

3.4.1 Mainstream Approaches 38
3.4.2 DSLs in Embedded Software 44
3.4.3 Alternative Ways for Building Abstractions in C 46
3.4.4 Formal Analyses . 47
3.4.5 Process Aspects . 51

II Using mbeddr for Embedded Software Engineering 55

4 An Overview of mbeddr’s Features 57
4.1 mbeddr’s Version of C . 57
4.2 Testing and Reporting . 60
4.3 Physical Units . 62
4.4 Components . 65

v

4.5 Decision Tables . 77
4.6 State Machines . 79
4.7 Documentation . 88
4.8 Requirements . 93
4.9 Product Line Variability . 101
4.10 Miscellaneous . 106

5 Validation I: An Application Developer’s Perspective 111
5.1 Example Systems and their Use of mbeddr 111
5.2 Addressing the Challenges . 114

5.2.1 Abstraction without Runtime Cost 114
5.2.2 C Considered Unsafe . 121
5.2.3 Program Annotations . 122
5.2.4 Static Checks and Verification 122
5.2.5 Process Support . 123

5.3 Other Concerns . 125
5.3.1 Scalability . 125
5.3.2 Usability . 129
5.3.3 Learnability . 130
5.3.4 Infrastructure Integration 131
5.3.5 Interoperability with Textual Code 132

5.4 Relationship to Kuhn’s Survey 133

III Implementing mbeddr with Language Engineering 137

6 Language Workbenches and MPS 139
6.1 Overview . 139
6.2 Projectional Editing . 140

6.2.1 Editor Usability . 141
6.2.2 Language Evolution . 143
6.2.3 Infrastructure Integration 143
6.2.4 Tool Lock-In . 144

6.3 Multi-Stage Transformation . 144
6.4 MPS Language Aspects . 145
6.5 Implementing a DSL with MPS 148

7 Language Composition and MPS 155
7.1 Introduction . 155
7.2 Terminology . 157
7.3 Classification of Composition Approaches 158
7.4 Language Composition with MPS 160

7.4.1 Language Referencing . 160
7.4.2 Language Extension . 163
7.4.3 Language Reuse . 167
7.4.4 Language Embedding . 172
7.4.5 Language Annotations . 177

vi

7.4.6 Language Restriction . 179
7.4.7 Extension Composition 180

7.5 Related Work . 181

8 Implementing mbeddr Languages 187
8.1 Introduction . 187
8.2 Test Cases and Assert/Fail Statements 190
8.3 Embedding State Machines in Components 191
8.4 Transforming State Machine Triggers 191
8.5 Transforming a Mock Component 193
8.6 Safeheap Statement . 193
8.7 Decision Table Expressions . 195
8.8 Post-Conditions for Interface Operations 197
8.9 Physical Units . 198
8.10 Vectors and Matrices . 200
8.11 Range Checking . 206
8.12 Requirements Traces . 206
8.13 Implementing Variants . 208
8.14 Architecture Constraints . 209
8.15 OS Configuration . 210
8.16 Additional Requirements Data 215
8.17 New Words in Prose Blocks . 216

9 Implementing the Non-Language Aspects of mbeddr 219
9.1 Verification . 219

9.1.1 SMT Solving for Decision Tables 221
9.1.2 SAT Solving for Feature Models 222
9.1.3 Model-Checking State Machines 224
9.1.4 Dataflow Analysis for Contract Checking 225

9.2 Debugging . 227
9.2.1 Requirements for the Debugger 227
9.2.2 An Example Extension . 228
9.2.3 Debugger Framework Architecture 231
9.2.4 More Examples . 234
9.2.5 Discussion . 235

9.3 IDE Support . 236
9.3.1 Customized Find Usages 236
9.3.2 Refactorings . 237

9.4 Dataflow . 240
9.5 Visualizations . 242
9.6 Legacy Code Importer . 244

10 Validation II: The Language Engineer’s Perspective 247
10.1 Domain-Specific Extensibility . 247
10.2 Modularity & Projectional Editing 252
10.3 Tool Scalability . 255
10.4 Effort . 257

Contents vii

10.5 MPS Learning Curve . 257
10.6 Limitations of MPS . 258

11 Conclusion 261
11.1 Generic Tools, Specific Languages Revisited 261
11.2 Open Issues and Future Work . 262
11.3 Beyond Embedded Software . 264

Bibliography 269

Samenvatting 285

Curriculum Vitae 289

viii

Part I

Generic Tools, Specific
Languages

1

1
Introduction

Abstract — Adapting tools to a particular domain is expensive, and the adaptation is
often not very deep. To address this challenge, Generic Tools, Specific Languages
shifts the focus from building and adapting tools (windows, buttons, algorithms) to
building and adapting languages to a domain. The thesis applies the approach to
embedded software development: mbeddr is an extensible set of integrated languages
for embedded software development built with JetBrains MPS language workbench.
The evaluation of mbeddr suggests that it is a productive tool for embedded software
development. The evaluation of the development of mbeddr itself suggests that MPS
is a suitable platform for Generic Tools, Specific Languages, and that the approach
in general is worthwhile.

1.1 O V E RV I E W A N D C O N T R I B U T I O N

This section provides an overview of the thesis. It starts out by describing
the contribution and the research methodology. It then discusses mbeddr, the
primary artifact built during the dissertation and explains its context, embed-
ded software engineering. A discussion of the technologies used for building
mbeddr – language engineering, projectional editing and JetBrains MPS – fol-
lows. The section concludes with an overview of the results.

Contribution Today’s software engineering tools are hard to adapt to spe-
cific domains. A major reason is that while platforms such as Eclipse support
easy extension of the tool (views, editors, buttons, menus) they do not easily
support the extension of the data formats or languages that underlie a tool.
The contribution of this thesis is the introduction and evaluation of a new
approach to developing domain-specific software engineering tools called Ge-
neric Tools, Specific Languages. It shifts the focus from adapting the engineering
tool to adapting the underlying languages to solve the problem of tool adapta-
tion. It relies on language workbenches (the generic tool) and recent advances
in language engineering, particularly, user-friendly projectional editing. The
problem of tool extensibility, the Generic Tools, Specific Languages approach and
the way it is evaluated is discussed in Chapter 2. The specific research ques-
tions that arise from the approach (domain-specific extensibility, language
modularity and projectional editing, tool scalability, implementation efforts
and the learning curve) are introduced and motivated in Section 2.6.

Methodology As part of the dissertation, the Generic Tools, Specific Languages
approach has been applied to embedded software engineering, resulting in a

3

tool called mbeddr1. mbeddr provides a set of extensions to C, plus a number
of other languages relevant to embedded software engineering. The evalua-
tion of the Generic Tools, Specific Languages rests on two pillars. First, the fact
that mbeddr could be built at all is a validation of the technical feasibility of
the approach. Chapter 10 evaluates the experience of building mbeddr, based
specifically on a number of research questions introduced in Section 2.6. The
second pillar evaluates whether mbeddr is an improvement in terms of the
tooling for embedded software development. Only if useful tools can be built
with Generic Tools, Specific Languages is the approach worthwhile. Chapter 5
investigates this question based on six challenges in embedded software de-
velopment discussed in Section 3.2. The validation uses empirical, qualitative
data obtained during the mbeddr-based development of six embedded soft-
ware systems.

According to the categorization of different kinds of research contributions
put forth by the Call for Papers2 of ICSE 2014, the core contribution of this
thesis is technological. It introduces a new modeling language and tool. The
evaluation of the usefulness of the contribution is mainly backed by clear
arguments extracted from practical use of the system; this applies to both
mbeddr, as well as to language engineering and JetBrains MPS. The thesis
also has an empirical component, in the sense that qualitative empirical evi-
dence is gathered and evaluated from building mbeddr (Chapter 10) and a
number of mbeddr-based applications (Chapter 5). The thesis does not con-
tain a systematic case study because the realities of the LW-ES research project
in which mbeddr was developed did not permit such a systematic study. The
thesis also has a methodological component, in that it advocates general princi-
ples on how to build domain-specific software development tools. Finally, the
thesis contains a new perspective on embedded software development using
language engineering and highly integrated tools.

mbeddr mbeddr implements the Generic Tools, Specific Languages paradigm
for embedded software development, based on the MPS language workbench.
mbeddr supports the incremental, modular extension of C. It ships with a set
of extensions relevant to embedded software, such as interfaces and compo-
nents, state machines and physical units. mbeddr provides multi-paradigm
programming for C, in which different abstractions can be used and mixed
in the same program. The availability of a first-class language construct for
important abstractions in embedded software also makes programs more an-
alyzable, because the application logic is expressed at an appropriate abstrac-
tion level. To exploit this benefit, mbeddr also includes formal analyses for
some of the extensions; model checking of state machines, verifying determin-
ism of decision tables and verifying interface contracts are examples. Finally,
mbeddr supports process concerns such as documentation, requirements and
product line variability, all based on language engineering. mbeddr’s features
are discussed in detail in Chapter 4.

1 http://mbeddr.com
2 http://2014.icse-conferences.org/research

4

As a consequence of being built on top of a language workbench, mbeddr
allows third parties to create modular extensions of C or of existing exten-
sions, without modifying any existing languages. Users can also build ad-
ditional languages that are not related to (or just reference or generate to) C
code, but which are nonetheless important for a particular domain-specific
engineering environment. Examples of such extensions are shown at the be-
ginning of Chapter 10.

mbeddr has been developed in the LW-ES research project3. However,
mbeddr is not a research prototype, it is a mature system that has been (and
continues to be) used to develop real-world software. mbeddr is open source
software, licensed under the Eclipse Public License, is hosted by eclipse.org
and continues to be actively developed even though the LW-ES research pro-
ject has ended.

Embedded Software Development Embedded software development is a
good candidate for demonstrating the Generic Tools, Specific Languages para-
digm. While some kinds of embedded software are developed with (rather
generic) modeling tools, a significant share of embedded software is devel-
oped in C. The main reason for using C in embedded software is that it is very
good for low-level concerns: direct access to memory and pointer arithmetic
are available, and well-written C code can compile to quite small and efficient
binaries, which is important in many embedded software systems. However,
C also has well-known drawbacks: some of C’s flexibility is considered dan-
gerous in the context of safety-critical systems, it is hard to build higher-level
custom abstractions, and excessive – and sometimes unavoidable – use of the
C preprocessor can lead to completely unmaintainable and hard-to-analyze
software. Section 3.2 introduces six challenges of embedded software devel-
opment today; these form the basis of the evaluation of mbeddr in Chapter 5.

mbeddr attempts to solve these issues by using language engineering. By
supporting multiple domain-specific extensions to C, different aspects of the
overall system can be implemented with different, adequate abstractions. All
of these are integrated semantically by being embedded in (and generating
to) C programs, which are then compiled with existing tool chains. The ex-
tensions are also integrated in terms of the tool, because all languages and
language extensions live in the same IDE (integrated development environ-
ment), the language workbench. This avoids the tool integration issues com-
monly found in embedded development projects that use different specialized
tools for different aspects of the overall system. The state of the art in embed-
ded software development and its tools is discussed relative to mbeddr in
Section 3.4.

Language Engineering and Language Workbenches Language modular-
ization and composition are important ingredients of language engineering.
These techniques refer to the ability to combine language modules into new,

3 This project has been funded by the German BMBF (01|S11014), and included itemis AG,
fortiss GmbH, Sick AG and BMW Car IT. It ran from July 2011 to June 2013.

Chapter 1. Introduction 5

composite languages without invasively changing any of them. While lan-
guage composition involves structure, syntax, type system, semantics and the
IDE, the syntactic aspect has historically been a challenge, due to the lim-
ited compositionality of grammars, grammar classes and parsing. Section 7.5
discusses historic and alternative contemporary approaches for language en-
gineering. mbeddr relies especially on language extension, in which additional
language constructs are added to a known base language. Chapter 7 contains
a classification of language composition approaches, among them extension.

Language workbenches are tools tailored for language engineering; they
also support the development of rich IDEs for the engineered languages, with
features such as syntax coloring, code completion, go-to-definition and find-
references as well as model search, refactoring, debugging or visualization.
Language workbenches are the generic tool in Generic Tools, Specific Languages.
The term language workbench was introduced by Fowler [2005], even language
workbench-like tools have a much longer history, which is discussed in Sec-
tion 7.5.

Projectional Editing Projectional editing refers to an approach of language
and IDE implementation in which user interactions with the code leads to a
change in the program AST (abstract syntax tree) directly. It is similar to a
graphical diagram editor. In a UML tool, for example, when a user drags
a class onto the canvas, the tool does not draw the class shape and a parser
"parses the graphics" to build the AST (this is essentially what happens in tex-
tual IDEs). Instead, when the class is dropped onto the canvas, the in-memory
data structure that represents the model gets a new instance of uml::Class,
and a projection engine then renders the graphics. There is never any transfor-
mation from concrete syntax to abstract syntax, only the other way round. This
means that the concrete syntax can be ambiguous (in terms of parsing), and it
can use notations that cannot be parsed at all, such as mathematical symbols,
tables or graphics.

mbeddr, and more generally, the Generic Tools, Specific Languages paradigm,
exploit these characteristics to provide rich notations and flexibly combinable
languages for the application developer.

It is important to point out that the benefits of projectional editing do not
come for free. For textual notations, the editor feels a little different than reg-
ular text editors, and programs are not stored as plain text, but instead as a
serialized AST, typically XML. Section 6.2 discusses how MPS addresses these
problems, and Sections 5.3.2 and 5.3.4 report on whether this works in prac-
tice. In summary, MPS takes some time to get used to, but most developers
then report that they can work productively with the editor.

JetBrains MPS JetBrains MPS4 is an open source projectional language
workbench developed over the last ten years by JetBrains. It provides a com-
prehensive environment for language engineering, supporting language as-
pects such as concrete and abstract syntax, type systems and transformations,

4 http://jetbrains.com/mps

6

as well as IDE aspects such as syntax highlighting, code completion, go-to-
definition, find-usages, diff and merge, refactoring and debugging. MPS uses
a projectional editor; in contrast to historical projectional editors, MPS has
managed to improve editor usability to the point where it can be used pro-
ductively. Some of the ways it achieves this are discussed in Section 6.2 as
part of the general introduction to MPS in Chapter 6.

MPS has not been developed as part of this thesis. However, mbeddr is the
first case in which MPS has been used to build a rich, multi-paradigm devel-
opment tool based on the Generic Tools, Specific Languages approach. Chapters
8 and 9 explain how mbeddr is built on top of the JetBrains MPS language
workbench.

MPS was chosen as the basis of this research because, through its pro-
jectional editor, it promises unparalleled language composition features and
flexible domain-specific notations. Both are important cornerstones for Ge-
neric Tools, Specific Languages. The experience with mbeddr shows that, despite
a few shortcomings, MPS can meet these expectations. Chapter 10 provides
the details.

Results The results are promising from an embedded software develop-
ment perspective and from the perspective of language engineering. Chap-
ter 5 contains the evaluation from the application developer’s perspective; the
following is a summary. mbeddr was used for implementing several systems,
from relatively small examples to non-trivial commercial applications. Just
using the existing extensions (interfaces, components, state machines, units)
leads to better code quality and higher developer productivity. In particular,
testing, which can be a challenge for embedded software, is simplified signif-
icantly as a consequence of better modularity and better abstractions. Also,
testing can be backed up by using the integrated formal analyses, further in-
creasing confidence in the code. Using the integrated requirements tracing
and documentation facilities helps to improve the evolvability of the devel-
oped systems when requirements change or new developers are brought in.
The fact that all systems built so far could be run on their intended target de-
vices indicates that the overhead incurred by mbeddr cannot be prohibitive.
Finally, the system scales to reasonable sizes; systems in the order of 100,000
SLOC can be implemented without running into performance issues.

Chapter 10 evaluates the development of mbeddr from a language engi-
neering perspective; again, the following is a summary. The effort for build-
ing the mbeddr languages were moderate, and the result was a productive
environment for developing embedded software. While the learning curve
for MPS (and for comparable tools) is steep, once a developer has mastered
it, they have access to a powerful set of capabilities. The notion of modular
and incremental language extension works: mbeddr’s default extensions have
been built as independent, modular extensions of the C base language and
can be used together in the same program. As part of all the projects done
with mbeddr, we have also built project-specific modular extensions such as
abstractions for processor registers, or languages for specifying messages for

Chapter 1. Introduction 7

custom communication protocols. The efforts were limited (from hours to
a few days) and covering these efforts in real-world projects was feasible.
Projectional editing has turned out to be the right choice. It contributes to the
practically unlimited language extensibility, and non-textual notations such as
tables or mathematical symbols add to the readability of mbeddr code. Ap-
plication developers report that, after a few days of changing editing habits,
the editor works well; some even report that they prefer it over regular textual
editors.

Conclusion The results indicate that Generic Tools, Specific Languages works
for non-trivial applications. Projectional editing, and in particular MPS, have
proved to be a suitable foundation for the approach, even though MPS still has
a few limitations and problems, discussed in Section 10.6. This is also backed
up by the fact that mbeddr has been chosen by Siemens PL (LMS) as the basis
for their new commercial embedded software engineering tool. Finally, the
Generic Tools, Specific Languages approach is generalizable beyond embedded
software. The mbeddr project team is currently in the process of using the
same approach in the financial domain, where a set of interconnected DSLs
are being developed to design and configure insurance products. Some details
on the uses of Generic Tools, Specific Languages beyond mbeddr are discussed
in Section 11.3.

1.2 M Y P E R S O N A L C O N T R I B U T I O N

The notion of Generic Tools, Specific Languages is mine. It has grown out of my
experience with model-driven development and domain-specific languages.
Also, the idea of applying this approach in embedded software development
is my own. I built the original prototype of mebddr, called MEL, and dis-
cussed in the MoDELS 2010 paper [Voelter, 2010]. I was also the person who
initiated the grant proposal that led to LW-ES research project in which the
current version of mbeddr was developed. However, the implementation of
mbeddr was much too big to be done by one person. The effort was split
mainly between Bernd Kolb, Daniel Ratiu, Domenik Pavletic and myself. My
role was to provide overall guidance for the project and implement many of
the languages and extensions discussed as part of this thesis.

1.3 P U B L I C AT I O N S

This thesis builds on other publications written during the dissertation pe-
riod, mostly journal, conference and workshop papers. The first paper Embed-
ded Software Development with Projectional Language Workbenches [Voelter, 2010]
was published at MoDELS 2010. It is based on an early predecessor of mbeddr
called the Modular Embedded Language (MEL). MEL was built on an earlier
version of JetBrains MPS, and the example system implemented with it was
a Lego Mindstorms robot. While that prototype was very basic, the paper in-
troduces the idea of using language engineering to build embedded software
development tools.

8

A more thorough treatment of the idea was presented at SPLASH/Wave-
front 2012 in a paper titled mbeddr: an Extensible C-based Programming Lan-
guage and IDE for Embedded Systems [Voelter et al., 2012]. It is based on the
then-current state of the mbeddr implementation discussed in this thesis. It
contains a much more thorough and systematic treatment of the challenges in
embedded software development and how language engineering can help to
solve them. It describes the extensions available in mbeddr in a fair amount
of detail, and discusses how they are implemented.

A third paper was published in 2013 in the Journal of Automated Soft-
ware Engineering, mbeddr: Instantiating a Language Workbench in the Embedded
Software Domain [Voelter et al., 2013]. As the title suggests, this paper shifts
the perspective from language engineering to tool development, and hence is
closest to the theme of this thesis. The paper also contains a preliminary vali-
dation of the approach based on the systems that had been built with mbeddr
at the time.

At GTTSE 2011 I published a paper called Language and IDE Development,
Modularization and Composition with MPS [Voelter, 2011]. It is not directly re-
lated to mbeddr, but instead proposes a systematic approach to language
modularization and composition. It illustrates these approaches with exam-
ples based on MPS. The understanding gained from writing this paper sig-
nificantly influenced the design and implementation of mbeddr and Generic
Tools, Specific Languages in general.

Finally, a paper for SPLC 2011 called Product Line Engineering using Domain-
Specific Languages [Voelter & Visser, 2011] systematically explores the differ-
ences between feature models and DSLs in the context of product lines, and
argues when and why DSLs are superior. The paper uses parts of mbeddr as
an example; the work that went into it also informed the product line support
available in mbeddr.

A number of papers address the integration of formal methods into mbeddr,
and the underlying philosophy of exploiting language engineering to better
support the use of formal methods in practice. The first was published at the
FormSERA Workshop 2012 and is called Language Engineering as Enabler for
Incrementally Defined Formal Analyses [Ratiu et al., 2012]. It introduces the idea
and illustrates the concept with three of mbeddr’s integrated formal methods:
completeness and consistency checking of decision tables, model-checking for
a dialect of state machines, and consistency checking of feature models. The
second paper was published at the MoDeVVa 2012 workshop and is called Im-
plementing Modular Domain Specific Languages and Analyses [Ratiu et al., 2012].
It introduces and illustrates the notion of using language engineering to sup-
port reuse of parts of the implementations of different formal analysis tech-
niques in mbeddr. Finally, in a paper titled Using Language Engineering to Lift
Languages and Analyses at the Domain Level [Ratiu et al., 2013], published at
the 2013 edition of the NASA Formal Methods Symposium, we illustrate the
integration of C-level model checking into the mbeddr system, once again
exploiting language engineering to facilitate the approach.

Chapter 1. Introduction 9

Other aspects of mbeddr are also discussed in workshop papers. This in-
cludes requirements management and tracing [Voelter et al., 2013], the inte-
gration of structured programs and prose [Voelter, 2013] and extensible de-
buggers [Pavletic et al., 2013].

Finally, some aspects of this thesis have also been discussed in the book DSL
Engineering [Voelter et al., 2013], published by me and a few collaborators in
early 2013.

1.4 A N O T E O N S T Y L E

In this document I use "I" to refer to me as the author (as in "I will show in
Section 2 how to ...". I use "we" when referring to the mbeddr team as a whole
(as in "We have added support for ...").

Summary — This thesis proposes a new approach to developing software engineering
tools called Generic Tools, Specific Languages. It relies on language workbenches
and language engineering to create productive development environments for different
domains. The thesis proposes the approach, and validates it with the mbeddr tool for
embedded software development. Chapter 2 discusses the current state of the art in
tools, points out challenges, and shows how Generic Tools, Specific Languages
address these challenges. Chapter 3 introduces the field of embedded software and
shows how mbeddr addresses challenges in this field. The chapter concludes with a
comparison of mbeddr to other approaches for embedded software engineering.

10

2
Generic Tools, Specific Languages

Abstract — Tools play an important role for many aspects of software engineering.
Domains-specific tools, i.e., tools that are adapted to a particular domain, can be even
more useful. However, building domain-specific tools, or adapting generic tools to a
particular domain, is expensive. An important reason for this cost is that even those
tools that are adaptable usually only adapt the tool’s functionality and UI, but not the
underlying data structures. This chapter lays out the paradigm of Generic Tools,
Specific Languages, which addresses this challenge by casting data as languages
and using language engineering and language workbenches to enhance adaptability.

2.1 T H E R O L E O F T O O L S

Tools play an important role in the development of software, and as the com-
plexity of software increases the role of tools grows in importance. There are
many ways in which tools can be classified, for example based on the task they
support (discussed in this section), whether they are command-line tools or UI
tools (Section 2.2), they are general-purpose or domain-specific (Section 2.3).
Adequate tools have the potential to improve productivity [Bruckhaus et al.,
1996] and support developers in various ways [Heitmeyer, 2006; Broy et al.,
2010]:

Tools automate tedious tasks. Language-aware editors automate some
aspects of programming, such as generating getters and setters for fields in
Java. Using code completion, they help to avoid typos and reduce the number
of keystrokes developers have to type. Tools enable the use of non-textual
languages such as UML, dataflow models or state charts. Refactoring tools
help restructure the code and improve its internal structure. Continuous inte-
gration servers automatically build software and execute tests.

Tools automate the creation of derived artifacts. Compilers create opti-
mized binaries from sources. They can also generate derived artifacts such
as interface descriptions or data structure descriptions needed by subsequent
tools. Code generators generate source code from models. More generally, in
model-driven software development [Stahl & Voelter, 2006], tools are essential
for modeling, transformation and code generation.

Tools ensure the well-formedness of content. Checking for structural
correctness of programs or XML documents is an example. They also run
type checks in the background, keeping developers aware of type violations.

11

Tools help verify critical properties of the system. Tools can establish met-
rics about software, providing a measure of complexity or other properties.
Tools can check for violations of style guides or architectural guidelines. They
can perform analysis of safety properties by analyzing the code, for example
by using model checking.

Tools help find and fix bugs. Tools can insert tracing code into programs
that help collect data used for finding bugs. Debuggers help to animate pro-
grams, allowing developers to step through and understand their execution.
Profilers can be used to find performance bottlenecks. Quick fixes suggest
how to fix type system or structural errors as the developer writes the code.

Tools support development processes. They can help create reports or
other documents related to the system itself, such as FMEA or FTA analyses.
They can be used to manage requirements or documentation, and establish
traces between code or models and requirements. Tools can also create visu-
alizations of the structure or other aspects of the system. Version control tools
help with managing versions and releases of systems.

2.2 C O M M A N D - L I N E V S . G U I T O O L S

The distinction between command-line and GUI tools is important, since the
rest of this thesis and the Generic Tools, Specific Languages approach focuses on
GUI tools.

Command-Line Tools Command-line tools are optimized for batch pro-
cessing: they take a file as input and produce another file as output, the
transformation from source to target being tool-specific. Examples include
transformation tools such as compilers, which take program source code as
input and translate it into machine code, and analysis tools, which take source
data as input and output the result of the analysis; an example would be a
symbolic model checker such as NuSMV1. Traditionally, command-line tools
have been used interactively in software development, possibly together with
a text editor to edit sources and view results. The developer uses the operating
system’s console to invoke the tools. Also, command-line tools play an impor-
tant role in the context of Agile software development and DevOps [Humble
& Molesky, 2011] where they are automatically run on integration servers to
continuously compile, test, build and package software.

GUI Tools GUI tools provide a graphical user interface (GUI) with which
users can interact in a much richer way compared to command-line tools.
They usually let users work in and arrange multiple windows or editors,
provide rich ways of inspecting or viewing data, and often support differ-
ent representations of the same core data. Examples include IDEs (such as

1 http://nusmv.fbk.eu/

12

Eclipse2 plus JDT3 or CDT4, as well as IntelliJ IDEA5), modeling tools (such
as the MagicDraw UML6 tool or the Ascet SD7 embedded software develop-
ment tool), or complete engineering environments (such as Vector’s Preevi-
sion8 or Wolfram’s Mathematica9). For the mainstream developer, GUI tools
have replaced command-line tools as the dominant means for developing sys-
tems. However, underneath the GUI surface, many GUI tools still use trusted
command-line tools. For example, Eclipse CDT can use the gcc compiler.

2.3 D O M A I N - S P E C I F I C T O O L S

Many tools are relatively generic, which means that they do not make many
assumptions about the specific context in which they are used. This is true
for command-line tools and GUI tools alike. For example, make can be used
to automate all kinds of build processes, not just compilation of source code,
and MagicDraw can be used to model all kinds of systems based on (profiled)
UML. This genericity leads to a lack of domain-specific abstractions, which,
in turn, leads to limited productivity. A recent study by Whittle et al. [2013] in
the context of model-driven engineering (MDE, [Schmidt, 2006]) tools states:

Our interviews show that the tool market is focused only on supporting
models at an abstraction level very close to code, where the mapping
to code is straightforward. This is clearly somewhat removed from the
MDE vision. Unfortunately, there is also a clear gap in the way that
vendors market their tools and their real capabilities in terms of this
low-level approach. As a result, many MDE applications fail due to
expectations that have not been managed properly.

There are several reasons for this genericity. The first one is business-related:
generic tools can be sold more broadly, and so the investment for developing
such tools can be amortized more easily. Customers may even prefer buying
generic tools because they can "standardize" on them, reducing training cost
by leveraging their users’ experience throughout the organization. The second
reason for generic tools relates to the fact that a tool vendor may not actually
know all the various contexts in which a tool may be used, and so the vendor
is not able to incorporate all these (unknown) requirements. Even seemingly
simple domains such as refrigerators or controllers for electrical motors are
extremely deep and require lots of specific experience and know-how.

In addition to the often infeasibly expensive way of building domain-speci-
fic tools from scratch, it is also possible to build generic tools that are exten-

2 http://eclipse.org
3 http://www.eclipse.org/jdt/
4 http://www.eclipse.org/cdt/
5 http://www.jetbrains.com/idea/
6 http://www.nomagic.com/products/magicdraw.html
7 http://www.etas.com/en/products/ascet_software_products.php
8 http://vector.com/vi_preevision_en.html
9 http://www.wolfram.com/mathematica/

Chapter 2. Generic Tools, Specific Languages 13

sible, or adaptable to specific domains, or to compose domain-specific tool
chains by integrating existing tools. The above-mentioned study has found a
clear need for domain-specific adaptation of tools, and points out that current
tools are very limited in this respect:

The majority of our interviewees were very successful with MDE but all
of them either built their own modeling tools, made heavy adaptations
of off-the-shelf tools, or spent a lot of time finding ways to work around
tools. The only accounts of easy-to-use, intuitive tools came from those
who had developed tools themselves for bespoke purposes. Indeed, this
suggests that current tools are a barrier to success rather than an enabler
[..] Complexity problems are typically associated with off-the-shelf tools.
Of particular note is accidental complexity – which can be introduced
due to [..] [a] lack of flexibility to adapt the tools to a company’s own
context [..] Our interviews point to a strong need for tailoring of some
sort: either tailor the tool to the process, tailor the process to the tool,
or build your own tool that naturally fits your own process. Based on
our data, it seems that, on balance, it is currently much easier to do the
latter. Some tool vendors actively prohibit tailoring to the process, but
rather a process is imposed by the tool for business reasons.

In tool integration, a set of existing tools are combined in a way that leads to a
domain-specific tool chain. According to both Wasserman [1990] and Thomas
& Nejmeh [1992], three different styles of tool integration can be distinguished:
data integration, control integration and presentation integration. A historical
perspective on tool integration can be found in Brown & Penedo [1992].

Data Integration Data integration is the most common form of tool inte-
gration. Tools exchange data, usually using files, and it is the responsibility
of the user of the tools to exchange the right set of data at the right step in the
development process. Data integration also comprises cases in which refer-
ences (usually by qualified name or ID) between data from different tools are
established and kept in sync. The synchronization is done by one of the tools,
or by a third party tool.

XML is used widely for such integration architectures. For example, Khare
et al. [2001] discuss a system in which architecture models are exchanged
based on agreed-upon XML schemas. In modeling tools, metamodel based
data integration is used widely [Burmester et al., 2004; Amelunxen et al.,
2008]. In the Eclipse world, Ecore models and EMF files are often used
for this purpose. The importance of model transformations for integrating
tools that do not use compatible metamodels is discussed by Tratt [2005], and
the approach described by Königs & Schürr [2006] proposes automatic, rule-
based triggering of such transformations as data is exchanged between tools.
Kramler et al. [2006] also propose transparent transformation, but this time
using semantic technologies at the metamodel level. Finally, a tool integration
platform for multi-disciplinary development that goes further than exchang-
ing files is proposed by El-khoury et al. [2005]. It provides database-based

14

functionalities found in product data management and software configura-
tion management systems.

Control Integration Control integration attempts to solve the problem of
data integration, which is that it is the responsibility of the user of the tools
to exchange the right set of data at any particular step in the development
process. In control integration, tools "invoke" other tools through different
mechanisms. Brown [1993] proposes message-passing, and Blanc et al. [2005]
suggest a middleware called ModelBus, which relies on standardized descrip-
tions of the "interfaces" of models to support interoperability. Control integra-
tion usually involves some kind of data integration as well, since the above-
mentioned invocation typically involves the exchange of data.

Presentation Integration Presentation integration refers to the case in which
different tools run "in the same window". Usually, such integration hap-
pens on the basis of open platforms. Many of the mainstream IDEs (such
as Eclipse, Visual Studio10, NetBeans11 or IntelliJ) are such platforms, with
Eclipse being the most sophisticated and most widely used. Yand and Jiang
discuss the Eclipse case in some detail [Yang & Jiang, 2007]. While in prin-
ciple, presentation integration is independent of data and control integration
(completely independent tools can run in the same GUI), presentation integra-
tion is typically used together with the other two. On Eclipse, for example,
the plugin framework supports running different plugins in the same Eclipse
window (presentation integration) and it supports calling APIs provided by
other plugins (control integration); EMF often serves as a common baseline
for data integration.

Tool Extension Tool extension is a special case of presentation integration,
in which a particular tool is extended with additional, domain-specific fea-
tures. Tool extension is similar to presentation integration in the sense that
the result will be a tool that is integrated even in the GUI. However, presen-
tation integration is symmetric in that one integrates a set of independent tools
into a coherent tool chain; all participating tools are equal. Tool extension is
asymmetric: one tool is special and serves as the base for which extensions are
developed. The extensions are developed specifically for that base tool and
are typically not reusable with other base tools. Often tools are specifically
built to be extended; such tools are called extensible. They typically define
extension points, locations in the platform or plugin code that explicitly allow
extension. If the base tool has an adequate set of extension points and the GUI
framework is flexible enough, useful domain-specific tools can be built. Once
again, because of its flexible plugin architecture, Eclipse [Yang & Jiang, 2007]
is the most-widely used platform on which extensible tools are built. How-
ever, other engineering tools such as Simulink also provide extension APIs;
for example, Dziobek et al. [2008] describe an extension for variant handling.

10 http://www.microsoft.com/visualstudio/eng/
11 https://netbeans.org/

Chapter 2. Generic Tools, Specific Languages 15

2.4 P R O B L E M S W I T H T O D AY ’ S E X T E N S I B I L I T Y

In spite of the existence of extensible tools, there are still problems with ex-
tensibility; this is discussed in this section. Tools work with data that has to
conform to certain formats: a C compiler expects valid C programs, a UML
tool expects the model file to be valid XMI and make expects tabs in very
specific places. Unless their input data conforms to these specific formats,
the tools cannot process the data. They may report useful errors (a C com-
piler will report syntax errors in a program in meaningful way) or they may
just not work (opening a corrupted XMI file with a UML tool will probably
just fail). Notice the use of the words syntax error and corrupted: they imply
that a user has made a mistake, by not encoding the input data in a way that
conforms to the data format’s specification. However, the user may not have
made a mistake; the user may have intended to add additional information to
the input data, to be processed by the particular tool or by additional tools in
a tool chain.

To extend tools meaningfully, it is not enough to extend the way data is
processed. It is also essential to be able to extend the data itself, and hence the
language used to encode the data. The following subsections look at several
examples of how extension of the data format is essential – and how this is a
problem with today’s tools. In anticipation of later chapters of this thesis, this
section relies on the C programming language as an example data format12.

2.4.1 Example 1: Physical Units:

As the first example of this problem, consider the following valid C program
fragment:

// in file example.c
int distance = 10;
int time = 1;
int speed = distance / time;

This program makes certain assumptions about the physical correctness of
the calculation: dividing distance by time results in speed (v = s

t). From the
perspective of the C language and compiler, the following calculation is also
correct:

int speed = time / distance;

The compiler would not flag an error. This is because the information about
units is not present in the code. So even if a custom analyzer was written and
plugged into a command-line tool chain or into a UI tool, it could not perform
the analysis, because the necessary information is not part of the data!

To solve this problem, the input to the analysis tool that is part of a cus-
tom tool chain, perhaps running before the C compiler, would have to be

12 C is not typically considered a data format, but rather a language. Section 2.5 discusses the
relationship between the two notions

16

extended. Since the C grammar is fixed, one way to do this is to use special-
purpose comments starting with /*#, and make the checking tool aware of
this convention:

int/*#m*/ distance = 10 /*#m*/;
int/*#s*/ time = 1 /*#s*/;
int/*#mps*/ speed = distance / time;

However, this approach has many problems and limitations. First, it is syn-
tactically ugly. Second, there is no IDE support for entering the units, unless
one also builds a special IDE, which is a lot of work. Third, potential unit
errors are only shown when the special tool runs, not directly in the IDE (in
other words, control integration cannot easily be provided). Finally, the sep-
arate checker does not just have to parse out the units, it also has to parse
the remaining C program, because the context in which the units occur is rel-
evant. For example, adding two distances results in a distance (m), whereas
multiplying two distances results in an area (m2). An alternative solution to
the unit problem could be built with macros:

UT(int, m) distance = UV(10, s);
UT(int, s) time = UV(1, s);
UT(int, mps) speed = distance / time;

The UT and UV macros mark types and values as having units. The macros
are defined so as to eliminate the units as the preprocessor runs, so the pro-
gram can be compiled as regular C code. The specialized checker, however,
would use them to infer unit information. While the approach is a little bit
more robust, because the units themselves can be defined as enum literals or
constants, the checker is just as complicated, since it still has to be an external
tool that has to understand all of C, plus the macros. A third approach would
use external XML to add metadata to programs:

<unitdeclarations>
<unit name="m" for="distance"/>
<unit name="s" for="time"/>
<unit name="mps" for="speed" calculateAs="m/s"/>

</unitdeclarations>
<programmarkup file="example.c">

<globalvar name="distance" unit="m"/>
<globalvar name="time" unit="s"/>
<globalvar name="speed" unit="mps"/>

</programmarkup>

However, this has problems as well. First, the source file and the XML file
have to be synchronized (as is typical in data integration). While this could be
supported by a special tool, there is a more fundamental problem: there is no
reasonable way to refer to literals (as in 10) to specify a unit for them. Since
they have no name, they are not easily referenceable; line numbers and offset
are too brittle with regards to program changes.

Chapter 2. Generic Tools, Specific Languages 17

To solve the problem of adding units to C in a meaningful way, real lan-
guage extension is necessary13. If real language extensions were available, the
unit-aware program could be written like this:

int/m/ distance = 10 m;
int/s/ time = 1 s;
int/mps/ speed = distance / time; // with the unit mps defined

// elsewhere as m/s

The definition of the extension would define that units can be attached to
types and expressions, and nowhere else. The type system of the host lan-
guage would be extended to check type compatibility and compute resulting
units (mps = m

s). The compiler would be extended to ignore the units. No
separate tool is necessary.

The last example shows mbeddr’s syntax for units. The details are dis-
cussed in Section 4.3.

2.4.2 Example 2: State Machines

A popular means for specifying discrete behavior, especially in embedded
software, is to use state machines. Even though the approach is popular, im-
plementing state machines in plain C is tedious and error-prone, since it re-
quires the encoding of the state machines with lower-level abstractions. There
are two main idioms for implementing state machines14: switch-based and
array-based. The switch-based variant encodes states and input events as in-
tegers or enums and then uses a switch-statement to implement the behavior.
The following pseudocode illustrates the approach:

// a state machine that transitions into S2
// when E1 is received while the machine is in S1
void execute_StateMachine(Event_Enum evt) {

switch (currentState) {
case S1: switch (evt) {

case E1: if (guard for E1 in S1) {
// execute exit actions for S1
currentState = S2;
// execute entry actions for S2
break;

}
}

case S2: ...
...

}
}

13 This is certainly true for C. Some object-oriented languages allow solving the problem – to
some degree or another – with the means of OO abstractions and some syntactic tricks.

14 As a consequence of the popularity of state machines, a huge number of other approaches exist.
A very sophisticated one is Quantum Leaps: http://www.state-machine.com/index.php.

18

The array-based variant uses nested arrays to represent the state machine’s
transition matrix. The transition matrix is a table in which the columns rep-
resent the current state and the rows represent input events. The remaining
cells represent the state to which the state machine transitions if an event row
is received while the machine is in state col15. The states and events are en-
coded as sequential integers, so they can be used to directly index into the
array. This has the desirable property of executing in constant time O(1).

// a state machine that transitions into S2
// when E1 is received while the machine is in S1
// -1 means "do nothing".

// S1 S2 S3 ...
int[N_EVT][N_STATE] = { { 1, -1, -1 } // E1

{ -1, -1, -1 } // E2
...

};

In addition to being tedious and error-prone, both approaches have the prob-
lem that the structure of the original state machine is lost. This is not just
a problem for program comprehension and maintenance, but in addition,
symbolic model checkers [Burch et al., 1992] that can prove various prop-
erties about the state machine (such as reachability of states, transition non-
ambiguity and custom safety properties) cannot be used on this low-level
representation. Instead, C-level model checkers [Clarke et al., 2004] have to
be used. These are much more cumbersome to use and suffer from the state
space explosion problem.

It is much better to represent state machines as first-class language concepts
with states, events, transitions and actions. Since this is not possible in C, the
obvious workaround is to use external state machine modeling tools (such as
Statemate16 or visualSTATE17) and then generate the implementation. How-
ever, using an external tool leads to challenges with the integration of C code
(for example, in the actions) and with tool integration and synchronization
in general. An approach based on language engineering would embed first-
class state machines directly into C code, while retaining the advantages of
first-class representation:

statemachine SM {
event E1
state S1 {

entry { // entry action for S1 }
on E1 [guard for E1 in S1] -> S2
exit { // exit action for S1 }

}

15 The approach can be extended to include entry and exit actions by using another array, in
which the cells represent pointers to functions that contain the entry and exit action code.
Guard conditions can be handled with yet another table that contains pointers to Boolean
functions.

16 http://www-03.ibm.com/software/products/us/en/ratistat
17 http://www.iar.com/en/Products/IAR-visualSTATE

Chapter 2. Generic Tools, Specific Languages 19

state S2 {
...

}
...

}

This representation is more concise and less error-prone, since the state ma-
chine itself is represented directly. Since it is embedded into C, the guards can
be C expressions and the action code can be C statements. The IDE would
provide type checking for the expression, as well as state machine-specific
constraint checks and IDE support for the state machine syntax. The state
machine can be translated to any of the above-mentioned low-level imple-
mentations. In addition, it can be translated to the input for symbolic model
checkers for verification.

The last example is close to mbeddr’s syntax for state machines. The details
are discussed in Section 4.6.

2.4.3 Example 3: Requirements Tracing

Requirements tracing [Watkins & Neal, 1994; Jarke, 1998] refers to pointing
from implementation artifacts (such as code) to requirements. Trace pointers
are often typed to characterize the nature of the relationship (e.g., implements,
refines or tests). By following these pointers from a particular piece of
code, it becomes clear which requirement the piece of code fulfils. This is
useful to find out why a particular piece of code is the way it is. By following
the pointers in reverse order, developers and auditors can determine which
code fragments are a consequence of a given requirement. This is useful to
decide which parts of the system may have to be revisited when a requirement
changes. Current C IDEs do not support tracing directly; instead, special
comments or macros are used:

TRACE(REQ_CALIBRATION)
int calibrate(int measurement) {

return measurement * FACTOR + OFFSET;
}

int getValue() {
int raw = readFromDriver(ADC1_ADDRESS);
TRACE(REQ_CALIBRATION)
return calibrate(raw);

}

The code above attaches a trace that points to the REQ_CALIBRATION require-
ment to the calibrate function; it also attaches a trace to the code that calls
the function in the process of measuring a value. The approach has several
problems. First, there is no IDE support (such as code completion) when en-
tering the requirement IDs, and a separate consistency checker has to be used
to ensure that only valid requirement IDs are used. A more serious problem
is that it is not always clear to which program element a trace belongs. Writ-

20

ing the trace "over" the traced element works for coarse-grained elements, but
not generally: for example, one cannot write a trace "over" a number literal in
a complex expression. This problem gets worse when considering program
evolution or refactorings: attention has to be paid to keeping the TRACE macros
together with their traced element. It is impossible to detect an erroneously
moved trace automatically.

A solution based on language engineering would add tracing as a cross-
cutting aspect to a language, while keeping it generic enough to be attached
to any program element (the specific implementation approach depends on
the particular flavor of language engineering used). It is important to empha-
size that the trace really is attached, so when the traced element is moved or
refactored, the trace always moves with it. Code completion and referential
integrity checking with requirements documents can be provided directly in
the IDE. mbeddr’s solution for tracing is discussed in Section 4.8.

2.4.4 Kinds of Extensions

The three examples above have been chosen specifically because they are quite
different, to illustrate the ways in which languages may have to be extended
to build meaningful domain-specific tools.

Units are a fine-grained extension: single literals may have to be annotated
with units. They require deep integration with the existing grammar and type
system. However, they do not affect code generation to C; they are just thrown
away upon generation or compilation.

State machines are an example of a coarse-grained extension in which new,
"big" things are added to a program. While this may sound simpler initially,
coarse-grained extensions often embed other C concepts inside them. The
expressions in guards or the statements in actions are examples. Also, state
machines affect code generation: they have to be translated to existing idioms
for state machines in C. In addition, the need for formal analysis requires the
generation of additional code as an input to the model checker.

Requirements traces are yet another kind of extension. in that they are
generic: they should be attachable to any program element expressed in any
language. There is no deep semantic integration with the base language.
However, IDE support should still be provided.

2.4.5 Combining Extensions

To make the problem of extending the input data to tools even harder, in
many scenarios several of these extensions are used in the same program.
The three example extensions, in fact, could be combined rather nicely. Below
is a program that uses a mix of the extensions proposed above. It contains
a state machine with physical units embedded in the guard conditions, and
traces attached to transitions.

statemachine TrainDoorController {
event DOOR_BUTTON;

Chapter 2. Generic Tools, Specific Languages 21

state DOORS_CLOSED {
trace REQ_BUTTON_OPENS_DOORS_ONLY_OPEN_WHEN_STOPPED
on DOOR_BUTTON [speed == 0 mps] -> DOORS_OPEN

}
state DOORS_OPEN {

entry { openDoors(); }
trace REQ_BUTTON_CLOSES_DOORS_WHEN_OPEN
on DOOR_BUTTON [] -> DOORS_CLOSED
exit { closeDoors(); }

}
...

}

The need to be able to combine these extensions immediately rules out the
possibility of using separate tools for each of them: it is very unlikely that
existing state machine modeling tools will support physical units and require-
ments tracing. It also becomes clear that using naming conventions, macros,
comments or external files does not scale regarding non-ambiguity, robust-
ness, refactoring and tool support.

2.4.6 Another Example: Requirements Engineering

The examples of extensibility discussed above used a programming language
as the data structure to be extended. However, the challenges illustrated above
are just as relevant for other artifacts. Requirements engineering is an exam-
ple. In most existing requirements engineering tools requirements are col-
lections of prose paragraphs, often numbered, organized in a tree, and with
relationships among them (refines or preempts). However, different organi-
zations have to express different additional data for requirements. This ranges
from various simple string attributes (who is responsible, in which milestone
will it be implemented) through project management data (how much effort
is allocated, which work packages are defined), through tables with specific
data (prices) to embedded DSLs that express business rules formally (pricing
rules, insurance calculation rules). A requirements engineering tool should
be extensible, so that it can work with (and provide tool support for) all these
different kinds of data. mbeddr’s support for requirements engineering has
these capabilities; they are discussed in Section 4.8.

2.5 G E N E R I C T O O L S , S P E C I F I C L A N G U A G E S

The Generic Tools, Specific Languages approach uses language engineering to
solve extensibility challenges like the ones discussed in the previous section
(an overview of language engineering is provided in Section 7.5). It is defined
as follows:

Definition: Generic Tools, Specific Languages is an approach for de-
veloping tools and applications in a way that supports easier and more
meaningful adaptation to specific domains. To achieve this goal, Ge-

22

neric Tools, Specific Languages generalizes programming language IDEs
to domains traditionally not addressed by languages and IDEs. At its
core, Generic Tools, Specific Languages represents applications as docu-
ments/programs/models expressed with suitable languages. Applica-
tion functionality is provided through an IDE that is aware of the lan-
guages and their semantics. The IDE provides editing support, and also
directly integrates domain-specific analyses and execution services. Ap-
plications and their languages can be adapted to increasingly specific do-
mains using language engineering; this includes developing incremen-
tal extensions to the existing languages or creating additional, tightly
integrated languages. Language workbenches act as the foundation on
which such applications are built.

The context in terms of tools and tool extension has been provided in Sec-
tion 2.3; related work on the language engineering necessary for Generic Tools,
Specific Languages and on language workbenches is discussed in Section 7.5.
The rationale of the approach relies on the five ingredients discussed below.
Where applicable, connections to data, control and presentation integration
discussed in Section 2.3 are established.

Data Must be Extended, not Just Functionality To develop meaningful
domain-specific tools as adaptations of existing, generic tools, it is not enough
to add new functionality exposed via buttons, views or new file formats (i.e.,
extending the tool). For many use cases it is essential to be able to extend
existing data formats, as a means of providing the data on which new func-
tionality relies. As demonstrated in the previous section, traditional data in-
tegration, in which the additional data is put into separate files, is not feasible
for many kinds of extensions.

From Data Formats to Languages The purpose of a data format is to define
the structure with which a valid instance document has to conform, plus pos-
sibly additional consistency constraints (a data format is essentially a meta-
model, which is why metamodel-based data integration is popular [Burmester
et al., 2004; Amelunxen et al., 2008]). A data format also defines (explicitly or
implicitly) what valid instance documents mean, i.e. it defines the semantics
of the data format. This corresponds exactly to the abstract syntax and se-
mantics of languages. The only thing languages add to this is a convenient
concrete syntax18. By adding a concrete syntax to data formats, the discus-
sion about data format extension is moved from data formats into the world
of languages19. In this sense, language IDEs become data manipulation tools;
Generic Tools, Specific Languages relies on using language technologies to cre-
ate "user interfaces" for data (instead of windows, buttons and list views).
Note that the challenge of control integration is addressed by providing an

18 XML is not what I consider a convenient concrete syntax. It is more like a serialization format.
19 Often, languages are much more strict about constraints, type systems or the semantics of

instance documents, so when going from a data format to a language, it is likely that these
aspects will have to be strengthened as well.

Chapter 2. Generic Tools, Specific Languages 23

IDE for manipulating programs written in one or more extensible languages.
Traditional control integration is not required20.

Extensible Languages Over the last few years the language engineering
community has made a lot of progress in terms of language modularization,
extension and composition (discussed in Section 7.5). Existing languages can
be extended in a modular fashion, i.e., without invasively changing the base
language; independently developed languages can be used together in a sin-
gle program (i.e. extensions can be composed); and languages that have not
been intended for composition at the time they were developed can none-
theless be used together in a single program (language embedding). This
modularization, extension and composition comprises the abstract and con-
crete syntax, the type system, the execution semantics (realized through inter-
preters and transformations), as well as the IDE support. Using this approach,
the specific languages in Generic Tools, Specific Languages can be realized: based
on a set of generic base languages, tailored versions of the languages can be
created for specific contexts. The units and state machines examples from the
previous section are cases of language extension; the tracing example is a case
of embedding.

Syntactic Diversity If language technologies are used as a substitute for
classical tools, languages should be able to use more diverse notations than
just linear sequences of characters. Additional notations include tables, math-
ematical symbols (such as fraction bars, symbols like Â or

R
as well as ma-

trices) and of course graphical diagrams, as well as free-form prose text and
perhaps forms. Projectional editors are capable of supporting all of these in
a tightly integrated form21 (textual expressions in tables, mathematical sym-
bols in program code or free-form prose text in C comments). In this way
engineering environments can be built that use the wide range of notations
expected by users, and known from special-purpose tools available today.

Language Workbenches Language Workbenches are tools for efficiently
developing and using languages (see Sections 6 and 7.5). They provide pro-
ductive DSLs and APIs to express all aspects of language definitions (concrete
and abstract syntax, type systems, semantics) as well as their IDEs (syntax
coloring, code completion, go-to-definition, find-usages, refactoring, testing,
debugging, searching or visualization). The leading language workbenches
(such as MPS, Spoofax22 or Rascal23) have evolved from focusing on the de-

20 I do not suggest to replace database management systems with language workbenches – they
don’t scale that well, and this makes no sense. As will become clear in this thesis, the data
I refer to here is more like metadata: data structure definitions, algorithms, (business) rules,
and, in the end, program code or models.

21 In MPS, graphical notations are still a work in progress, but it is clearly visible on the horizon.
Also, the integration of these notational styles has been demonstrated by Intentional Software’s
Domain Workbench [Simonyi et al., 2006], another projectional editor.

22 http://strategoxt.org/Spoofax
23 http://www.rascal-mpl.org/

24

velopment of one language at a time towards developing sets of related lan-
guages: cross-language go-to-definition or find usages is supported, as is
language modularization, extension and composition and multi-level trans-
formation. Language workbenches also provide other generic facilities such
as model search, visualization, version control integration with diff/merge or
support for hyperlinking program output. Because all of these facilities are
agnostic relative to the actual language, and can be customized for any given
language, they provide a solid foundation for building engineering tools. By
hosting the base languages and their extensions in a single language work-
bench, presentation integration is achieved. Language workbenches are the
generic tools referred to in the title of this thesis.

By building engineering tools on top of language workbenches, language
engineering facilities are also available to the application developer. So, in con-
trast to essentially all other tool development paradigms used today, third
parties can use the same mechanisms for building their own extensions as were
used to implement the basic set of languages provided by the engineering tool.
Third parties are not at a disadvantage from having to use limited second-
class tool or language extension constructs (such as UML profiles [Fuentes-
Fernández & Vallecillo-Moreno, 2004] or internal DSLs in languages such as
Xtend24 or Scala25). This is the fundamental shift in the design of tools that
lets anybody26 customize tools with specific languages, suitable for their partic-
ular domain.

In spite of the existing research on language engineering, mbeddr is the
first system in which language engineering is attempted at a large scale with
a projectional editor. This leads to the following set of research questions.

2.6 R E S E A R C H Q U E S T I O N S

The introduction pointed out that the validation of Generic Tools, Specific Lan-
guages rests on two pillars. The first pillar is that the approach actually results
in tools that are useful to the end user in the particular domain. This aspect
is evaluated for mbeddr in Chapter 5, based on the challenges for embedded
software development introduced in Section 3.2. The second pillar evaluates
the process of building mbeddr based on language engineering and language
workbenches. Chapter 10 performs this task based on the research questions
specified below.

Domain-Specific Extensibility The limitations in the ability to adapt tools
to particular domains leads to tools that are badly adapted to domains. This
has been illustrated in Sections 2.4, 3.2 and 3.4 for embedded software. One
question addressed by this thesis is whether the Generic Tools, Specific Lan-
guages approach leads to tools that do not have these problems.

24 http://www.eclipse.org/xtend/
25 http://www.scala-lang.org/
26 Anybody refers to the fact that the tool is open enough for such customizations; developers who

want to build customizations of course need certain skills. This is discussed in Chapter 10.

Chapter 2. Generic Tools, Specific Languages 25

Language Modularity and Projectional Editing To a degree, language
modularity and composition is available with today’s tools, as discussed in
Chapter 7. A research question is whether language modularization, reuse in
new contexts and the ability to combine independently developed extensions
work in practice, and whether projectional editing is a suitable foundation.

Tool Scalability The maturity and usability of MPS for application pro-
grammers is evaluated in Section 5.3.2. However, there is an open question
about whether MPS also scales for the language developer in terms of hand-
ling the complexity associated with the large number of languages for im-
plementing Generic Tools, Specific Languages in mbeddr, and whether the tool
scales in terms of performance.

Implementation Efforts Obviously, the Generic Tools, Specific Languages ap-
proach is only useful if the efforts required for building productive domain-
specific tools is reasonable. The development of mbeddr provides a handle
for judging these efforts.

Learning Curve Language workbenches like MPS are sophisticated, multi-
faceted tools. To be usable at scale, the effort of learning how to use them
and, for example, building extensions for mbeddr, must be reasonable, i.e., at
the same level as learning mainstream programming languages.

Summary — The remainder of this thesis details Generic Tools, Specific Lan-
guages as well as mbeddr as an example of the approach. In particular, the next
chapter introduces the context of mbeddr: the field of embedded software engineering
and its current state of the art. It also outlines how mbeddr addresses important chal-
lenges in the field. Part II then looks at the development of embedded software with
mbeddr, and Part III investigates the language engineering process used to create
mbeddr.

26

3
Application to Embedded Software Development

Abstract — Embedded software is a fertile ground for the application of Generic
Tools, Specific Languages. A lot of embedded software is written in C, which,
while efficient, lacks robust mechanisms for building meaningful abstractions in a
way that retains the efficiency required for embedded software and provided by C.
Using modeling tools, on the other hand, often leads to problems with tool integration.
This chapter motivates and introduces mbeddr, an extensible set of domain specific
languages for embedded software engineering, which was built to validate the Generic
Tools, Specific Languages approach.

3.1 E M B E D D E D S O F T WA R E

mbeddr applies the Generic Tools, Specific Languages approach to embedded
software development. Wikipedia defines the term Embedded Software as fol-
lows1:

Embedded software is computer software written to control machines
or devices that are not typically thought of as computers. It is typically
specialized for the particular hardware that it runs on and has time and
memory constraints. [..] Manufacturers ’build in’ embedded software
in the electronics of cars, telephones, modems, robots, appliances, toys,
security systems, pacemakers, televisions and set-top boxes, and digital
watches, for example. This software can be very simple, such as lighting
controls running on an 8-bit microprocessor and a few kilobytes of mem-
ory, or can become very sophisticated in applications such as airplanes,
missiles, and process control systems.

An introduction to embedded software is offered by Simon [1999] and Dou-
glass [2010]. A thorough treatment of realtime embedded software is prov-
ided by Kopetz [2011].

The amount of software embedded in devices is growing and its value
for businesses is increasing rapidly (see, for example, the German National
Roadmap for Embedded Systems [Damm et al., 2010]). Developing this em-
bedded software is challenging: in addition to increasingly more complex
functional requirements, the software also has to fulfil strict operational re-
quirements. These include reliability (a device may not be accessible for main-
tenance after deployment), safety (a failure may endanger life or property),
efficiency (the resources available to the system may be limited) or realtime
constraints (a system may have to run on a strict schedule prescribed by the

1 http://en.wikipedia.org/wiki/Embedded_software

27

environment). The dependence on specific hardware platforms, the need for
hardware/software co-development, product line engineering and the need
to integrate mechanical and electrical engineers into the development process
further complicates the situation.

3.2 C H A L L E N G E S I N E M B E D D E D S O F T WA R E

This section investigates a few specific challenges in embedded software. They
are the motivation for applying the Generic Tools, Specific Languages approach
to embedded software. This specific set of challenges is derived from per-
sonal experiences and obvious shortcoming in existing tools. However, the
challenges are in line with those reported by other authors from different
communities (representative examples are Sztipanovits & Karsai [2001]; Lee
[2000, 2008]; Broy [2006]; Kuhn et al. [2012]); specific connections are pointed
out below. The usefulness of mbeddr is evaluated against these challenges in
Section 5.

Abstraction Without Runtime Cost Abstractions are generally accepted as
essential for productively developing maintainable and high-quality software.
Domain-specific abstractions provide more concise descriptions of the sys-
tem under development. Examples in embedded software include dataflow
blocks, state machines (see Section 2.4.2), or interfaces and components. On
one hand, adequate abstractions have a higher expressive power that leads to
programs that are shorter, easier to understand, maintain and analyze and can
be better supported by the IDE. On the other hand, by restricting the freedom
of programmers, domain-specific abstractions also enable constructive quality
assurance. For embedded software, where runtime footprint and efficiency is
a prime concern, abstraction mechanisms are needed that can be resolved be-
fore or during compilation, and not at runtime. Several publications point
out the need to handle the increasing complexity of embedded software sys-
tems [Broy, 2006; Woodward & Mosterman, 2007]. Abstraction without run-
time cost is a way of addressing these. Lee [2000] emphasizes concurrency,
which also require adequate abstractions to keep the complexity under con-
trol. Liggesmeyer & Trapp [2009] suggest that model-driven development,
which essentially enables meaningful, statically resolved abstractions, is the
future of embedded software development.

C Considered Unsafe A lot of embedded software is developed using C.
While C is efficient and flexible, several of C’s features are often considered
unsafe. For example, unconstrained casting via void pointers, using ints as
Booleans, the weak typing implied by unions or excessive use of macros can
result in runtime errors that are hard to track down. Consequently, these un-
safe features of C are prohibited in safety-critical domains. For example, stan-
dards for automotive software development such as MISRA [MISRA, 2004]
limit C to a safer language subset. However, most C IDEs are not aware of
these and other, organization-specific, restrictions, so they are enforced with
separate checkers that are often not well integrated with the IDE. This makes it

28

unnecessarily hard for developers to comply with these restrictions efficiently.
An example of such a checker that analyzes memory safety, an issue that is
arguably a consequence of the fact that C is inherently unsafe, is discussed
by Dhurjati et al. [2003].

Program Annotations For reasons such as safety or efficiency, embedded
systems often require additional data to be associated with program elements.
Examples include physical units, coordinate systems, data encodings or value
ranges for variables. As discussed in Section 2.4.1, these annotations are typ-
ically used by specific, often custom-built analysis or generation tools. Since
C programs can only capture such data informally as comments, macros or
pragmas, the C type system and IDE cannot check their correct use in C pro-
grams. They may also be stored separately (for example, in XML files) and
linked back to the program using names or other weak links. Even with tool
support that checks the consistency of these links and helps navigate between
code and this additional data, the separation of core functionality and the ad-
ditional data leads to unnecessary complexity and maintainability problems.
Lee [2000] points out robustness as a challenge. Program annotations that
support better type checking help with robustness. Broy [2006] points out
quality assurance as another challenge, specifically in automotive software.

Static Checks and Verification Embedded systems often have to fulfil strict
safety requirements. Industry standards for safety (such as ISO-26262, DO-
178B or IEC-61508) require that for high safety certification levels various
forms of static analyses are performed on the software, and more and more
embedded software systems have to fulfil strict safety requirements [Ligges-
meyer & Trapp, 2009]. The static analyses range from simple type checks
to sophisticated property checks, for example by model checking [Ivanicic
et al., 2005]. Since C is a very flexible and relatively weakly typed language,
the more sophisticated analyses are very expensive. Using suitable domain-
specific abstractions (such as the state machines shown in Section 2.4.2) leads
to programs that can be analyzed much more easily. Static verification also
becomes increasingly important in the context of multicore processors. These
are increasingly used in embedded software [Levy & Conte, 2009], and the
associated concurrent programming challenges have to be mastered. For-
mal verification techniques can help with proofing the correctness of concur-
rent programs, for example to detect deadlocks or race conditions [Engler &
Ashcraft, 2003]. A related problem is the optimization of systems, for exam-
ple in the context of deployment [Dearle et al., 2010]. There too it is essential
that programs are described at an abstraction level that represents the to-be-
optimized program elements as first-class concepts.

Process Support There are at least three cross-cutting and process-related
concerns relevant to embedded software development. First, many certifi-
cation standards (such as those mentioned above) require that code be ex-
plicitly linked to requirements such that full traceability is available (see Sec-
tion 2.4.3). Today, requirements are often managed in external tools (such as

Chapter 3. Application to Embedded Software Development 29

Excel, Clearcase2 or DOORS3) and maintaining traceability to the code is a
burden to the developers and often done in an ad hoc way, for example via
comments, macros or pragmas. Fine-grained traceability is pointed out as a
specific challenge by Kuhn et al. [2012].

Second, many embedded systems are developed as part of product lines
with many distinct product variants, in which each variant consists of a sub-
set of the (parts of) artifacts that comprise the product line. This variability
is usually captured in constraints expressed over program parts such as state-
ments, functions or states. Most existing tools come with their own variation
mechanism, if variability is supported at all. Integration between program
parts, the constraints and the variant configuration (for example via feature
models [Beuche et al., 2004]) is often done through weak links, and with little
awareness of the structure and semantics of the underlying language. For ex-
ample, the C preprocessor, which is often used for this task, performs simple
text replacement or removal controlled by the conditions in #ifdefs. As a
consequence, variant management is a huge source of accidental complexity.

The third process-related concern is documentation. In most projects, vari-
ous software architecture and design documents have to be created and kept
in sync with the code. If they are created using Word or LATEX, no actual con-
nection exists between the documentation and the code. If parts of the code
are renamed or otherwise changed, the documentation has to be kept in sync
manually. This is tedious and error-prone. Better tool support is required.

There are additional challenges that are outside the implementation of an
embedded software system. These include for example safety analysis with
FMEA [Goddard, 1993, 2000] or FTA [Lee et al., 1985], the challenges associ-
ated with distributing the development of the systems between the OEM and
one or more suppliers, and just scaling the development effort to large and
distributed teams. These concerns are beyond the scope of this thesis.

The challenges outlined above lead to heavy reliance on tools in embedded
software development:

• Abstraction Without Runtime Cost leads to the use of modeling tools and
code generation. Since most systems require different abstractions for
different parts of the system, a whole set of modeling tools is often
used in the same project. Alternatively, adequate abstraction is sacrificed
for runtime efficiency, leading to intricate low-level code that is hard to
understand, maintain and check (see the next item).

• C Considered Unsafe leads to the integration of various additional code
checkers or review tools into the process.

• Program Annotations are especially challenging, as illustrated in the pre-
vious chapter, since keeping this information external to the core system

2 http://www-03.ibm.com/software/products/en/clearcase
3 http://www-03.ibm.com/software/products/us/en/ratidoor

30

code makes it hard to keep in sync. All kinds of external synchroniza-
tion tools are built.

• Static Checks and Verifications have two consequences for tooling. First,
to perform meaningful verifications, the programs have to be expressed
at the right abstraction level with the right abstractions. This leads to
the proliferation of diverse modeling tools. Second, the actual analysis
and verification tools have to be integrated into the tool chain as well,
possibly including transformations to the required input formats.

• Process Support is hard because all three – requirements tracing, product
line variability and documentation – are cross-cutting, which means that
they affect many or all implementation artifacts – and consequently, all
the tools used to develop these artifacts.

Many real-world systems require addressing several or all of these challenges.
This leads to one of the following two approaches. The first alternative is that
sets of specialized tools are used together. Often these tool chains are ad-
hoc solutions that do not scale in terms of complexity or program size. In
particular, the approach leads to significant challenges in integrating these
tools and keeping the data synchronized. The study about the use of model-
driven engineering tools [Whittle et al., 2013] cited earlier makes this point:

The majority of our interviewees were very successful with MDE but all
of them either built their own modeling tools, made heavy adaptations
of off-the-shelf tools, or spent a lot of time finding ways to work around
tools. The only accounts of easy-to-use, intuitive tools came from those
who had developed tools themselves for bespoke purposes. Indeed, this
suggests that current tools are a barrier to success rather than an enabler
[..] Complexity problems are typically associated with off-the-shelf tools.
Of particular note is accidental complexity – which can be introduced
due to [..] [a] lack of flexibility to adapt the tools to a company’s own
context [..].

Another alternative is to use integrated engineering tools that address many
or all of these challenges. However, this approach has significant problems
as well: the tool may not be able to handle all the challenges, or it must be
adapted to address additional, domain-specific concerns. Most of today’s en-
gineering tools are not extensible in this way, though. Again, citing from Whit-
tle et al. [2013]:

Our interviews point to a strong need for tailoring of some sort: ei-
ther tailor the tool to the process, tailor the process to the tool, or build
your own tool that naturally fits your own process. Based on our data,
it seems that, on balance, it is currently much easier to do the latter.
Some tool vendors actively prohibit tailoring to the process, but rather a
process is imposed by the tool for business reasons.

Chapter 3. Application to Embedded Software Development 31

The reasons for the limited support for extensibility is twofold. The first
reason is mentioned in the quote above. There are often business reasons, in
the sense that the tool vendor may not want the tools to be extensible, because
it increases support cost or cannibalizes another tool sold by the vendor.

There is probably another reason, though: mainstream engineering tools
are typically not built on a foundation that supports meaningful extension
like contemporary language workbenches. Of course, this claim is hard to
prove: commercial tool vendors do not publish their internal tool architecture.
But there are indications: if engineering tools were built on top of a platform
that supports meaningful extension, then some vendors would make this ac-
cessible to customers. However, as studies such as Whittle et al. [2013] as
well as my own experience suggest, this is not the case with mainstream en-
gineering tools. There is one exception: some more recent UML tools, such as
MagicDraw4, use the UML metamodel internally, resulting in reasonable sup-
port for UML profiles. However, since MagicDraw only supports (UML-like)
graphical notations, it is not a general solution to the problem of extensible
tools. Also, many of today’s engineering tools have a long history, and their
kernels were implemented well before language workbenches were scalable
and mature.

Even though language engineering and language workbenches have been
around for a long time (see Section 7.5), I am not aware of research that at-
tempts building an engineering tool on top of a language workbench, exploit-
ing the Generic Tools, Specific Languages approach. The contribution of this
thesis is to evaluate whether this is possible, using embedded software as the
example domain.

3.3 T H E M B E D D R S O L U T I O N A P P R O A C H

This thesis proposes applying the Generic Tools, Specific Languages approach,
which exploits language engineering and language workbenches, instead of
the existing approaches discussed in Section 3.4. mbeddr is an implementa-
tion of this approach based on JetBrains MPS. The remainder of this thesis
describes mbeddr, an extensible set of languages for C-based embedded soft-
ware development built on top of the JetBrains MPS language workbench. In
particular, Section 5.2 investigates how mbeddr addresses the challenges for
embedded software introduced at the beginning of this chapter (Section 3.2).

mbeddr provides a fully featured IDE for C and for arbitrary extensions
of C as well as any other language developed in mbeddr. Figure 3.1 shows a
screenshot. The system is structured into layers and concerns; Figure 3.2 pro-
vides an overview. This section only briefly introduces the various languages
and extensions; much more detail is provided in Chapter 4.

Implementation Concern The implementation concern addresses the de-
velopment of applications based on C. On the core level, mbeddr comes with

4 http://www.nomagic.com/products/magicdraw.html

32

Figure 3.1 An mbeddr example program using five separate but integrated lan-
guages. It contains a module with an enum, a state machine (Counter) and a
function (nextMode) that contains a decision table. Developers can write regular C
code inside state machines and decision tables. The IDE provides code completion
for all languages (see the start/stop suggestions) as well as static error validation
(Error... hover). The green trace annotations are traces to requirements that
can be attached to any program element. The red parts with the {resettable}
next to them are presence conditions: the respective elements are only included in
a program variant if the configuration feature resettable is selected.

Figure 3.2 mbeddr is organized into three concerns and five layers. The concerns
address C-based implementation, formal analysis as well as process. The five
layers are the MPS platform, the mbeddr core facilities, default extensions as well
as the ability for users to create their own extensions. Finally, a number of backend
tools (primarily C compilers and verification tools) are integrated.

Chapter 3. Application to Embedded Software Development 33

Figure 3.3 mbeddr supports annotation of types and literals with physical units.
The type system then checks the program for unit compatibility (for example, as-
signing V to A is a type error). The type system also calculates with units, so when
multiplying V and A, this results in W. Users can define custom units (such as the
V or A in the example above) in terms of predefined SI base units (for an example,
see Section 4.3). Finally, unit definitions can also include value conversions (as in
�F , �C), which can be used in C programs.

an implementation of C in MPS. There are a few minor differences to C99,
and the preprocessor is not exposed to the user. On the default extensions
layer, the implementation concern comes with C extensions for interfaces (Fig-
ure 3.4) and components (Figure 9.6), state machines (Figure 3.6) and physical
units (Figure 3.3), among others. The user extensions layer is by definition
empty; users can easily extend the C core as well as any of the default exten-
sions. The implementation concern also ships with an extensible debugger
that is able to debug on the level of the extensions, so the abstractions do
not break down when debugging becomes necessary. Finally, mbeddr also
supports importing existing header and implementation files, to support in-
teroperability with legacy libraries or implementation code. At the foundation
layer, the implementation concern relies on a C compiler, a C debugger and
tools for importing existing C code into mbeddr. By default, mbeddr uses
the gcc compiler, the gdb debugger and the Eclipse CDT for analyzing and
importing textual C code.

Figure 3.4 Client/server interfaces are sets of operations, which each have typed
arguments and a return type (mbeddr also has sender/receiver interfaces which de-
clare data items). Operations can specify contracts. These include pre-conditions
(which must be true when the operation is called) and post-conditions (which must
hold when the operation finishes; result is a keyword that represents the return
value of the function). In addition, protocol state machines are also supported (not
shown). These specify the valid call sequence of operations (for example, in a file
system interface, open() must be called before read()). Contracts can be checked
statically via bounded C-level model checking and at runtime.

34

Figure 3.5 Components are modular units of behavior. They expose their services
via provided interfaces (cf. Figure 3.4). They can also express required interfaces,
which means they can invoke operations on them. Components can be instanti-
ated, and each required interface is connected to a provided interface of another
instance. Operations from provided interfaces are implemented via runnables. In
fact, runnables can be triggered by other events in addition to receiving calls on
provided interfaces, including a timer and during initialization. This trigger mechan-
ism is extensible, so domain-specific triggers can be hooked in.

Analysis Concern This concern adds static analyses to some of the de-
fault extensions provided by the implementation concern. The analysis itself
is performed by an existing external tool. However, mbeddr integrates the
tool tightly by (a) providing language abstractions to conveniently describe
behavior that can be analyzed, (b) translating this description to the input of
the analysis tool, (c) running the tool, and (d) lifting the output of the tool
back to the original abstraction level, to make it easier to understand for the
user. The integrated analyses are based on symbolic model checking, SMT
solving and C-level model checking. Specifically, the following analyses are
available5.

State machines can be checked with a symbolic model checker. This ver-
ifies a set of default properties and optional user-defined properties. State
machines are checked for conformance to these properties. The implemen-
tation is based on the NuSMV6 model checker. Decision tables (see the bot-
tom of Figure 3.1 for an example) can be checked for completeness (all input

5 The analysis tools themselves are implemented in a way that makes it relatively easy to use
them for checking other suitable behaviors. In essence, their input languages and the tooling to
invoke the tool are part of the mbeddr core. Other behavioral descriptions can be analyzed by
transforming them to these languages. This is why the analyses discussed above are considered
default extensions.

6 http://nusmv.fbk.eu/

Chapter 3. Application to Embedded Software Development 35

Figure 3.6 State machines define in events that can be triggered explicitly by C
code or implicitly when they are bound to, for example, interrupts, as well as out
events which can be bound to external code and fired from within a state machine.
State machines also define states and transitions. States can be nested and have
entry and exit actions. Transitions refer to an in event as a trigger, may have a
guard condition (a Boolean C expression) and optionally contain a transition action.
State machines can be executed by transforming them to C code, and can be
statically checked using the integrated symbolic model checker.

value combinations are covered) and consistency (for each set of input val-
ues, only one result value is possible). The analysis is performed by the Yices
SMT solver7. Feature model configurations are checked for consistency: fea-
ture models contain constraints that cannot be evaluated by "just looking"; the
Yices SMT solver is used to check these constraints. Finally, interface contracts
can be checked statically. As Figure 3.4 shows, interfaces can specify pre- and
post-conditions (based on the design by contract approach [Meyer, 1992]) as
well as protocol state machines that specify the valid invocation order of in-
terface operations. These contracts can be checked for each implementing
component via CBMC8, a C-level model checker.

Process Concern The process concern includes cross-cutting facilities that
are useful when integrating mbeddr into the development process. They are
generic in the sense that they can be integrated with arbitrary other languages,
such as all the default and user-defined C extensions. mbeddr supports re-
quirements engineering, product line variability and documentation.

The requirements engineering support provides a language for describing
requirements. Each requirement has an ID, a short description, an optional

7 http://yices.csl.sri.com/
8 http://www.cprover.org/cbmc/

36

Figure 3.7 The green labels are requirements traces. These are essentially typed
pointers to requirements. They can be attached to any program element expressed
in any language, thereby enabling ubiquitous traceability. While the default target of
a trace is a requirement, the facility is extensible to enable tracing to other artifacts,
such as function models.

longer prose, a priority and any number of additional attributes. Require-
ments can also be nested and express relationships to other requirements.
Requirements traces [Jarke, 1998] can be attached to any program element
expressed in any language (see Figure 3.7), supporting ubiquitous traceabil-
ity. The requirements facility also supports reverse-tracing, so users can find
out which parts of implementation artifacts depend on any particular require-
ment. Importantly, the requirements tooling is extensible: arbitrary additional
data, expressed in any language, can be added to a requirement. In this way,
support for use cases, collaborations and scenarios has been added in a mod-
ular way.

mbeddr’s support for product line engineering can be split into two parts.
First, there is a formalism for defining feature models and configurations
based on these feature models. This represents a purely conceptual descrip-
tion of variability, independent of any particular implementation. The second
part maps the variability expressed in feature models to arbitrary implemen-
tation artifacts by using presence conditions [Czarnecki & Antkiewicz, 2005].
These are Boolean expressions over features that determine how the program
element they are attached to depends on the features selected for a given vari-
ant. If the expression evaluates to false, the element they are attached to is
removed during generation. As a consequence of MPS’ projectional editor, the
presence conditions can also be evaluated in the editor. This allows program
variants to be viewed and edited. While presence conditions are static and
work for any language, there is also C-specific support to evaluate variability
at runtime.

Visualization provides a facility to render diagrams. The facility relies on
PlantUML9 as the backend, which supports most of UML’s diagrams (an ex-
ample is shown in Figure 3.8). The diagrams are shown directly inside the
mbeddr IDE; by clicking on a node in the diagram, the respective source node

9 http://plantuml.sourceforge.net/

Chapter 3. Application to Embedded Software Development 37

Figure 3.8 The visualizations based on PlantUML support class diagrams, se-
quence diagrams, state charts, activity diagrams and others. Any language con-
cept can contribute a diagram, so the system is extensible.

in the MPS editor is selected, supporting navigability between diagram and
code. Any program element can contribute visualizations, making the facility
generically usable.

The documentation aspect supports writing prose documents as part of
an mbeddr project, exportable as HTML or LATEX. What makes this aspect
worthwhile is that it supports close integration with program elements: pro-
gram elements can be referenced (with real references that are renamed if the
element itself is renamed) and program code can be embedded as text or as
an image. The embedded code is updated whenever the document is regen-
erated, avoiding manual synchronization of the documentation. In the same
way visualizations (as described in the previous paragraph) can be embedded,
and also updated whenever the document is re-rendered to LATEX or HTML.

3.4 T H E S TAT E O F T H E A RT

This section discusses the state of the art for embedded software development
tools and compares them – where applicable – to mbeddr. The section looks
at industry mainstream approaches, the use of DSLs in embedded software,
alternative ways of extending C and formal analyses.

3.4.1 Mainstream Approaches

Embedded systems are highly diverse, ranging from rather small systems
such as refrigerators, vending machines or intelligent sensors through build-
ing automation to highly complex and distributed systems such as aerospace

38

or automotive control systems. This diversity is also reflected in the con-
straints on their respective software development approaches and cost mod-
els. For example, flight control software is developed over many years, has a
large budget, an expert team and emphasizes safety and reliability. The less
sophisticated kinds of embedded systems mentioned above are developed in
a few months, often with severe budget constraints, by smaller teams and
often with less know-how about software engineering (many developers are
electrical or mechanical engineers by training). The requirements for safety
and reliability are much less pronounced. The tools and approaches used to
develop these systems reflect these differences. The most important ones are
discussed in this section.

Safety Tools Highly safety-critical systems (those with a SIL-level 3 or 4
as defined in IEC 6150410) are often developed with tools such as SCADE11.
These tools are certified, i.e., it is legally allowed to use such tool in the de-
velopment of safety-critical software without manually reviewing and/or cer-
tifying the generated code. These tools are typically expensive and not exten-
sible – it is currently beyond the state of the art to combine extensibility with
the need for certification. Safety tools also support a number of artifacts be-
yond code, such as fault tree analysis (FTA), failure mode and effects analysis
(FMEA), strict requirement tracing, safety case documentation and all kinds
of advanced analyses based on these artifacts and the code.

mbeddr is not explicitly suited for developing safety-critical software: it
does not yet generate MISRA-compliant code and it does not yet address the
additional artifacts described above. However, by using the domain-specific
abstractions, integrated formal verifications and cross-cutting requirements
tracing, mbeddr is certainly better suited for safety-critical software than pure
C. However, the qualification or certification of the system has to happen on
the level of the generated C code.

Standard Architectures Systems that are based on a standardized archi-
tecture or middleware, such as AUTOSAR12 in the automotive domain, are
often developed with tools that are specific to the standard (such as Artop13

in the case of AUTOSAR). These tools directly support the abstractions rel-
evant to the standard architecture. In the case of AUTOSAR, these abstrac-
tions include interfaces, components, descriptions of electronic control unit
(ECU) hardware and the deployment of software components onto ECUs.
Tools for standards such as AUTOSAR typically rely on code generation and
middleware-specific frameworks and libraries for execution. Many standards
like AUTOSAR address the overall system architecture and the deployment
model. They make no assumptions about the actual implementation of com-
ponents in terms of behavior or algorithms. This is because the abstractions

10 http://www.61508.org/
11 http://www.esterel-technologies.com/products/scade-suite/
12 http://www.autosar.org/
13 http://www.artop.org/

Chapter 3. Application to Embedded Software Development 39

required to describe the implementation are more specific than just "automo-
tive software". For example, a window lifting controller can be expressed as
a simple state machine, whereas a radar that detects pedestrians requires so-
phisticated image processing algorithms. More specialized tools are used for
these aspects, which then have to be integrated with AUTOSAR tools. Many
of those tools use model-driven development techniques as well (see below).

mbeddr is not specific to any of these standards. However, as a conse-
quence of the extensibility, standard-specific or architecture-specific abstrac-
tions can be added easily. For example, as part of the LW-ES research project,
BMW Car IT is currently implementing an extension for the mbeddr com-
ponents language to make it compatible with AUTOSAR, so that BMW can
evaluate mbeddr. In addition, mbeddr can be adapted to more specific do-
mains. While state machines for implementing the window lifter are already
available, custom extensions such as vectors, matrices and their respective
operators can be added to support image processing.

Model-Driven Development Model-driven development and automatic
code generation14 is particularly well-suited for systems that are highly struc-
tured in terms of a particular implementation paradigm in which developers
can express application structures and behavior in terms of high-level ab-
stractions related to the paradigm. As mentioned before, using higher-level
abstractions leads to more concise programs and simplified fault detection us-
ing static analysis techniques. An example is the Simulink Design Verifier15.

The most versatile and widespread approaches include state-based behav-
ior (Figure 3.9) and dataflow block diagrams (see Figure 3.10). The former can
be used to implement discrete behavior (as in the window lifter mentioned
above), whereas the latter are particularly well suited for continuous systems
(such as the control systems involved in engine control). Prominent exam-
ples of these kinds of tools are Statemate (mentioned earlier), ASCET-SD16 or
Matlab/Simulink17.

Like many other tools discussed so far, the mainstream tools used in this
way are not particularly extensible (for example, the community has been
struggling to integrate Matlab/Simulink with tools for managing product line
variability [Beuche & Weiland, 2009; Yoshimura et al., 2008; Kliemannel et al.,
2010]). Developers are forced to cast their (potentially quite specific) require-
ments into the abstractions provided by the tool. For example, I have seen
dataflow models with dozens or hundreds of "parallel running signals" be-
cause the modeling tool does not support the creation of "composite signals",
or just completely different abstractions for implementing a particular kind of
system.

14 There is some confusion about terminology here. What is called model-driven development in the
mainstream is often called model-based development or auto-code generation in embedded software.
This thesis sticks to the mainstream terminology.

15 http://www.mathworks.com/products/sldesignverifier
16 http://www.etas.com/
17 http://www.mathworks.com/products/simulink

40

Figure 3.9 State-based systems use discrete state and the transitions between
them as the core abstraction. Transitions are triggered by events. A state has
entry and exit actions, and, optionally, transitions also have actions. Transitions
can also have guard conditions, which are Boolean expressions that have to be
true for a transition to fire as an event comes in. State machines are suitable for
describing (potentially complex) discrete behavior, in particular if the state machine
formalism supports hierarchical states. State machines can also be simulated and
are straightforward to integrated into debuggers. Two major execution modes are
used. The first one uses the events to trigger the state machine. The second one
uses a timer to trigger the state machine at regular intervals, and it is then checked
whether events are present in an event queue.

mbeddr can be seen as a flavor of model-driven development, in the sense
that developers work at higher levels of abstraction and code generation is
used to translate these abstractions to C code. Formal methods that exploit
the abstractions for meaningful analyses are also supported. However, there
are two important differences compared to mainstream model-driven devel-
opment tools. First, mbeddr is fully open, so additional abstractions can be
added at any time. Second, because everything is directly integrated with
C, there is no particular challenge in integrating different independent exten-
sions in terms of tooling. In some rare cases there may be semantic problems;
this is an example of the well-known problem of feature interaction [Calder
et al., 2003]. Currently mbeddr does not support graphical notations for state
machines or dataflow, as a consequence of MPS’ inability to work with graph-

Chapter 3. Application to Embedded Software Development 41

Figure 3.10 The dataflow paradigm is centered around data values "flowing"
through a system. In dataflow block diagrams, data values flow from block to block;
calculations or transformations are encapsulated in the blocks, and the lines repre-
sent dependencies – the output of one blocks "flows" into the input slot of another
block. There are three different execution modes. The first one considers the
data values as continuous signals. At the time when one of the inputs to a block
changes, all output values are recalculated. The change triggers the recalculation,
and the recalculation ripples through the graph. The second mode considers the
data values as quantized, unique messages. A new output message is calculated
only if a message is available for all inputs. The recalculation synchronizes on the
availability of a message at each input, and upon recalculation, these messages
are consumed. The third approach is time-triggered. Once again, the inputs are
understood to be continuous signals, and a scheduler determines when a new cal-
culation should be performed. The scheduler also makes sure that the calculation
"ripples through from left to right" in the correct order. This model is typically used
in embedded systems.

ical notations. However, MPS will get support for graphical notations in 2014,
at which time these notations will be added to mbeddr.

Manually-Written C Code According to a study by Ebert & Jones [2009],
the state of the practice is that 80% of companies implement embedded soft-
ware in C. In particular, the following kinds of systems are often implemented
in C:

1. Systems that are not very safety-critical (SIL 1-2) are often implemented
in C. Higher SIL-level systems are often implemented with SCADE (men-
tioned above) or with Ada, for which certified compilers exit. There
are safer dialects of C, (basically restricted sub-languages), that make C
more suitable for safety-critical systems. Examples include Cyclone [Jim
et al., 2002] and the Misra C standard [MISRA, 2004].

2. As mentioned, most modeling tools address one particular behavioral
paradigm, such as state-based or dataflow-oriented. When multiple par-
adigms must be integrated in a single system, using a set of modeling

42

tools in one project is often not an option because of the problems with
tool integration. C is often used as the fallback, the lowest common
denominator.

3. Systems that require a lot of low-level programming, such as device
drivers, are particularly well-suited to implementation in C. With point-
ers, pointer arithmetic and direct access to memory-mapped devices or
I/O ports, C is very well suited for these low-level tasks.

Summing up, C is good at expressing low-level algorithms and produces ef-
ficient binaries, but its limited support for defining custom abstractions can
lead to code that is hard to understand, maintain and extend. So, while C
actually is a good fit for the third case listed above, it is not such a good fit
for the first, and in particular, the second case. Here, C is used mostly used
because of a lack of alternatives.

mbeddr retains all the low-level capabilities of C (item 3), because all of C
is available in mbeddr (unless parts of it are explicitly restricted in order to
obtain a safer subset). As a consequence of mbeddr’s extensibility, arbitrary
domain-specific extensions can be created (supporting items 1 and 2) with
very little effort (discussed in Section 10.1 and the rest of Chapter 10). These
extensions include full IDE support, making them accessible to mainstream
developers. The fact that extensions are directly integrated with C removes one
of the biggest challenges in model-driven development, the Customization
Cliff (introduced by Steve Cook18):

Once you step outside of what is covered by your DSL, you plunge down
a cliff onto the rocks of the low-level platform.

If DSLs are built as incremental, layered extensions of a base language, users
can drop down to the next less-abstract language in the stack. In the worst
case, they can always use the facilities of the base language without having to
switch the tool and without facing challenges in integrating the DSL code and
the base language code.

Manually-Written C++ Code Based on private conversations of the au-
thor with developers industry (including from Bosch, BMW and Harmann
Becker), complex embedded software that is not targeted to especially small
target platforms is increasingly developed with C++. Examples include en-
tertainment and navigation systems in cars. However, overall, C++ still plays
a relatively limited role in embedded software development. This is due to
three major reasons.

1. There is still the perception that C++ is "fat and slow". While this is not
necessarily true today, it was true in the early days of C++ compilers,
and these perceptions from the past still linger on. And in fact, when
using C++, special attention has to be paid to the overhead incurred. For

18 blogs.msdn.com/b/ stevecook/archive/ 2005/12/16/504609.aspx

Chapter 3. Application to Embedded Software Development 43

example, polymorphic method calls do incur a (limited) performance
penalty, and a degree of non-determinism in terms of execution speed.
To do object-oriented programming well, dynamic memory allocation is
useful, which is often at odds with the need to allocate all memory at
system startup to avoid out-of-memory errors at runtime. And excessive
use of templates, while useful in terms of execution speed, can lead to
bloated program sizes. There are subsets of C++ (such as Embedded
C++ 19) that limit the overhead, but they are used relatively rarely, as
Bjarne Stroustrup explains on his website20.

2. For many target platforms, there are no C++ compilers, so C++ cannot
be used at all. C++-specific libraries may also not exist, and using C++
with C libraries may not be very useful.

3. Many embedded software developers are (former) electrical or mechan-
ical engineers, and they are not necessarily familiar with some of the
advanced software engineering concepts supported by C++. They es-
sentially develop "C in C++", which does not yield big benefits.

mbeddr currently does not support C++21. However, it supports many of
the same software engineering concepts. For example, mbeddr’s components
support essentially what C++ classes are used for in embedded programming:
a clear separation between interface and implementation, and the ability to
have different implementations for the same interface. However, mbeddr sup-
ports this via translation to C source, so no C++ compilers are necessary for
the target device. In addition, special care has been taken to not incur a per-
formance overhead. For example, mbeddr components can be translated to
support polymorphism (which incurs a limited runtime overhead), but a sec-
ond translation option exist that does not support polymorphism (avoiding
the overhead, but also limiting the flexibility of users). Another use case of
C++ is to use template meta programming to create compile-time "language
extensions". mbeddr supports developing language extensions natively, so
there is no need to use templates for this purpose. In contrast to templates,
mbeddr’s language extensions provide much better IDE support and avoid
the cryptic messages in the case of an error for which template meta pro-
gramming is notorious.

3.4.2 DSLs in Embedded Software

It is obvious from the above discussions that domain-specific abstractions can
be useful in embedded software. Studies such as those by Broy et al. [2011]
and Liggesmeyer & Trapp [2009] show that DSLs substantially increase pro-
ductivity in embedded software development. Empirical studies also found

19 http://www.caravan.net/ec2plus/
20 http://www.stroustrup.com/bs_faq.html#EC++
21 A first prototype of C++ is currently being developed, tackling mainly the challenges of tem-

plates and operator overloading.

44

that there is a need for tools that are more specific for an application do-
main yet flexible enough to allow adaptation [Graaf et al., 2003; Liggesmeyer
& Trapp, 2009]. And in fact, DSLs are increasingly used for embedded soft-
ware [Axelsson et al., 2010; Hammond & Michaelson, 2003; Andalam et al.,
2009]. Examples include Feldspar [Axelsson et al., 2010], a DSL for digital
signal processing; Hume [Hammond & Michaelson, 2003], a DSL for real-
time embedded systems, as well as the approach discussed by Gokhale et al.
[2008], which uses DSLs for addressing quality of service concerns in middle-
ware for distributed realtime systems. All these DSLs generate C code, but the
DSL program is not syntactically integrated with C. This separation is useful
if the the DSL code and the C code actually express separate concerns in the
domain. However, it is likely that at least some of these DSLs should have
been integrated syntactically with C, but were not, because of the technical
difficulties of doing so.

mbeddr supports arbitrary degrees of syntactic integration with C. This
includes external DSLs that have no syntactic integration and generate C code;
DSLs which are syntactically separate, but reference C program elements; and
DSLs which are syntactically embedded into C code, where the abstractions
are typically generated down to C as well (a systematic discussion of language
composition approaches can be found in Chapter 7). The last approach in
particular is used extensively in mbeddr.

Syntactically extending C to adapt it to a particular problem domain is not
a new idea. For example, Palopoli et al. [1999] present an extension of C
for realtime applications, Boussinot [1991] proposes an extension for reactive
systems, and Ben-Asher et al. [1996] present an extension for shared memory
parallel systems. However, these are all specific extensions of C, typically cre-
ated by invasively changing the C grammar. They also do not include IDE
support for the extensions.

mbeddr is fundamentally different. While it builds heavily on domain-
specific abstractions, it provides an open framework and tool for defining mod-
ular, incremental extensions of C, as well as the IDE. This is enabled by ex-
ploiting the underlying language workbench22.

An extensible version of C has also been implemented in the Xoc extensi-
ble C compiler described by Cox et al. [2008], which supports arbitrary ex-
tensions. It uses a parser-based approach and source-to-source translation to
transform modular C extensions into regular C code. In contrast to mbeddr,
Cox’ approach is limited by the fact that it uses a traditional, parser-based
approach (only textual notations are supported, and the risk of ambiguities in
present) and that it does not address IDE extension.

22 The specific C extensions discussed above are all good examples of extensions that could be
implemented as language extensions in mbeddr, if the need arises.

Chapter 3. Application to Embedded Software Development 45

3.4.3 Alternative Ways for Building Abstractions in C

There are other ways of addition abstractions to C programs. The most wide-
spread are libraries and macros. As discussed in this section, language exten-
sion is more powerful than these alternatives.

Libraries and Frameworks Libraries rely on defining functions that can
be called by the client program. This almost always incurs runtime over-
head (some functions may be inlined, which reduces the performance hit but
increases the program size). More advanced libraries and frameworks re-
quire further indirection through function pointers. While adding additional
indirections is not always a problem, it can be in some time-critical scenar-
ios. Language extensions can lead to low runtime overhead because they are
statically translated to C and can make use of optimizations to generate effi-
cient code (just like compilers). In addition, a library cannot extend the type
system of C and extend the IDE in terms of custom constraints, syntax high-
lighting or refactorings. Language extension based on language workbenches
can provide all of these. Finally, by making abstractions first-class by using
language extension, the degrees of freedom available to users for implement-
ing functionality can be restricted in accordance with the extension language
definition. While this sounds like a drawback, it has important advantages
with regard to the analyzability of the code. For example, it is relatively easy
to translate a first-class representation of a state machine to the input of a
symbolic model checker and run it in a relatively short time. Verifying a state
machine implemented via switch-statements or cross-referencing arrays (as
shown in Section 2.4.2) requires model checking on the C code level. This is
much more expensive because of the much bigger state space of the C pro-
gram. It is also harder to express domain-level properties, since they have to
be expressed in terms of the low-level implementation, and it is hard to make
sense of the output of the model checker in terms of the abstraction level of the
state machines. In short, language extension can provide much better support
for analyzing code than library-based extension. A final limitation of libraries
is that the syntax cannot be adjusted. While other programming languages
(such as Scala, Ruby or Xtend) allow programmers to design libraries that can
use syntax that, for example, approximates the state machine syntax shown
in Section 2.4.2, this is not feasible with C.

Macros In contrast to function calls, macros are resolved statically by the
preprocessor, which avoids runtime performance overhead, but may increase
the size of the binary. Macros have many of the same disadvantages as li-
braries. The syntax can only be adapted in a very limited way; they essen-
tially look like function calls. When defining macros, the static type checker
and the IDE support cannot be adapted easily along the way. In addition,
macros do not even perform a type check when they are called. The biggest
problem with macros is, however, that they operate on the text level. Macros
can perform any syntactic substitution, but there is no guarantee that the re-
sulting C code is syntactically correct and can be compiled. Especially when

46

several macros are used or macros calls are nested, it is easy to create C code
that contains errors; some of them can be subtle, as a consequence of the mis-
taken use of parentheses (which means that although the code will compile,
the result of the computation is wrong because of "different" operator prece-
dence). Another problem is that many IDEs cannot deal well with macros,
which leads to code that cannot be effectively navigated in the IDE. A similar
problem exists with analysis tools.

In today’s state of the art, macros are used extensively. For example, whole
macro libraries have been developed, such as Protothreads [Dunkels et al.,
2006] (which implements lightweight threads), SynchronousC [von Hanxle-
den, 2009] and PRET-C [S. Andalam, 2010] (both adding constructs for de-
terministic concurrency and preemption). These are all good candidates for
abstractions that could be reified as language extensions based on mbeddr.

Using libraries or macros is by no means always bad, because language
extension also has a significant drawback: building an extension requires lan-
guage engineering skills; many application developers will not be able to do
this. So language engineering should only be used in those cases where its
advantages (flexible syntax, type system support, static translation, formal
analysis) are useful. In other cases, in-program abstractions such as functions
or components should be used.

3.4.4 Formal Analyses

An important part of mbeddr is the support for directly integrated formal
analyses. The analyses operate on certain domain-specific extensions of C,
which makes their implementation more efficient compared to analyses run-
ning on low-level C code. Execution of the analyses is directly integrated into
the mbeddr IDE, and the results of the analyses are represented in terms of
the abstraction level of the extension, not on the level of the analysis tool. This
makes verification much more accessible to "normal" developers. This section
compares this approach to other approaches in this space.

General Approach Formal analysis techniques for general-purpose lan-
guages are supported by a range of tools. Some academic approaches are
discussed by Karthik & Jayakumar [2005], Mine [2011] and Puccetti [2010].
Commercial tools include Polyspace 23, the Escher C Verifier24, Klocwork25 or
Spec# [Naumann & Barnett, 2004]. However, experiences show that a substan-
tial amount of code annotations are often needed to capture the constraints or
domain-level semantics of the code and make meaningful analyses feasible.
The reason is that when encoding domain-specific abstractions in general-
purpose languages, much of the domain semantics is lost. Trying to analyze
the code for properties relative to these domain semantics requires users to
"add back in" the semantics that were lost when encoding the abstraction in

23 http://www.mathworks.de/products/polyspace/
24 http://www.eschertech.com/products/ecv.php
25 http://www.klocwork.com/

Chapter 3. Application to Embedded Software Development 47

the lower-level language. The following piece of code shows a max function
with annotations to make it analyzable with the Frama-C26 Jessie plugin (this
example is taken from the Jessie user guide):

/*@ requires \valid(i) && \valid(j);
@ requires r == \null || \valid(r);
@ assigns *r;
@ behavior zero:
@ assumes r == \null;
@ assigns \nothing;
@ ensures \result == 1;
@ behavior normal:
@ assumes \valid(r);
@ assigns *r;
@ ensures *r == ((*i < *j) ? *j : *i);
@ ensures \result == 0;
@ */

int max(int* r, int* i, int* j) {
if (!r) return 1;

*r = (*i < *j) ? *j : *i;
return 0;

}

Adding these annotations and constraints is tedious and error-prone. In the
above example they are longer than the actual implementation and they are
added in comments, so there is not even IDE support. The annotations are
also often based on formalisms that are not necessarily simple for normal
developers to use. Consequently, tools like the ones mentioned above are
only used in highly safety-critical contexts, and only by specialists.

The obvious alternative, avoiding GPLs altogether and moving completely
to DSLs like state machines, first-order logic or linear algebra, has proven to
be impractical in many cases because their expressivity can be too limited for
real- world problems, and because of the challenge of integrating the various
formalisms and their tools in a single development project.

mbeddr provides a middle ground between these two alternatives. It sim-
plifies some of the analyses provided by existing verification tools by ex-
pressing the behavior with extensions to C that embody relevant semantics
directly, avoiding the need to reverse engineer the semantics for static analy-
sis. For example, by expressing state-based behavior directly using state ma-
chines instead of a low-level C implementation, the state space relevant to
a model checker can be reduced significantly, making model checking less
costly. However, since the respective analyzable fragments are embedded into
C, their semantic integration with the rest of the C-based system is not a prob-
lem. The same is true for tool integration, which is provided by the language
workbench for all of the languages and extensions. The input to the analyzer
is created by generating the respective formalism automatically.

26 http://frama-c.com/jessie

48

However, this approach does not fundamentally solve the problem that
some formalisms are restricted in terms of expressiveness for real-world prob-
lems. For example, to be able to run a symbolic model checker on a state
machine, the state machine cannot embed arbitrary C statements in its ac-
tions, since these cannot be checked by a symbolic model checker. mbeddr
addresses this challenge in the following way. State machines can be marked
as verifiable, expressing the user’s intent to verify it with a model checker.
If a state machine is marked in this way, additional constraints prevent the
use of problematic language features. For example, in the case of actions,
users cannot embed C statements in the actions. Instead they can only fire out
events, which can be bound to C functions or other pieces of executable code.
Properties verified by the model checker can only refer to the occurrence of
an out event, but cannot take into account the effects the code to which the
event is bound may have on the overall system. While this limits the power
of the approach, it also makes it practicable27. The overall approach relies
on the concept that users have to make a conscious decision about whether
they want verifiability or not. In the former case, they may have to live with
a limited language, while in the latter case, they can use the full power of C
or its extensions. This decision can be made separately for each (potentially
verifiable) program part.

Jackson & Sztipanovits [2006] define a methodology for constructing pro-
grams that are analyzable. In the correct-by-construction methodology pro-
grams are continuously checked by using only polynomial time algorithms. In
this manner the verification is done continuously and is an integral part of the
development process. mbeddr’s integration of verification tools can be seen
as a pragmatic operationalization of the correct-by-construction approach in
which the analyzable program fragments are incrementally extended by using
suitable analyzable language extensions.

Usability of Formal Analyses Today, formal analyses are only used by
a small group of expert developers, usually in safety-critical contexts [Cor-
bett et al., 2000]. This is true even though the approach scales to reasonable
program sizes, and can also be beneficial to "normal developers". The major
problem with formal analyses in practice is usability. The problem can be sep-
arated into three challenges (as discussed by Loer & Harrison [2002]). First,
it is difficult to formalize the problem in the language of the verification tool
(known as the model construction problem); second, it is difficult to formal-
ize the properties to be verified, and, third, once the result is obtained (at the
abstraction level of the verification tool) it is difficult to lift it and interpret it
at the domain level. All these challenges are due to the gap between domain-
specific abstractions and how they are reflected in programs on the one hand
and the abstractions of the analysis tool on the other.

mbeddr addresses these problems by letting users use suitable domain-
specific abstractions to write the code. For analysis, mbeddr automatically

27 mbeddr also includes C-level model checkers that can address effects produced by arbitrary C
code.

Chapter 3. Application to Embedded Software Development 49

translates this domain-specific code into the input formalism of a verification
tool. For some formalisms, default properties are automatically checked, so
users do not have to write any properties at all (for example, in consistency
checking for decision tables). For other verification techniques, users are able
to specify custom properties in addition to the default properties. For state
machines, mbeddr provides a high-level, user friendly language for specifying
such properties based on the patterns discussed by Dwyer et al. [1999]. While
this may remove some of the expressive power of the actual input language
(LTL or CTL for model checking), it makes writing properties much easier
for developers – a trade-off that works for mbeddr and its users. Finally, the
results of running the verification tool are lifted back to the abstraction level
of the original domain-specific description of the behavior. This makes the
interpretation of the results much simpler.

The idea of integrating formal verification techniques into IDEs is not new.
For example, there is significant work to integrate C model checkers into IDEs
such as Eclipse or MS Visual Studio [Beyer et al., 2004; Fehnker et al., 2007;
Ball et al., 2004]. In contrast to these approaches, mbeddr uses language
engineering to embed higher-level, domain-specific descriptions of behaviors
directly in the C code, which leads to the benefits discussed in the previous
paragraph.

Specific Analyses The analyses implemented by mbeddr have been well
known in the literature for many years, and mbeddr’s contribution is not the
improvement of these verification techniques. Instead, its contribution is the
integration of these analyses with language engineering technologies and the
IDE. This way we hope to help achieve a wider application of formal methods
with practitioners.

With regards to model-checking state machines, Clarke & Heinle [2000]
present early work that translates a fragment of the StateCharts language into
the input for the SMV model checker. Arcaini et al. present in detail proper-
ties of state machines that represent vulnerabilities and defects introduced by
developers that can be automatically verified [Arcaini et al., 2010]. The prop-
erties are classified into minimality, completeness and consistency. mbeddr
implements checks for these properties by default for each state machine.

With regards to verifying feature models, mbeddr’s approach is similar to
the one presented by Mendonça et al. [2009].

With regards to checking decision tables, Eles and Lawford propose an
approach for defining and analyzing tabular expressions in Simulink similar
to mbeddr’s analysis of decision tables [Eles & Lawford, 2011]. In addition to
using an SMT solver (as mbeddr does), they also use a theorem prover, mainly
for dealing with non-linear expressions.

With regards to checking component contracts, there is significant related
work on integrating C model checkers into development environments [Beyer
et al., 2004; Ball et al., 2004]. There is also work on generating verification
properties from higher-level models [Zalila et al., 2012] and to lift the analy-
ses results from the code level back to the model level [Combemale et al.,

50

2011]. mbeddr is different, mainly in that instead of using separate models
to generate verification properties, it uses language extensions as the source.
This allows mbeddr to retain the benefits of generating verification conditions
from higher-level abstractions, while still supporting tight integration of these
abstractions with the rest of the code base. Using higher-level abstractions as
the source for the analysis means that deriving the verification conditions is
straightforward, and lifting the counter-example back to the higher abstrac-
tion level eliminates a significant amount of noise and thereby improves us-
ability. The direct integration of the higher-level abstractions with the rest
of the code base means that mbeddr avoids the semantic and tool integra-
tion issues that arise when (verifiable) parts of programs are expressed with
different formalisms and/or tools than regular C code: in mbeddr, the exten-
sions have clearly defined semantics in terms of C, and the tool integration is
seamless.

3.4.5 Process Aspects

So far this section has looked at alternative approaches for the implementation
and verification aspect of mbeddr. This subsection addresses process-related
aspects: the documentation of software systems, the management of require-
ments and the realization of product line variability.

Documentation Essentially all mainstream tools, including modeling tools,
requirements management tools or other engineering tools, treat prose as an
opaque sequence of characters. Direct integration with code, in the form of
(deep) references or realtime embedding of code fragments, are typically not
supported. An exception are Wiki-based tools, such as Fitnesse for accep-
tance testing28. There, executable test cases are embedded in Wiki code. A
big limitation is that there is no IDE support for the (formal) test case de-
scription language embedded in the Wiki markup. One major engineering
tool that treats prose text respectfully is Mathematica29. With its Computable
Document Format (CDF) it supports mixing prose with mathematical expres-
sions. It even supports sophisticated type setting and WYSIWYG. Complete
books, such as the Mathematica book itself, are written with Mathematica. In
contrast, mbeddr does not support WYSIWYG. However, mbeddr documents
support integration with arbitrary MPS-based languages, whereas Mathemat-
ica supports integration only with its own (fixed) programming language.

Many programming languages have ways of embedding comments; some
program elements, typically arguments to function-like constructs, can be ref-
erenced from within the comments: Java has JavaDoc, Scala has ScalaDoc and
C has Doxygen30. Using tools, API reference documentation can be generated
from the code comments. However, these tools are limited in that they use reg-
ular comments (based on proximity to the documented element), they require

28 http://fitnesse.org/
29 http://www.wolfram.com/mathematica/
30 http://www.doxygen.org

Chapter 3. Application to Embedded Software Development 51

special IDE support to synchronize the names of referenced elements and – in
contrast to mbeddr – they are not extensible with regard to the kinds of pro-
gram elements that can be referenced from within the comments. Also, while
mbeddr supports documentation comments, it can also be used the other way
round: instead of embedding comments in code, mbeddr supports writing
documents that reference and embed code. This is important for higher-level
design documents.

Another example of an extensible language that supports writing docu-
ments that are tightly integrated with code is Racket, with its Scribble [Flatt
et al., 2009] language. Racket is a syntax-extensible version of Scheme, and
this extensibility is exploited for Scribble. Following their paradigm of doc-
umentation as code, Scribble supports writing structured documentation (with
LATEX-like syntax) as part of Racket. Scribble supports referencing program el-
ements from prose, embedding scheme expressions (which are evaluated dur-
ing document generation) and embedding prose into code (for JavaDoc-like
comments). The main differences between mbeddr’s approach and Racket
Scribble is that Scribble is implemented as Racket macros, whereas mbeddr’s
facility is based on projectional editing. Consequently, the range of document
styles and syntactic extensions is wider in mbeddr. Also, mbeddr directly
supports embedding figures and visualizations.

An alternative way of writing documents that are integrated tightly with
code that is often used in book publishing is custom tool chains, typically
based on LATEX or Docbook31. Program files are referenced by name from
within the documents, and custom scripts include the program code during
output generation. mbeddr’s approach is much more integrated, since, for
example, even the references to program fragments are actual (checkable) ref-
erences and not just names. The overall structure is more robust in terms of
referential integrity.

The idea of more closely integrating code and text is not new. The most
prominent example if the idea is probably Knuth’s literate programming ap-
proach [Knuth, 1984], in which code fragments are embedded directly into
documents; the code can be compiled and executed. While we have built a
prototype with mbeddr that supports this approach, we have found referenc-
ing the code from documents (and generating it into the final output) more
scalable and useful.

Requirements Engineering The facilities for collecting prose requirements
provided by mbeddr are not especially interesting. What is interesting is the
ability to embed DSL programs into requirements, and ubiquitous traceability.

DSLs have traditionally not seen much use in requirements engineering;
they are typically associated more with the implementation phase or with
software architecture. However, as demonstrated by mbeddr, DSLs, and es-
pecially extensible DSLs, can be very useful in requirements engineering, be-
cause they support incrementally adding formal abstractions to prose require-
ments, thereby making requirements incrementally more processable. Other

31 http://www.docbook.org/

52

tools, for example, itemis’ Yakindu Requirements32 also implement this idea:
it also uses (mostly) textual DSLs plus visualization. In contrast to mbeddr,
however, extensibility is more limited, since the underlying language work-
bench (Eclipse Xtext33) supports only limited forms of language extension.

Favaro et al. [2012] present an approach to requirements engineering that
has some commonalities with mbeddr. Like mbeddr, they have the goal of
introducing structured, model-based requirements. Their approach relies on
the use of a Wiki enriched by semantic links, and they also provide a require-
ments browser inside the IDE (Eclipse) supporting some navigation capabili-
ties from the requirement to the artifact (but not vice versa). They emphasize
two points: a) the importance of having an adaptable mechanism for require-
ments, depending not only on the nature of the project, but also on the kind
of the requirement, with a lighter process for "non-technical" requirements;
b) the fact that requirements and implementation artifacts are intrinsically in-
tegrated. mbeddr realizes these two points. In addition, mbeddr provides
specific IDE support for any particular kind of formal language embedded
into the requirements.

Winkler and von Pilgrim perform a literature review on traceability in the
context of model-driven software development [Winkler & Pilgrim, 2010].
They conclude that tracing is rarely used in practice, the most prominent
reason being the lack of proper tool support. Lack of tool support is also
identified as a major cost driver for traceability by Watkins & Neal [1994].
Today, traceability from code to requirements is mostly done with comments;
in some cases specialized tools check the IDs of requirements in these com-
ments for consistency with the requirements themselves. Most configuration
management systems support traceability only on the artifact level, and not
on the level of program elements inside these artifacts. Experience shows that
this level of granularity is not enough [Kuhn et al., 2012]. Also, when several
engineering tools are used in the same project, cross-tool traceability becomes
an integration challenge. mbeddr’s approach, which supports element-level
traceability from any artifact to requirements or other specifications, provides
a solution to this dilemma and could therefore contribute to helping practi-
tioners in adopting requirements traceability, particularly in contexts where
the process requires it.

Other tools, such as the above-mentioned Yakindu Requirements, support
traceability for various kinds of artifacts, including Xtext files, genetic text
files or EMF models. In contrast to mbeddr, the trace information itself is
kept separate from both the source and the target model. Also, the solution
is not fully generic, since adapters have to be built to enable Yakindu to in-
terface with additional artifacts beyond those that are supported by default.
mbeddr’s approach is fully generic.

mbeddr does not address the question of finding out, maybe after the im-
plementation has been finished, which program elements have to be traced to

32 http://www.yakindu.de/requirements/
33 http://eclipse.org/xtext

Chapter 3. Application to Embedded Software Development 53

which requirements: tracing in mbeddr is still a manual process. Approaches
to partially automate the process include the use of techniques from infor-
mation retrieval [Hayes et al., 2003]; a collection of best practices is described
by Cleland-Huang et al. [2007].

Variability Support For product line variability, mbeddr adopts industry
best practices. Expressing variability with feature models is the state of the
art. Overlaying feature-based variability over programs has been done be-
fore as well. The C preprocessor can be used to this effect using #ifdefs.
The approach can also be used on models. For example, Czarnecki and his
group have overlaid feature-based variability over UML diagrams [Czarnecki
& Antkiewicz, 2005]. mbeddr’s approach is different, in that feature-based
variability can be overlaid over models and code in the same way – there is
no difference between the two in the first place: both kinds of artifacts are
expressed with MPS languages. Since presence condition expressions are also
expressed with a formal language, the expressions can be formally checked
and interpreted. The ability to show the program/model with feature clauses
enabled or not, and to show (and edit) the model in a variant-specific way, is
also radically different than mainstream tools. However, the idea is inspired
by CIDE, a specific solution for C described by Kästner [2010]. However,
mbeddr’s approach is more general, since it works for any language within
MPS. VML [Loughran et al., 2008] is another tool (based on Eclipse EMF) that
can map configurative variability to arbitrary models. However, since source
code (C, Java) is not represented with EMF in Eclipse, a special solution had
to be created to "adapt" VML to source code.

Showing statically that every valid variant of the feature model will result
in a structurally valid program has been done before by Czarnecki & Piet-
roszek [2006] for the case of UML models and OCL constraints. Also the tool
developed by Czarnecki & Antkiewicz [2005] has static validation, to make
sure that every variant of the UML model is structurally correct. Another ap-
proach to the same problem is described as part of the AHEAD methodology
by Thaker et al. [2007].

The idea of using DSLs to describe variability in product lines is not new.
Various authors have published about this (Batory et al. [2002]; Mernik et al.
[2005]; Tolvanen & Kelly [2005]) and the approach is used in practice. mbeddr’s
approach is different, since the various DSLs can be mixed and integrated.

Summary — This chapter provided an overview of mbeddr and its relationship to
Generic Tools, Specific Languages. It also provided context by comparing mbeddr
to the state of the art in embedded software development tools. More details about
mbeddr’s features are discussed next in Chapter 4. The experiences of application
developers are discussed in Chapter 5.

54

Part II

Using mbeddr for Embedded
Software Engineering

55

4
An Overview of mbeddr’s Features

Abstract — mbeddr provides domain-specific abstractions that address the problems
of embedded software engineering discussed in Chapter 3. This chapter gives an
overview of mbeddr’s key abstractions, including extensions for testing and report-
ing, physical units, interfaces and components, decision tables and state machines as
well as languages to support software documentation, requirements engineering and
product line variability. The overview is given from the perspective of an embedded
software engineer using mbeddr to develop applications and uses simple examples.

4.1 M B E D D R ’ S V E R S I O N O F C

To be able to extend C with MPS’ facilities, C itself has to be implemented
in MPS first. This entails the definition of the language structure, syntax and
type system. In the process, some aspects of C were changed. Some of these
changes are a first step in providing a safer version of C. Other changes were
implemented because the result is more convenient to the user, or because
it simplified the implementation of the language in MPS. Table 4.1 shows
an overview of these changes. Out of eight changes total, four address im-
proved robustness and analyzability, two improve application developer us-
ability and three are to simplify the implementation in MPS. Some of the
important changes to regular C are discussed below.

Modules mbeddr C provides modules. A module contains the top level
C constructs such as structs, functions or global variables. These module
contents can be exported. Modules can import other modules, in which case
they can access the exported contents of the imported modules. While header
files are generated when the mbeddr C code is exported to text for compi-
lation, mbeddr does not expose them to the user: modules provide a more
convenient means of modularizing programs and controlling which elements
are visible globally. The following piece of code shows an example module
written in mbeddr. Except for the module itself and the exported keyword, it
looks like regular C code.

module PlainCDemo {

#constant uint16 MAX_POS = 100;

exported struct Position {
uint16 x;
uint16 y;

};

57

int8 add(int8 x, int8 y) { return x + y; }

void normalizePosition(Position* p) {
if (p->x > MAX_POS) { p->x = MAX_POS; }
if (p->y > MAX_POS) { p->y = MAX_POS; }

}

exported int32 main(int32 argc, string[] argv) {
int8 x = add(10, 2);
Position p = {(uint16) x, (uint16) add(20, 22)};
normalizePosition(&p);
return 0;

}
}

Preprocessor mbeddr C does not support the preprocessor. Empirical stud-
ies such as Ernst et al. [2002] show that it is often used to emulate missing
features of C in an ad-hoc way, leading to problems with maintainability and
analyzability. Instead, mbeddr C provides first-class support for the most
important use cases of the preprocessor. Examples include the modules men-
tioned above (replacing headers and #include) as well as the support for
variability discussed in Section 4.9 (replacing #ifdefs). Global constants are
available directly, and macro functions are better replaced with language ex-
tensions, since these include type checks and IDE support. Removing the
preprocessor and providing specific support for its important use cases goes
a long way in creating more maintainable and more analyzable programs (cf.
the challenge of Static Checks and Verification).

Difference Reason

No preprocessor Robustness
Native Booleans (and a cast Robustness
operator for legacy interop)
enums are not ints (special Robustness
operators for next/previous)
C99 integral types required Robustness
Modules instead of headers App dev convenience
hex<..>, oct<..>, bin<..> Simplified implementation
instead of 0x.. and 0..
Type annotation on type Simplified implementation
(int[] a instead of int a[])
Cleaned-up syntax for function App dev convenience,
types and function pointers simplified implementation

Table 4.1 Changes in mbeddr C compared to regular C. Out of eight changes, four
are for reasons of improved robustness and analyzability, two are for application
developer convenience and three are to simplify the implementation in MPS.

58

Types mbeddr supports more specific types compared to C. For exam-
ple, it introduces a separate boolean type, and does not interpret integers as
Booleans by default (a cast operator is available to deal with legacy code).
To avoid cross-platform compatibility problems, mbeddr requires the use of
size-qualified types (such as int8 or uint32) instead of platform-dependent
types (such as int or long long).

Type decorations, such as array brackets or the pointer asterisk, must be
specified on the type, not on the identifier (int[] a; instead of int a[];).
This has been done for reasons of consistency and to simplify the implemen-
tation in MPS: it is the property of a type to be an array or a pointer, not the
property of an identifier. Identifiers are just names.

Function Pointers mbeddr supports a more readable version of C’s func-
tion pointer syntax. The code below uses a typedef to define a new type that
represents functions that take a Trackpoint* as an argument and also return
a Trackpoint* (Trackpoint is a struct defined elsewhere). The nullify func-
tion conforms to this signature, which is why a reference to this function can
be assigned to the variable processor. The : operator represents function
references, mbeddr’s version of function pointers (the numbers behind the
assert statements used to identify a particular assert in log messages; they
are automatically projected and read-only).

typedef (Trackpoint*)=>(Trackpoint*) as DataProcessorType;
DataProcessorType processor;

Trackpoint* process_nullifyAlt(Trackpoint* tp) {
tp->alt = 0;
return tp;

}

test case testProcessing {
Trackpoint tp = {x = 0, y = 0, alt = 100 };
processor = :process_nullifyAlt;
Trackpoint* res = processor(&tp);
assert(1) res->alt == 0;

}

mbeddr also supports lambdas, which are essentially anonymous functions.
The following test case assigns a lambda to the processor variable and then
invokes it.

test case testLambdaProcessing {
Trackpoint tp = {x = 0, y = 0, alt = 50 };
processor = [p| p->alt = 100; p;];
assert(0) processor(tp)->alt == 100;

}

Build Process The customary way to build C-based software is to use make
files. However, on some embedded platforms, non-standard make files are

Chapter 4. An Overview of mbeddr’s Features 59

used, or the C code has to be built with custom build systems. mbeddr pro-
vides BuildConfigurations to abstract over the actual build system. The fol-
lowing piece of code represents the build configuration for a Hello, World
program.

Build System:
desktop

compiler: gcc
compiler options: -std=c99
debug options: -g

Configuration Items
reporting: printf

Binaries
executable HelloWorld isTest: false {

included modules
HelloWorld

}

A build configuration first defines the build system. By default, it is desktop,
which means that the regular make file format is used, and gcc is used for
compilation. A suitable Makefile is generated. By plugging in other build
systems, arbitrary other files can be generated to control the build process.

The configuration items control how various C extensions are translated
back to C. At least the reporting configuration is needed for Hello World,
since it controls how the actual output of the "Hello, World" message is trans-
lated. The following code shows the HelloWorld module which defines a
message that is then reported from within the main function (reporting is
discussed in the next section). This HelloWorld module is included in the
executable in the build configuration shown above.

module HelloWorld {
messagelist messages {

INFO helloWorld() active: Hello, World
}
exported int32 main(int32 argc, string[] argv) {

report(0) messages.helloWorld();
return 0;

}
}

4.2 T E S T I N G A N D R E P O RT I N G

The ability to test code is essential for developing robust software. This is es-
pecially true for embedded software, where reliability is usually an important

60

concern1. Also, some target devices do not support debugging, so extensive
testing is the only way to find and fix bugs.

However, testing embedded software is not always easy. Automated testing
on the target device can be hard because of the challenge of reporting back
success or failure (an example of the challenge of observability [Binder, 2000]).
Not all devices have screens or other output facilities that can be readily used,
so sometimes test results or debug messages are reported over a serial line,
or stored in an error storage area and read back later. Running the tests
on a PC is also not always feasible, because code may depend on specific
characteristics of the target device such as timing, memory structure or I/O
devices. mbeddr addresses the former problem with a platform-independent
error-reporting facility. The latter problem can be addressed to some degree
with suitable custom language extensions (such as the registers discussed in
Section 10.1).

Addressed Challenges Support for testing does not directly address any of
the challenges outlined in Section 3.2, but it is closely related to Static Checks
and Verification.

4.2.1 Language Extensions

Reporting As shown in the Hello, World example in the previous section,
messages can be output via the reporting framework. Users define messages,
and report statements can then be used to output an instance of the message.
Messages have a severity level (INFO, WARN, ERROR), an ID and a textual de-
scription. In addition, messages may have arguments.

report statements are translated during generation according to the build
configuration (reporting item). The default is printf, which means that a
report statement is translated to console output. Alternative transformations
can, for example, write into an error store, a common approach in embedded
software. Since the report statements are transformed during generation, the
generator can automatically add the location of the report statement in the
code to the error message, making it simpler to relate the error report to the
cause. The following example code reports an error if a queue approaches
three-quarters full:

void addToQueue(Trackpoint* tp) {
report(0) messages.queueGettingFull()

on pos >= QUEUE_SIZE * 3/4;
pos++;
if (pos >= QUEUE_SIZE) pos = 0;
queue[pos] = tp;

}

1 As a consequence, coverage measurement for test cases is useful. While we have not imple-
mented this for mbeddr, we have implemented it for the commercial ACCEnT product which
builds on top of mbeddr.

Chapter 4. An Overview of mbeddr’s Features 61

Notice how the check for a three-quarters full queue is part of the report
statement, and not implemented as a surrounding if. This is because report
messages can be disabled (selectively or globally), in which case no output
message is generated because the report statement is removed from the code.
In this case it is also important that no overhead is incurred from checking the
condition associated with a report message. By making the condition part of
the report statement, the check that triggers a message can be disabled/re-
moved along with the report statement and the message.

Unit Tests The previous section showed that mbeddr comes with a top level
test case construct. Inside these test cases, a number of special language
constructs, such as assert and fail, are available. An assert statement uses
reporting to report an error if a test fails2.

Executing Tests The test expression is used for executing sets of test cases.
It is typically used in the main function of a test program in the following way:

exported int32 main(int32 argc, string[] argv) {
return test testAddToQueue, testQueueFilling;

}

The test expression invokes all the tests passed as arguments. The test cases
themselves are translated in such a way that they return the number of failed
assertions. The test expression sums up these return values of all invoked
tests. In other words, test evaluates to the sum of failed assertions in all
invoked test cases. By returning this number to the operating system (as the
return value of main), a script or make file is informed of failing tests.

Failed tests, and in particular failed assertions, lead to a message on the
console3. The message contains the qualified name of the failed test and
assertion, and also the hyperlinked node ID of the failed assertion. Clicking
on the link in the MPS console view selects the failed assertion in the editor
directly. By linking the assertions to test specifications or requirements via
traces (discussed in Section 4.8), full traceability from the failed test to the
original requirement can be established.

4.2.2 Extensibility

Some of mbeddr’s C extensions come with their own test support. For exam-
ple, components support mocks and stubs (Section 4.4), and a special syntax
is available for testing state machines (Section 4.6).

4.3 P H Y S I C A L U N I T S

Embedded software is typically part of a hardware system. Consequently, the
software often deals with values obtained from the real world through sen-

2 We decided to not use CUnit (http://cunit.sourceforge.net/) to keep the footprint low and
to be able to optimize the tests statically.

3 This is only true for the default printf reporting mode.

62

Figure 4.1 The units extension ships with the SI base units. Users can define
derived units (such as the mps in the example) as well as convertible units that
require a numeric conversion for mapping back to SI units. Type checks ensure
that the values associated with unit literals use the correct unit and perform unit
computations (as in speed = length

time). Errors are reported if incompatible units are
used together, as in the case where length and time were added.

sors. These values usually represent a physical property of the environment,
and as such have a unit associated with them. Programming languages do
not directly support units, which can lead to program errors. This challenge
has been discussed in the introduction (Section 2.4.1), and the study by Kuhn
et al. [2012] describes missing support for units as a major problem with to-
day’s modeling tools. The crash of NASA’s Mars Climate Orbiter was caused
by unit conversion errors4.

To address this problem, mbeddr provides first-class support for physical
units as a modular extension. The extension supports type checking expres-
sions for unit compatibility, computations with units (dividing m by s results
in m/s), as well as value conversions (as in �C and �F). Figure 4.1 shows the
use of units in mbeddr.

Addressed Challenges The units are an example of the Program Annotations
challenge. They also provide Abstraction without Runtime Cost.

4.3.1 Language Extensions

Annotating Units The Trackpoint data structure introduced earlier repre-
sents trackpoints of a recorded flight5. As such, the various members of the

4 http://mars.jpl.nasa.gov/msp98/news/mco990930.html
5 This example is loosely modeled after a system that records the flight path of airplanes as a

sequence of Trackpoints for later evaluation. Such a system is used, for example, in gliding as
part of the OLC competition (http://www.onlinecontest.org/).

Chapter 4. An Overview of mbeddr’s Features 63

struct represent physical quantities and should be annotated with physical
units. Units are part of types and can be added to any numeric type.

struct Trackpoint {
int8 id; // sequence ID of the trackpoint
int8/s/ timestamp; // timestamp as taken from GPS time
int8/m/ x; // longitude, simplified as a number
int8/m/ y; // latitude, simplified as a number
int8/m/ alt; // altitude as of the GPS
int8/mps/ speed; // current speed, if available

};

s and m are SI base units6, so they are available by default. The mps (meters per
second) unit used for the speed member is not an SI base unit, and hence has
to be defined before it can be used. Unit declarations are module contents, so
they can be defined in any implementation module:

-1
derived unit mps = m s for velocity

To prevent type-checking errors, the correct units now have to be used when
assigning values to the members of the Trackpoint struct. Similarly, the as-
sertions in the introductory tests have to use units:

Trackpoint tp = { id = 1, timestamp = 0 s,
x = 0 m, y = 0 m, alt = 100 m };

assert(0) tp.id == 1 && tp.alt == 100 m;
assert(1) tp.id == 1 && tp.alt == 0 m;

Unit Computations and Checks The type system calculates resulting units
based on the units used in expressions. For example, the following program
fragment will result in an error, because of the attempt to add m and mps.
Trying to add tp.x and tp.y will work – both are meters.

int8 someInt = tp.x + tp.speed; // error, adding m and mps

mbeddr also computes resulting units if quantities of different units are mul-
tiplied or divided. For example, the following code is valid:

int8/mps/ speed = (tp2.x - tp1.x) /
(tp2.timestamp - tp1.timestamp);

Value Conversions The examples so far have only dealt with unit checking
and the computation of resulting units, and not with value conversions, as in
dealing with �C and �F. Convertible units can be used for this purpose7:

convertible unit degC for temperature
convertible unit degF for temperature
conversion degC -> degF = val * 9 / 5 + 32
conversion degF -> degC = (val - 32) * 5 / 9

6 http://en.wikipedia.org/wiki/SI_base_unit
7 Note that mbeddr can actually use the �C and �F notation. However, I was unable to use it in

the LATEX lstlisting environment, hence degC and degf.

64

The following function takes a temperature in �C and stores it in a database:

void storeTemperature(int8/degC/ temp) {
// store temp in some data store

}

If this function were to be called with an argument in �F, a type error would
be reported. To fix the error, a conversion has to be triggered:

int8/degF/ aTempInF = 100 degF;
storeTemperature(convert[aTempInF -> degC]);

The convert expression does not explicitly refer to the conversion rule; the
system finds an appropriate one automatically if one is in scope. However,
the user has to explicitly request a conversion (using the convert expression)
– conversions are never performed automatically. This is because they incur
runtime overhead and may lead to overflows in the underlying variables. By
requiring users to use the convert expression explicitly, the user is made
aware of the potential risks.

4.3.2 Extensibility

Physical units are essentially just a tag on a type, plus rules that determine
how these tags influence type compatibility. Other such tags, beyond those
based on SI base units, can be useful. Examples include currencies (where
assigning or adding USD to EUR should be prevented) or coordinate sys-
tems (where local coordinates cannot be used when global coordinates are
expected). Both of these extensions have been prototyped; the underlying
framework is flexible enough to be able to work with non-SI units.

4.4 C O M P O N E N T S

Program modularization is essential to managing complexity. It helps tackle
big problems by breaking them down into a set of smaller problems. Modu-
larization is also the basis for reuse, since a well-defined module can be reused
in different contexts. To make this possible, a module must clearly specify its
interface – otherwise it is unclear how other modules should interact with it.
In addition, once an interface is defined, the inner workings of a module can
be hidden from, and hence changed without affecting, client code. Ideally,
it should be possible to plug in different implementations behind the same
interface. This helps with testing, because mocks and stubs can be used in
place of the real implementation with no change in the interface.

C has only very limited support for modularizing programs. Functions are
modules, in the sense that their signature is a (weak) interface specification,
and they can be reused in different contexts. Defining modules that contain
several (cooperating) functions is much harder; header files can be used for
this purpose to some extent. They support the provision of several imple-
mentations for the same set of functions defined in a header file by linking

Chapter 4. An Overview of mbeddr’s Features 65

different .c files that implement the functions in the header. A similar effect
can be achieved with #ifdefs. However, all of this relies on the preprocessor,
and the approach is brittle8. An alternative implementation relies on function
pointers, as well as arrays or structs that contain collections of related func-
tion pointers. However, maintaining all these function pointers consistently is
tedious and error-prone.

Component-based software development [Brown, 1996; Clements, 1995]
takes the approach further. Depending on the specific formalism, components
have very rich descriptions of their interfaces, such as pre- and post-conditions
(inspired by Design By Contract [Meyer, 1998]) or protocol state machines (as
used in SDL9). Hierarchical decomposition, in which one component is struc-
tured into connected instances of other components, is also widely supported
(for example, in UML [Bock, 2004]).

mbeddr supports components with rich interfaces, including pre- and post-
conditions and protocol state machines, compile-time and runtime polymor-
phism, and component instantiation, as well as hierarchical decomposition10.

Addressed Challenges Components are an example of Abstraction without
Runtime Cost. As a consequence of the better modularizability of the code and
improved testability, they also contribute to addressing the challenge that C
is Considered Unsafe. Finally, components are an important building block for
product line engineering, so they are also a part of mbeddr’s Process Support.

4.4.1 Language Extensions

Client-Server Interfaces mbeddr supports client-server interfaces, which
support remote procedure call-style interaction, as well as sender-receiver
interfaces, which represent replicated data. This section focuses on client-
server interfaces. The following interface defines an operation11 that processes
Trackpoints. Operations are similar to C function prototypes regarding the
types that can be used in the arguments or the return type:

module Components imports DataStructures {
exported cs interface TrackpointProcessor {

Trackpoint* process(Trackpoint* p);
}

}

To enhance the semantic richness of the interface, pre- and post-conditions
can be added. By default, these are checked at runtime, and a report message
is output if one of them fails. However, static checking is also supported, as
described in Section 4.4:

8 In C++, classes are available. Classes are modules in the sense of the above description. How-
ever, the discussion in this section is restricted to C.

9 http://sdl-forum.org/SDL/
10 In terms of the low-level implementation, mbeddr relies on structs with function pointers, as

mentioned above.
11 An interface can of course have any number of operations.

66

Trackpoint* process(Trackpoint* p)
pre(0) p != null
pre(1) p->id != 0
pre(2) p->timestamp != 0 s
post(3) result->id != 0

The contract is specified on the interface, but it is checked for each component
that implements the interface. There is no way for an implementation to
prevent the checks of its provided interfaces from being executed.

A Simple Component Components provide and require ports, and each
port is associated with an interface. A provided port offers the services defined
by the interface to other components; this is similar to the concept of imple-
menting interfaces in Java. A required port expresses a component’s need to
access the specified interface on another component, a concept roughly com-
parable to dependency injection [Fowler, 2004]. The following trivial compo-
nent provides the TrackpointProcessor interface. A component that imple-
ments an interface through a provided port has to implement the operations
defined by this interface; the IDE reports an error if this is not the case, and
a quick fix allows users to automatically implement all provided operations.
To implement an operation, a component defines a runnable12, which is es-
sentially a method. In the example below, the Nuller component provides
the processor port with the Trackpoint interface. The implementation of
process sets the altitude to 0m (hence the component’s name Nuller):

exported component Nuller extends nothing {
provides TrackpointProcessor processor
Trackpoint* process(Trackpoint* p) <- op processor.process {

p->alt = 0 m;
return p;

}
}

Runnables are activated by triggers. The op trigger executes a runnable when
an operation is invoked on a provided port. Other triggers include on init,
which essentially makes a runnable a constructor, and timed, which executes
the runnable on a schedule. The mechanism is extensible; for example, the
examples on component language extensibility below show a runnable trig-
gered by an interrupt. In the example, the process runnable is triggered by
an incoming invocation of the process operation on the processor port.

Instances To test the component, an instance of Nuller has to be created
first. In contrast to classes in object-oriented programming, component in-
stances are intended to be instantiated during the initialization phase of the
program, and often reside on the stack as global variables. This is to avoid
out-of-memory errors as the program executes, a condition that is hard to
deal with in embedded software. Instance configurations are used to define

12 The notion of runnables is inspired by the AUTOSAR standard.

Chapter 4. An Overview of mbeddr’s Features 67

and connect instances. Instance configurations can also host adapters, which
make a provided port of a component instance (Nuller.processor) available
to a regular C program under the specified name (n):

instances nullerInstances {
instance Nuller nuller
adapt n -> nuller.processor

}

The next step is writing a test case that accesses the n adapter – and through
it, the processor port of the Nuller component instance nuller. The code
creates a new Trackpoint, using 0 as the id – intended to trigger a contract
violation of pre(1) p->id != 0. The code also initializes the instance config-
uration (which allocates memory and initializes internal fields):

exported test case testNuller {
initialize nullerInstances;
Trackpoint tp = { id = 0 };
n.process(&tp);

}

Running the test case results in a runtime contract failure that is reported –
by default – on the console.

Advanced Contracts A new interface, TrackpointStore, declares an API
for working with a queue of Trackpoints (to keep the example simple, the
implementation actually just stores one element):

exported cs interface TrackpointStore {
void store(Trackpoint* tp)
Trackpoint* get()
Trackpoint* take()
boolean isEmpty()

}

There are several semantic constraints that apply to this interface: it should
not be possible to get or take trackpoints from the store if it is empty, and
no additional trackpoints should be stored if it is full. These constraints can
be expressed as pre- and post-conditions. Note in the code below how the
isEmpty operation is marked as query so that it can be used in pre- and post-
conditions, and the old keyword is used to access values of query operations
from before the execution of the operation:

exported cs interface TrackpointStore {
void store(Trackpoint* tp)

pre(0) isEmpty()
pre(1) tp != null
post(2) !isEmpty()
post(3) size() == old(size()) + 1

Trackpoint* get()
pre(0) !isEmpty()
post(1) result != null

68

post(2) size() == old(size())
Trackpoint* take()

pre(0) !isEmpty()
post(1) result != null
post(2) isEmpty()
post(3) size() == old(size()) - 1

query int8 size()
query boolean isEmpty()

}

These pre- and post-conditions mostly express a valid sequence of the opera-
tion calls: store has to be called before get is allowed, etc. Alternatively, this
can be expressed directly with protocols:

exported cs interface TrackpointStore2 {
// store goes from the initial state to a new state nonEmpty
void store(Trackpoint* tp)

protocol init(0) -> new nonEmpty(1)

// get expects the state to be nonEmpty, and remains there
Trackpoint* get()

protocol nonEmpty -> nonEmpty

// take expects to be nonEmpty and then becomes empty
// if there was one element in it, it remains in
// nonEmpty otherwise
Trackpoint* take()

post(0) result != null
protocol nonEmpty [size() == 1] -> init(0)
protocol nonEmpty [size() > 1] -> nonEmpty

// isEmpty and size have no effect on the protocol state
query boolean isEmpty()
query int8 size()

}

Stateful Collaborating Components The component above was stateless
and did not collaborate with any other component. In realistic cases, this
is different: component instances will encapsulate data, represented as fields,
and will have required ports to use services provided by other component in-
stances. The code below shows a component that implements the Trackpoint-
Store interface to store a single trackpoint. There is a field Trackpoint*
storedTP; that represents component state. There is also an on-init runnable
that acts as a constructor:

exported component InMemoryStorage {
provides TrackpointStore store
Trackpoint* storedTP;

void init() <- on init { storedTP = null; }

Chapter 4. An Overview of mbeddr’s Features 69

void store(Trackpoint* tp) <- op store.store { storedTP = tp; }

Trackpoint* get() <- op store.get { return storedTP; }

Trackpoint* take() <- op store.take {
Trackpoint* temp = storedTP;
storedTP = null;
return temp;

}

boolean isEmpty() <- op store.isEmpty { return storedTP == null; }

int8 size() <- op store.size { return storedTP == null ? 0 : 1; }
}

To illustrate the use of required ports, the Interpolator component shown
below implements the TrackpointProcessor interface in a way that uses the
TrackpointStore interface:

exported component Interpolator extends nothing {
provides TrackpointProcessor processor
requires TrackpointStore store

init int8 dividend;
Trackpoint* process(Trackpoint* p) <- op processor.process {

if (store.isEmpty()) {
store.store(p);
return p;

} else {
Trackpoint* old = store.take();
p->speed = (p->speed + old->speed) / dividend;
store.store(p);
return p;

} } }

This component expresses that it requires a TrackpointStore interface con-
nected to its store port. Any component that implements the TrackpointStore
interface can be used to fulfil this requirement (see below). The example also
shows how to call operations on required ports using the dot notation familiar
from object-oriented programming (store.store(p);). The component also
uses an init field. This is a regular field from the perspective of the compo-
nent (i.e., it can be accessed from within the implementation), but it is special
in that a value for it has to be supplied when the component is instantiated.
Instances of the two components can now be defined and connected:

instances interpolatorInstances {
instance InMemoryStorage store
instance Interpolator ip(dividend = 2)
connect ip.store to store.store
adapt ip -> ip.processor

}

70

Notice how a value for the init field dividend is passed in as part of the
definition of an instance of Interpolator. The connect statement is used to
connect the required port store of the ip instance to the store provided port
of the store instance. If required ports are not connected, an error will be
reported on the ip instance (there are also optional required ports which
may remain unconnected). Another test case can now be written like this:

test case testInterpolator {
initialize interpolatorInstances;
Trackpoint p1 = { id = 1, timestamp = 1 s, speed = 10 mps };
Trackpoint p2 = { id = 2, timestamp = 2 s, speed = 20 mps };

ip.process(&p1);
assert(0) p1.speed == 10 mps;
ip.process(&p2);
assert(1) p2.speed == 15 mps;

}

Visualization Components and interfaces can be rendered as a diagram to
show their dependencies (Figure 4.2). A similar diagram can be rendered for
the instances and their connectors.

Static Wiring By default, calls on required ports (and adapters) are trans-
formed to C in a way that supports polymorphism: different implementations
can be used for the same interface in the same program; the decision as to which
generated function to call is made at runtime. To make this possible, the gen-
erated code uses an indirection via a function pointer. This indirection implies
a runtime performance overhead. To avoid this overhead, a second transfor-
mation mode is available. It can only be used if, for any given interfaces, only
one implementation is used throughout a program. In this case, calls to the
function generated from this single implementation are generated when the
operation is called; the indirection and the performance overhead is avoided.

Composite Components Composite components represent hierarchical de-
composition of systems. A composite component contains connected in-
stances of other components. It can also delegate some of the ports of internal
instances to its own boundary. Composite components can be instantiated
like any other component. The following is part of a composite component
from the Smartmeter project13.

composite component EnergyDataDisplayStack {
requires IEnergyDataProvider energyDataProvider
requires IRTC rtc
requires ITickerPool tickerPool
provides ITask updateTask

13 The Smartmeter project is a commercial project that develops the implementation of a smart
meter based on mbeddr.

Chapter 4. An Overview of mbeddr’s Features 71

Figure 4.2 A visualization of components and interfaces, as well as their depen-
dencies. Solid lines represent provided ports, dotted lines represent required ports.
Diagrams like this one can be rendered automatically for every module that con-
tains components and interfaces.

void setup() <= on init { initialize internal instances; }

internal instances() {
instance EnergyDataDisplayImpl display
delegate energyDataProvider to display.energyDataProvider
delegate rtc to display.rtc
...

instance LCDLineImpl lcdLine(conf = &LCD_LINE_CONFIG)
connect display.energyDataLCDLine to lcdLine.lcdLine

instance LCDLineOutputterImpl output
connect output.lcdLine to lcdLine.lcdLine
connect display.energyDataLCDLineOutputter

to output.lcdLineOutputter

.. } }

Composite components are a means of reusing more complex structures built
from components. Another means for reusing some of the runnables is to
have one component extend another one, just like class inheritance in object-
oriented programming.

Sender-Receiver Interfaces Sender-receiver interfaces are essentially structs,
i.e. they are a set of typed and named data items. A component that provides
a sender-receiver interface owns the data storage for these items and can up-
date their values. A component that requires a sender-receiver interface can
read the data values. Sender-receiver interfaces are a structured approach for
shared memory, a pattern frequently used in embedded systems.

Mocks Mocks are parts of programs that simulate the behavior of another
part, specifically for a given scenario or test case. Mocks are well known

72

from object-oriented programming [Thomas & Hunt, 2002]; mbeddr adopts
them for testing components. The crucial point about mocks is that they
implement each operation invocation separately (the steps in the code below),
whereas a regular component or a stub just describes each operation with one
implementation. This makes a mock implementation much simpler for a given
scenario – it does not have to replicate the algorithmic implementation of the
real component. In this way mocks improve the controllability [Binder, 2000]
of the system. Mocks also enhance the observability [Binder, 2000] of the
system, since they support asserting behavior "from the inside" of the mocked
component.

For example, to test whether the Interpolator works correctly with the
TrackpointStore interface, a mock can be used. The testInterpolator test
introduced above expects the following: when process is called first, the store
is still empty, so the interpolator stores a new trackpoint. When process is
called again, the test expects the interpolator to call take and then store. In
both cases, isEmpty must be called first. This behavior can be tested explicitly
via a mock:

mock component StorageMock report messages: true {
provides TrackpointStore1 store
Trackpoint* lastTP;
total number of calls is 5
sequence {

step 0: store.isEmpty return true;
step 1: store.store {

assert 0: parameter tp: tp != null
}
do { lastTP = tp; }

step 2: store.isEmpty return false;
step 3: store.take return null;
step 4: store.store

}
}

This mock component expects five invocations in total. In particular, it expects
a sequence of calls, in which the first one must be a call to isEmpty; the mock
returns true. The next expectations is a call to store, and for the sake of the
example, the mock checks that tp is not null. It also stores the tp parameter
in a field lastTP so it can be can returned later. The next expectation is
another isEmpty query, which now returns false. Next, a call to take is
expected, and then another call to store. Notice the returning of null from
take: this violates the post-condition! However, pre- and post-conditions are
not checked in mock components, because their checking may interfere with
test cases that test erroneous behavior and the system’s reactions to it. Two
more ingredients are required to use the mock in a test. The first one is the
instances and the wiring. Notice the connection of the interpolator and the
mock:

Chapter 4. An Overview of mbeddr’s Features 73

instances interpolatorInstancesWithMock {
instance StorageMock storeMock
instance Interpolator ip(dividend = 2)
connect ip.store to storeMock.store
adapt ipMock -> ip.processor

}

The second ingredient is the test case itself. Obviously, it has to fail if the
mock saw something other than what it expected on its port. This is achieved
by using the validatemock statement in the test:

exported test case testInterpolatorWithMock {
initialize interpolatorInstancesWithMock;
Trackpoint p1 = { id = 1, timestamp = 1 s, speed = 10 mps };
Trackpoint p2 = { id = 2, timestamp = 2 s, speed = 20 mps };
ipMock.process(&p1);
ipMock.process(&p2);
validatemock (0) interpolatorInstancesWithMock:storeMock;

}

The component language provides more support specifically for testing. For
example, test cases can call runnables in components without them being ex-
posed via a provided port. This avoids the need to create interfaces and ports
just for testing, which would expose behavior that should not be exposed.

4.4.2 Verification

As mentioned earlier, the contracts specified on interfaces are checked at run-
time for every implementing component. A message is reported if a contract
fails. In addition, it is possible to check the correctness of contracts statically.
The verification uses CBMC14, a bounded model checker for C. Since the ver-
ification can take some time, it is not part of the regular type checks; instead,
it can be run in the IDE on demand or during the nightly build from the
console.

Bounded model checking essentially "simulates" a program by exploring its
state space [Clarke et al., 2004]. The state space of a C program can be huge,
so to make model checking feasible a number of configuration parameters
have to be set. These are available as part of the verifiable annotation.
Parameters include the entry point of the verification (the point from which
the simulated program execution starts) and the loop unwinding length (how
many iterations through a loop should be successfully tried until the loop
is assumed to "always work"). It takes some experimentation to find values
for these parameters that result in a sufficiently detailed analysis while still
running the analysis in a reasonable time.

As an example, the InMemoryStorage component introduced earlier is ver-
ified. Since it implements the TrackpointStore interface, it has to respect
the contracts prescribed by this interface. Among other things, the contract
specifies that, after an invocation of store, the isEmpty method must be false:

14 http://www.cprover.org/cbmc/

74

Figure 4.3 After changing the implementation of trackpointStore_store to not

store a trackpoint, the post-condition that checks that the store is not empty after
calling store fails. Running the verification, the table on the top right shows which
pre- and post-conditions hold and which failed. When clicking on a failed one, the
table on the bottom right shows an example program flow that leads to the failure.

exported cs interface TrackpointStore1 {
void store(Trackpoint* tp)

post(2) !isEmpty()
...

}

Assuming isEmpty is implemented correctly, a failure of this post-condition
can be provoked by changing the implementation of the store operation to not
store the argument (see the top of the code in Figure 4.3; it just returns). If the
verification is run, it creates the output shown in the right part of Figure 4.3.

4.4.3 Extensibility

Like any language implemented in MPS, the components extension is inher-
ently extensible. The following three aspects are worth highlighting:

Component Contents The contents of a component are generic, in the
sense that every language concept that implements IComponentContent can
be plugged in. Using this mechanism, state machines can live inside compo-
nents. This is discussed in some detail in Section 4.6.

Triggers By default, runnables can be triggered on init, when an operation
is invoked on a provided port, or when a value required via a sender-receiver
interface changes. However, additional triggers can be plugged in by extend-
ing the abstract concept RunnableTrigger. For example, in the Smartmeter
project, we have implemented an interrupt trigger:

Chapter 4. An Overview of mbeddr’s Features 75

component TemperatureProviderImpl {
provides ITemperatureProvider temperatureProvider

uint16/raw_C/ temperature = 0 raw_C;
...
void interruptHandler() <= interrupt {

if ((ADC10MCTL0 & hex<0F>) == ADC10INCH_10) {
uint16/raw_C/ corrected = introduceunit[ADC10MEM0 -> raw_C];
temperature = temperature - (temperature >> 3) + corrected;

}
// ClearADC10IFGbyreadingADC10MEM0
ADC10IFG = hex<00>;

}
}

This trigger specifies that some interrupt triggers this runnable; it is not yet
specified which interrupt. The actual interrupt is specified for each instance.
This is important, since the various instances of a single component may be
triggered by different interrupts:

instances instances {
instance TemperatureProviderImpl tp
bind ADC10 -> tp.interruptHandler
...

}

Interrupts themselves are first-class entities, because they are used in other
contexts as well. They can be declared as module contents:

// Temperature
exported interrupt ADC10

Different Generators New generators can be plugged in to generate dif-
ferent code from programs using the components language. As part of the
LW-ES research project, BMW has built a generator that generates code that
is compliant with the AUTOSAR API. Among other things, this generator ad-
dresses the way components invoke operations on required calls: they have
to call AUTOSAR API functions to allow communication over a distributed
system.

In addition, an XML file has to be generated that defines the structure of
a component, to enable integration and deployment tools to make use of the
component. However, to be able to generate this XML file, additional infor-
mation is needed. This information is supplied via annotations (explained in
Section 7.4.5), which are additional "pieces of code" that can be attached to
program elements without that element’s concept having to know about it:
annotations can be attached after the fact. In this way different generators can
add different additional data to the same program elements.

76

Figure 4.4 A decision table represents a two-level decision process. It is an expres-
sion and hence can be embedded everywhere where expressions are expected,
for example, in components. In turn, decision tables can use arbitrary embedded
expressions, such as literals with units.

4.5 D E C I S I O N TA B L E S

Decision tables represent two-level decisions. The row and column headers
contain Boolean expressions, the remaining cells contain expressions of other
types. The semantics is that if a row header r and a column header c are
true, then the value of the whole expression table is the value at the cell r, c.
While decision tables are a relatively simple extension, they are very useful
in practice for multi-step decisions because of the very intuitive notation and
their inherent verifiability.

Addressed Challenges Decision tables, particularly due to the static verifi-
cations they support, address the challenge of Static Checks and Verification.

4.5.1 Language Extensions

mbeddr decision tables are translated to nested if statements. The table is
evaluated column headers first; row headers are only evaluated if a particular
column header matches. Decision tables are expressions; this means that they
always have to evaluate to a value. Since the conditions in the table may all
be false for a given set of input values, a default value has to be specified.
Figure 4.4 shows an example decision table.

The following piece of code shows a test case for the component with the
decision table from Figure 4.4. Among other things, it makes use of a con-
venient form of the for statement that works on ranges. The limits of the
range can be exclusive or inclusive, represented with open or closed brack-
ets, respectively. The example iterates from 0 to 4, since 5 is excluded. The

Chapter 4. An Overview of mbeddr’s Features 77

introduceunit construct can be used to "sneak" a unit into a regular value.
This is useful for interacting with non-unit-aware (library) code:

instances instancesJudging {
instance Judge theJudge
adapt j -> theJudge.judger

}

exported test case testJudging {
initialize instancesJudging;
// j is the adapter to the judger port
// of the theJudge component instance
j.reset();
Trackpoint[5] points;
for (i in [0..5[) {

points[i].id = i;
points[i].alt = introduceunit[1850 + 100 * i -> m];
points[i].speed = 130 mps + 10 mps * i;
j.addTrackpoint(&points[i]);

}
assert(0) j.getResult() == 0 + 0 + 20 + 20 + 20;

}

Realistic decision tables usually have intricate combinations of conditions, and
it is easy to overlook inconsistencies. As usual, testing has the coverage prob-
lem, and it is easy not to test a specific corner case. Verification can be used
to good effect.

4.5.2 Verification

To enable verification of a decision table, it must be marked as verifiable.
This annotation introduces additional type checks that report errors if the
table uses expressions that cannot be verified with the underlying Yices SMT
solver. An example of an unverifiable expression is a non-linear expression
(such as tp->alt * tp->alt > 2000 m2).

The verification checks decision tables for completeness and consistency. A
complete table covers all possible combinations of inputs. Consequently, the
default value is optional for verifiable decision tables. A consistent table
is free from overlap: every combination of input values leads to a unique
decision. Running the verification on the example table in Figure 4.4 reports
the following result:

SUCCESS: Table complete.
FAIL: cells (1, 1) and (1, 2) are inconsistent.

tp.id: 0
tp.timestamp: 0
tp.x: 0
tp.y: 0
tp.speed: 0
tp.alt: 2000

...

78

Completeness of the table can be successfully verified, but the result also re-
ports failures because the cells (1,1) and (1,2) are inconsistent. If the verifier
finds an error, it communicates this to the user by presenting a counter exam-
ple. In this case the problem is related to the altitude being 2000 m: in this
case it is not decidable which alternative should be used. The problem can be
fixed for example by changing tp->alt <= 2000 m to tp->alt < 2000 m (the
<= was replaced with a <). Running the verification again results in success.

4.5.3 Extensibility

Decision tables are not extensible per se, but they can be combined with other
extensions. For example, the table in Figure 4.4 is embedded in a component,
and the table itself uses physical units in the conditions.

4.6 S TAT E M A C H I N E S

Next to components and physical units, state machines [Harel, 1987] are one
of the main C extensions available in mbeddr. State machines are ubiquitous
in embedded software development [Samek, 2002] for implementing discrete
behavior. Section 2.4.2 discussed some typical C-based implementation ap-
proaches. All of them are low-level, tedious, error-prone and not very suitable
for analysis, so there is clearly a need for first-class support.

The core abstractions in state machines are states, events and transitions.
A state machine is said to be "in" a state at any time, and one state is marked
as the initial state. Transitions move the system from one state to another
as a reaction to an external event. Different states react to the same event
differently, i.e., they have different transitions for the same event. In this way
the behavior exhibited by a state machine depends on the state it is in. In
addition to being triggered by an event, a transition can also have a guard
condition, which is a Boolean expression that has to be true for the transition
to fire. This way, more fine-grained decisions can be made as to the behavior
of the state machine when a given event is received. The guards may refer
to event parameters, to local variables owned by the state machine, or to
values provided by external interfaces (such as I/O devices). Optionally, state
machines may be hierarchical [Yannakakis, 2000] (where a state can contain
a another state machine), can express parallel states (where the system is in
more than one state at the some time) or include the notion of history [Börger
et al., 2000] (as a way of supporting reeneterability).

State machines must interact with their environment. One means of inter-
action is for the environment to supply the events that trigger transitions. In
addition, the reaction of a state machine to an event may have an affect on the
environment as well. To do so, states can have entry actions and exit actions,
and transitions may have transition actions.

There are two main execution paradigms for state machines: event-driven
and time-triggered. For event-driven state machines, an incoming event trig-
gers a reaction of a state machine. In time-triggered state machines a sched-

Chapter 4. An Overview of mbeddr’s Features 79

uler executes a state machine regularly. The events are taken from a queue, or
the values of variables are checked as part of guard conditions.

Different implementations of the state machine paradigm support different
subsets of the features discussed so far. mbeddr’s state machines can be hier-
archical and support entry, exit and transition actions. In this sense they are
similar to UML state machines [Booch et al., 1998]. They differ from UML in
that they do not support parallel states or history15, and additionally contain
local variables. By default, mbeddr uses the event-driven execution paradigm,
but the time-triggered one can be implemented as well. Since MPS does not
yet support graphical notations, mbeddr uses a textual notation16. However,
graphical visualizations can be rendered automatically.

Even though protocols for interfaces (see Section 4.4) are also state ma-
chines, the two extensions are not related, since they have very little in com-
mon. The state machines discussed here are much richer, whereas the proto-
col state machines for components directly integrate with the interfaces and
operations, in particular in the generated low-level C code.

Addressed Challenges State machines are an example of Abstraction without
Runtime Cost. The support for model checking addresses the challenge of
Static Checks and Verification.

4.6.1 Language Extensions

As an example, this section illustrates a state machine that judges flights.17

The idea is that the state machine receives sequences of trackpoints (via an
event) and then awards points for the flight represented by this sequence of
trackpoints. Here are some of the requirements for how points are awarded:

• 100 points once a flight lifts off
• 10 points for each trackpoint where the plane flies more than 100 m/s,
• 20 points for each trackpoint where the plane flies more than 200 m/s,
• 100 points for a successful landing
• -1 points for each trackpoint where the plane is on the ground, rolling

(one should land in as short a distance as possible)

Implementing a State Machine State machines are module contents: They
can be entered along with functions, global variables or struct declarations.
The airplane will be in various states, such as on the ground, flying, land-
ing (and still rolling), landed, or crashed. The state machine will have the
following states:

15 There is no particular reason why mbeddr’s state machines could not support these features.
They just have not been needed yet, which is why they are not yet available.

16 When MPS supports graphical notations in 2014, support for graphical state machines will be
added.

17 As mentioned earlier, this example is inspired by the gliding OLC, which records cross-country
flights and then awards points for distance and speed flown.

80

statemachine FlightAnalyzer initial = beforeFlight {
state beforeFlight { }
state airborne { }
state landing { }
state landed { }
state crashed { }

}

The state machine has two events: next, which represents the next trackpoint
submitted for evaluation, and reset, which resets the judgement process.
Events can use arbitrary C types as arguments: a Trackpoint* is used in
the example. To accumulate the judgement result, a local variable points is
added:

statemachine FlightAnalyzer initial = beforeFlight {
in next(Trackpoint* tp)
in reset()
var int16 points = 0
// states from above

}

Whenever the state machine enters beforeFlight, i.e., when it starts and after
it is reset, the points have to be set to zero. This can be achieved using an
entry action. In addition, every other state must react to the reset event by
transitioning back to beforeFlight:

state beforeFlight {
entry { points = 0; }

}
state airborne {

on reset [] -> beforeFlight
}
state landing {

on reset [] -> beforeFlight
}
state landed {

on reset [] -> beforeFlight
}

The various judgement rules mentioned above can be implemented as transi-
tions. As soon as a trackpoint’s altitude is greater than zero, the state machine
transitions to the airborne state, and 100 points are added (TAKEOFF is a global
constant representing 100). While airborne, it depends on various combina-
tions of speed and altitude whether a landing, a crash, high speed or very
high speed is detected. The landing process is handled similarly.

state beforeFlight {
entry { points = 0; }
on next [tp->alt > 0 m] -> airborne
exit { points += TAKEOFF; }

}
state airborne {

Chapter 4. An Overview of mbeddr’s Features 81

on next [tp->alt == 0 m && tp->speed == 0 mps] -> crashed
on next [tp->alt == 0 m && tp->speed > 0 mps] -> landing
on next [tp->speed > 200 mps]

-> airborne { points += VERY_HIGH_SPEED; }
on next [tp->speed > 100 mps]

-> airborne { points += HIGH_SPEED; }
on reset [] -> beforeFlight

}
state landing {

on next [tp->speed == 0 mps] -> landed
on next [] -> landing { points--; }
on reset [] -> beforeFlight

}
state landed {

entry { points += LANDING; }
on reset [] -> beforeFlight

}

Interacting with Other Code – Inbound State machines are types and must
be instantiated to be used; any number of instances of a state machine can be
created. State machines must also be initialized explicitly: this sets the current
state to the initial state and initializes all local variables:

test case testFlightAnalyzer {
FlightAnalyzer f;
sminit(f);

}

To interact with a state machine, its events have to be triggered. The smtrigger
statement is available to do this: it expects the target state machine instance
and an event, with its parameters, as arguments (in the code below, makeTP is
a helper function that allocates a new Trackpoint on the heap and returns its
address):

smtrigger(f, next(makeTP(0, 20)));

To check whether the state machine behaves correctly, assertions must be
added to the test case:

test case testFlightAnalyzer {
FlightAnalyzer f;
sminit(f);
assert(0) smIsInState(f, beforeFlight);
smtrigger(f, next(makeTP(100, 100)));
assert(3) smIsInState(f, airborne) && f.points == TAKEOFF;
...

}

Special support is available for testing the transition behavior of state ma-
chines. This checks whether the state machine transitions to the desired state
if a specific event is triggered. Below is an example of the test statemachine
statement, which can only be used inside test cases:

82

test statemachine f {
next(makeTP(200, 100)) -> airborne
next(makeTP(300, 150)) -> airborne
next(makeTP(0, 90)) -> landing
next(makeTP(0, 0)) -> landed

}

Interacting with Other Code – Outbound A state machine can have arbi-
trary C code in its entry, exit and transition actions. However, sometimes it
has to interact with code that has already been written and resides outside
the state machine. Interacting with external code can be done in two ways.
The first one just calls a function from an action:

statemachine FlightAnalyzer initial = beforeFlight {
...
state crashed {

entry { raiseAlarm(); }
}

}
...
void raiseAlarm() {}

Another alternative, which is more suitable for formal analysis (as discussed
below) involves out events. From the entry action, an out event is sent, which
has been defined earlier:

statemachine FlightAnalyzer initial = beforeFlight {
out crashNotification()
...
state crashed {

entry { send crashNotification(); }
}

}

Sending an event in this way has no effect, but it specifies that a particular
event happens at this point. Model checkers can verify that this event occurs
independently of what the event does. What remains to be done is to bind
this event to application code. This can be done by adding a binding to the
out event declaration:

out crashNotification() => raiseAlarm

The effect is the best of both worlds: the generated code calls the raiseAlarm
function, but on the state machine level the implementation is abstracted from
the intent, improving the structure of the state machine and making it verifi-
able.

Hierarchical State Machines A problem with the above implementation
of the state machine is that the reset events have to be handled similarly in
each of the states. To avoid this repetition, hierarchical state machines can
be used, in which a composite state can contain a sub-state machine, and the

Chapter 4. An Overview of mbeddr’s Features 83

transitions declared on the composite state apply to all states in the sub-state
machine:

composite state airborne initial = flying {
on reset [] -> beforeFlight { points = 0; }
on next [tp->alt == 0 m && tp->speed == 0 mps] -> crashed
state flying {

on next [tp->alt == 0 m && tp->speed > 0 mps] -> landing
on next [tp->speed > 200 mps]

-> flying { points += VERY_HIGH_SPEED; }
on next [tp->speed > 100 mps]

-> flying { points += HIGH_SPEED; }
}
state landing {

on next [tp->speed == 0 mps] -> landed
on next [] -> landing { points--; }

}
state landed {

entry { points += LANDING; }
} }

State Machines as Tables State machines can also be edited as tables (see
Figure 4.5). The notation shows the in events as column headers and the states
as row headers. The remaining cells contain the transitions. This provides a
very useful overview, even though the actions are not shown for brevity. A
third projection shows states as row headers and column headers, with the
transitions in the content cells. This way, developers can quickly see which
states are connected by which transitions.

Visualization Like many other program elements in mbeddr, state ma-
chines can be visualized, Figure 4.6 shows an example. Various visualizations
are available, for example with and without guard conditions (these can be
long and disturb the layout algorithm).

Figure 4.5 The table projection for state machines emphasizes the relationships
between states and in events. The example above shows the non-hierarchical
version of the FlightAnalyzer state machine discussed earlier in this section.

84

Figure 4.6 Visualization like this one can be created on the fly from every state
machine. Users can click on states and transitions to select them in the editor.

4.6.2 Verification

Like decision tables, state machines can be verified. While in decision tables
the verification is based on SMT solving, the state machine verification uses
model checking [Clarke, 1997].

To verify a state machine, it must be marked as verifiable. Verifiable
state machines are restricted in some ways, to make them checkable. For
example, it is not possible to assign to the same variable more than once
during one transition, taking into account all exit and entry actions, and action
code cannot use arbitrary C statements. In particular, outbound integration
with code must happen via out events (as discussed above) and the model
checker will only check the occurrence of events, not their effects.

Model checking requires the specification of a set of properties which the
state machine must conform to. Such properties are expressed in tempo-
ral logic [Clarke et al., 1986], which can quantify over a set of executions.
Depending on the model checker used, such properties must be specified
in one of various specification languages (LTL, CTL or CTL+). However, to
hide some of the complexity of these specification from the application de-
veloper, mbeddr supports a set of higher-level property specifications based
on the patterns introduced by Dwyer et al. [1999]. Examples include P is
true globally, P is false After Q Until R, or P is true Between Q and
R, where P, Q and R are Boolean expressions over states and local variables.

Based on the properties, the model checker then checks for each property
whether it holds in all cases. If it does not, the result of the model checker
is a counter example, i.e., one possible execution of the state machine that
leads to a situation in which the property does not hold. In mbeddr, every
state machine is checked for a number of properties automatically, so users do
not have to specify them. Additional properties can be specified using the
above-mentioned patterns. The automatic checks include the following:

• Is every state reachable, i.e. is there some sequence of events in the state
machine that leads into each state. If not, the state is dead.

Chapter 4. An Overview of mbeddr’s Features 85

• Is every transition potentially executable, i.e. is there some sequence of
events that fires each transition. If not, the transition could be removed.

• Are all transitions deterministic, i.e. is it always clear which transition
must fire. If not, more than one transition could fire at a given time, and
the decision of which one to fire is unclear18.

• The state machines language supports bounded integers (i.e. integers
that specify a value range). For each variable that uses a bounded in-
teger type, the verifier checks that the variable actually stays within the
specified bounds.

Verifying the FlightAnalyzer state machine leads to errors. The results claims
that the landing state has non-deterministic transitions. The counter example
is this:

State beforeFlight
in_event: next next(0, -32768)
State beforeFlight
in_event: next next(1, -32768)
State airborne
in_event: next next(0, 101)
State landing
in_event: next next(0, 0)
State landed
in_event: next next(0, -32768)

In this example, in the landing state, the next(0, 0) event is fired and results
in non-determinism (cf. the code for the landing state above). The first tran-
sition fires if speed == 0, which is the case for next(0, 0). The second one
fires in any case. Of course what the developer wanted to express is that the
second one should only fire otherwise. In the generated C code it happens to
work correctly because of the ordering of the transitions. But in general, the
situation is ambiguous: next(0, 0) potentially fires both. The problem can
be fixed by adding another guard condition:

state landing {
on next [tp->speed == 0 mps] -> landed
on next [tp->speed != 0 mps] -> landing { points--; }
on reset [] -> beforeFlight

}

Running the checker again reveals similar problems with the airborne state.
After fixing these and other similar ambiguities, notice that the guard condi-
tions can become long and hard to read:

state airborne {
on next [tp->alt == 0 m && tp->speed == 0 mps] -> crashed
on next [tp->alt == 0 m && tp->speed > 0 mps] -> landing

18 In the mbeddr implementation based on a switch statement, the first of these transitions will
fire. However, one should not rely on this fact and the verifier marks it as a problem.

86

on next [tp->speed > 200 mps && tp->alt > 0 m]
-> airborne { points += VERY_HIGH_SPEED; }

on next [tp->speed > 100 mps && tp->speed <= 200 mps
&& tp->alt > 0 m]

-> airborne { points += HIGH_SPEED; }
on reset [] -> beforeFlight

}

This problem can be solved with macros. A macro is essentially a function
that encapsulates complex expressions. If a macro needs to access event ar-
guments, the macro has to be defined specifically for an event; in the code
below, the two macros are defined for the next event. The code below also
shows how ranges can be used to make the checks more concise.

statemachine FlightAnalyzer initial = beforeFlight {
macro onTheGround(next)= tp->alt == 0 m
macro inTheAir(next)= tp->alt > 0 m
...
state airborne {

on next [onTheGround && tp->speed == 0 mps] -> crashed
on next [onTheGround && tp->speed > 0 mps] -> landing
on next [tp->speed > 200 mps && inTheAir]

-> airborne { points += VERY_HIGH_SPEED; }
on next [tp->speed in]100 mps, 200 mps] && inTheAir]

-> airborne { points += HIGH_SPEED; }
on reset [] -> beforeFlight

}
}

4.6.3 Extensibility

Components State machines cannot only be used as top-level elements in
modules, they can also be embedded in components. In this case they can call
required port operations from within guards, and out events can be bound
to component runnables. It is also possible to bind an in event to a provided
operation. This means that when the operation is called, this automatically
triggers the respective event for the state machine. No adapter code has to be
written.

Interrupt Triggers Another extension that has been developed is a binding
of in events to interrupts. In this case, it is assumed that a state machine has
only one instance, and the interrupts specified for the in events are to affect
this single instance. The instance is specified using the interrupt-driven
instance field.

ProtocolSM protocol;

interrupt-driven instance protocol
statemachine ProtocolSM initial = stby {

in msgReceived() interrupt 12

Chapter 4. An Overview of mbeddr’s Features 87

var int8 sessionID = 0
state stby {

on msgReceived [] -> receiving {
sessionID = someMemoryAccessAPI()[0];

}
}
state receiving {

...
}

}

As in the case of interrupt-triggered component runnables, the generators
automatically create the interrupt handler code that feeds events into the state
machine if an interrupt is received.

4.7 D O C U M E N TAT I O N

Even though developers and engineers would love to get rid of prose as part of
the development process and represent everything with machine-processable
languages and formalisms, prose plays an important role. Relevant examples
include requirements engineering, comments, and design documents:

In requirements engineering, prose is the starting point for all subsequent
formalizations. Classical requirements engineering uses prose in Word docu-
ments or Doors19 databases, together with tables, figures and the occasional
formula.

During the implementation phase, developers have to write comments in the
code. These comments must be associated with program elements expressed
in various languages. Comments also refer to code, and it is hard to keep
these code references in sync with the actual code as it evolves. An example
is comment that documents a function: the text in the comment typically
makes reference to the arguments of the function.

Depending on the process, various design documents must created during
or after the implementation. These are different from code comments in that
they look at the bigger picture and "tell a story". In contrast to comments,
they are not inlined into the code, they are separate documents. Nonetheless
they are tightly integrated with the code, for example by referring to impor-
tant program elements, or by embedding code fragments to explain a specific
point. Today, such documents are usually written using LATEX, DocBook or
Word – and synchronized manually with the implementation code.

To address all of these problems, mbeddr provides a set of languages for
handling prose text, closely integrated with program code in various ways.
Comments and design documents are discussed in this section; requirements
engineering is discussed in Section 4.8.

Addressed Challenges The documentation support addresses the docu-
mentation aspect of the Process Support challenge.

19 http://www-03.ibm.com/software/products/us/en/ratidoor/

88

4.7.1 Languages and Language Extensions

The MPS language workbench on which mbeddr is built is a projectional
editor. As mentioned, this has important advantages with regard to the ex-
tensibility of languages. However, it also means that the editor is a little more
rigid than a regular text editor. In particular, until recently, MPS did not sup-
port multiline strings with the familiar editing experience of pressing Enter to
create a line break, pressing " to move the cursor to the line above the current
one, or of deleting a few words on a line to "pull up" the text from the next
line. However, the mps-multiline20 MPS plugin, developed by Sascha Lisson,
has enabled this behavior. In addition, an additional plugin, mps-richtext21

enables embedding of program nodes into this multiline prose. At any lo-
cation in multiline text a user can press Ctrl-Space and select a language
concept from the code completion menu22. An instance of this concept is
then inserted at the current location23. The program node "flows" with the
rest of the text during edit operations. However, even though these program
elements are part of a prose paragraph, they can still take part in constraints,
type checks or refactorings – they are real program elements, and not just text.
This enables tight and tool-supportable integration of prose and code.

Code Comments In classical development or engineering tools, a comment
is just a specially marked piece of text in the program code that is ignored by
the parser or the tool in general. As part of this text, the names of program
elements, such as module names or function arguments, are mentioned. This
approach has two problems. First, the association of the comment to the com-
mented element is only by proximity and convention24 – usually the comment
is above the element it is associated with. Second, references to other program
elements are by name only – if the name changes, the reference becomes in-
valid, even though this is typically not checked by the tool. mbeddr improves
on both counts.

First a comment is not just associated by proximity with the commented
program node, it is actually attached to it. Structurally the comment is a child
of the commented node, even though the editor shows it on top (Figure 4.7).
If the element is moved, copied, cut, pasted or deleted, the comment always
moves with the commented element.

Second, comments can contain embedded nodes (as discussed above) that
refer to other program elements. For example, the comment on the state ma-
chine in Figure 4.7 references two of the states in the state machine. Some of

20 http://github.com/slisson/mps-multiline
21 http://github.com/slisson/mps-richtext
22 Other editing gestures can also be used to insert nodes. For example, an existing regular text

word can be selected, and, using a quick fix, it can wrapped with an emph(...) node, to mark
the word as emphasized.

23 To be able to use a language concept in prose text, it has to implement the IWord interface. The
details of how this works are described in Section 8.17.

24 This is true only in textual editors – graphical modeling tools usually do not have this problem.

Chapter 4. An Overview of mbeddr’s Features 89

Figure 4.7 A state machine with a comment attached to it. The text in the com-
ments references two of the states of the state machine.

Figure 4.8 This piece of document code uses \code tags to format parts of the
text in code font. It also references C program elements (using the cm and cc
tags). The references are actual, refactoring-safe references. In the generated
output, these references are also formatted in code font.

the words that can be used in comments can be used in any comment (such as
those that reference other modules or functions), whereas others are restricted
to comments for specific language concepts (the references to states can only
be used in a comment that is somewhere on or below a state machine).

Design Documents mbeddr supports a documentation language. Like any
other language for writing documents (such as LATEX or Docbook), it supports
nested sections, text paragraphs and embedded images. Special IWords are
used to mark parts of texts as emphasized, code-formatted or bold. Docu-
ments expressed in this language live inside MPS models, which means that
they can be versioned together with any other MPS-based artifacts. The lan-
guage comes with generators to LATEX and HTML; new ones (for example, to
DocBook) can be added.

The documentation language also integrates with mbeddr languages, i.e.
C, existing C extensions or any other language developed on top of MPS. The
simplest case is a reference to a program element (Figure 4.8).

Code can also be embedded into documents. In the document source, the
to-be-embedded piece of code is referenced. When the document is generated
to LATEX or HTML, the actual source code is embedded either as text or as a
screenshot of the editor in MPS. The latter is relevant because MPS supports
non-textual notations such as tables, which cannot be sensibly embedded as

90

text. Since the code is only embedded when the document is generated, the
code is always automatically consistent with the actual implementation.

A language concept that implements the IVisualizable interface can con-
tribute visualizations: the context menu for instances of the element has a
Visualize item that users can select to render the diagram in the IDE. Exam-
ples of such visualizations are state machines (Section 4.6) and components
(Section 4.4). The documentation language supports embedding these visual-
izations. As in the case of embedding code, the document source references a
visualizable element. During output generation, the diagram is rendered and
embedded in the output.

4.7.2 Extensibility

A hallmark of mbeddr is that everything can be extended by application de-
velopers, without invasively changing the extended languages. The prose-
oriented languages can be extended as well. Here are a few examples:

Macro-Style Extensions Macro-style extension, in which a high-level ab-
straction is automatically expanded into a set of lower-level abstractions, can
be used, both on the level of words and on the level of paragraphs in docu-
ments. For example, we have built a simple text-expander extension, where,
for example, \WRM can be expanded into With regards, Markus.

Glossaries An obvious extension is support for glossaries. A glossary de-
fines terms, which can be referenced from other term definitions, from regular
text paragraphs or even requirements or code comments. Such term defi-
nitions are subconcepts of AbstractParagraph, so they can be plugged into
regular documents. Figure 4.9 shows an example of a term definition.

The term definition in Figure 4.9 also shows how other terms are referenced
using the [Term|Text] notation (such references, like others, are generated
to hyperlinks when outputting HTML). The first argument is a (refactoring-
safe) reference to the target term. The optional second argument is the text
that should be used when generating the output code; by default, the text
of the referenced term is generated into the output. Terms can also express
relationships to other terms using the ->(...) notation (this concept can only
be used within term definitions). In this way a dependency graph is created
between the terms in the glossary. A visualization is available that renders a
diagram of this graph.

Figure 4.9 A modular extension of the documentation language that supports the
definition of glossary terms and the relationships between them. Terms can be
referenced from any other prose, for example from comments or requirements.

Chapter 4. An Overview of mbeddr’s Features 91

Figure 4.10 An example in which variable declarations and equations are inte-
grated directly with prose. Since the expressions are real C expressions, they are
type checked. To make this possible, the variables have types; these are specified
in the properties view, which is not shown in the figure. To provoke the type error
shown above, the type of the N variable has been changed to boolean.

Formulas Another extension adds variable definitions and formulas to
prose paragraphs (Figure 4.10). When exported, they use the math mode
of the respective target formalism. However, the variables are actual refer-
enceable symbols and the equations are C expressions. As a consequence, the
C type checker performs a type check for the equations (see the red underline
under N in Figure 4.10). An interpreter for C expressions, which is available
in mbeddr, can be plugged in to evaluate the formulas. This way, live test
cases could be integrated directly with prose.

Going Meta As demonstrated above, programs can be written in arbi-
trary languages, and can be integrated (by reference or by embedding) with
documents written in the documentation language. However, sometimes the
language definitions themselves need to be documented, to explain how to de-
velop languages in MPS/mbeddr. To make this possible, a modular extension
of the documentation language can be used to reference or embed language
implementation artifacts. Similarly, documentation language documents can
be embedded as well, to write documents that explain how to use the docu-
mentation language.

Cross-Cutting Concerns mbeddr supports two cross-cutting concerns that
can be applied to any language: requirements traces and variability. Since the
documentation language is just another language, it can be used together with
these cross cutting languages:

First, requirements traces (discussed in Section 4.8) can be attached to parts
of documents such as sections, figures or paragraphs. In this way require-
ments traceability can extend into, for example, software design documents.
This is an important feature in safety-critical contexts.

Second, to express product line variability (discussed in Section 4.9), a pres-
ence condition can be attached to document nodes such as paragraphs or sec-
tions. A presence condition is a Boolean expression over the features in a fea-
ture model. If the expression evaluates to false during output generation, the

92

respective node is deleted. This way, documents such as user guides, config-
uration handbooks or software design documents can be made variant-aware
in the same way as any other product line implementation artifact.

4.8 R E Q U I R E M E N T S

Collecting, organizing and managing requirements is mandatory for life-critical
systems, and essential for mission-critical ones, and can be very useful in the
development of other kinds of systems. Still, it is a cumbersome activity which
either is relentlessly executed with major effort (typically if the customer or a
certification standard/agency requires it) or is mainly overlooked, leading to
poorly structured and maintained requirements.

A problem with the traditional way of collecting and maintaining require-
ments is the inadequacy of the supporting tools (see, for example, the study
by Winkler & Pilgrim [2010]). In some fields, such as aerospace, automotive
or telecoms, requirements are often collected and managed using MS Office
documents or tools such as IBM Doors, which basically gather paragraphs of
text with no or very limited structure. The relation between requirements and
other artifacts such as implementation code or tests is collected in yet other
documents, or with comments in the code, requiring manual synchronization
between the requirements and these artifacts. It is not surprising that, when
possible, practitioners try to escape this situation by either using simpler ap-
proaches for requirements elucidation (such as user stories25) or completely
avoiding it. While agile approaches to requirements engineering limit the
burden of managing them, they often do not provide a maintenance strat-
egy for requirements; instead they are considered transient artifacts. This is
not acceptable in many domains, where standards require a more structured
approach to requirements management.

mbeddr’s requirements language improves this situation in several ways.
First, requirements are stored in the same way as any other mbeddr program
– in XML files that can be versioned. Second, the requirements language is
extensible, so domain-specific extensions can be plugged in seamlessly. Fi-
nally, mbeddr provides a tracing framework that can be used together with
arbitrary mbeddr programs, expressed in any language.

Addressed Challenges The requirements and tracing support addresses
the respective aspect of the Process Support challenge.

4.8.1 Languages and Language Extensions

Requirements Versioned with Code Traditionally, requirements are stored
in a tool-specific database. Implementation artifacts are instead typically
stored in version control systems (VCS) such as git, SVN or ClearCase. This
situation leads to synchronization problems when trying to keep requirements
in sync with the implementation. The natural solution would be to store

25 http://en.wikipedia.org/wiki/User_story

Chapter 4. An Overview of mbeddr’s Features 93

Figure 4.11 Requirements in mbeddr are arranged as a tree. The colored dots on
the left reflect the trace status of a requirement (not traced, traced, traced with kind
"implements", traced with kind "tested").

requirements and implementation artifacts in the same VCS. Since most of
today’s VCSs work with an update-and-merge strategy (as opposed to pes-
simistic locking), the requirements tool would need to support diff/merge for
requirements as well.

In mbeddr, requirements are collected with a dedicated requirements lan-
guage. Each requirement has an ID, a short summary, an optional longer
prose description, a priority and any number of additional attributes. Re-
quirements can also be nested. Figure 4.11 shows an example. The prose uses
the same text editing facilities as discussed in Section 4.7. This makes it pos-
sible to conveniently edit larger pieces of prose, and, importantly, references
to other requirements, use cases, actors or scenarios can be embedded in the
prose in a refactoring-safe manner26; they are automatically kept in sync if
the target is renamed or moved, and the IDE reports an error if the target is
deleted. Together with explicit requirements dependencies expressed in the
additional attributes section of a requirement (conflicts with, alternative
to), these references can be used to build a rich requirements dependency
graph, which can also be visualized (Figure 4.12).

Importantly, since mbeddr is based on MPS, and MPS comes with generic
XML-based storage, all requirements are stored in XML files, along with any
other implementation artifacts. This makes integrated versioning and branch-
ing simple. MPS also supports diff and merge for any arbitrary language
based on the projected concrete syntax of each particular language, so sup-
port for diffing and merging requirements is available for free.

mbeddr’s requirements tooling also has an importer to import require-
ments via XML or CSV files. In this way data migration from traditional
requirements management tools is supported.

26 Current mainstream requirements management tools such as Doors do not support this.

94

Traceability into Code The simplest kind of integration between imple-
mentation or design artifacts and requirements is tracing, where a program
element has a pointer to one or more requirements. Such a trace pointer es-
sentially expresses that this particular element is somehow related to a set of
requirements. By using different trace kinds, the nature of "somehow related"
can be qualified. Trace kinds typically include implements or tests.

Figure 4.13 shows a piece of mbeddr program code. The root element is a
module, and it has an annotation that specifies a list of visible requirements
modules. Traces can trace to any requirement in any of the referenced re-
quirements modules, and traces can be added to any program element. There
are four important characteristics of this approach:

1. The requirements trace is not just a comment. It is a well-typed program
element that can be used for all kinds of analyses. For example, it is pos-
sible to select the requirement, open the Find Usages dialog, and obtain
all program elements that have traces attached to the current require-
ment. The color coding in Figure 4.11 also exploits this information.

2. The trace is not an independent program element that is just "geograph-
ically close" to the program element it traces. Instead, the trace is a child
element of the traced element. This means that, if the element is moved,
copied, cut or pasted, the trace moves with it.

3. Since MPS is a projectional editor, the program can also be shown with-
out the traces if the user so desires. The traces are still there and can be
turned back on again at any time.

4. The tracing facility is completely independent of the traced language. Pro-
gram elements defined in any (MPS-based) language can be traced.
Users can define new languages, and the tracing mechanism will work
with the new language automatically.

Figure 4.12 The requirements dependency graph for the InFlightPoints shows
the downstream requirements it references (lower set of boxes, green) and the
upstream requirements that depend on it (upper set of boxes, blue).

Chapter 4. An Overview of mbeddr’s Features 95

Figure 4.13 A C module with a set of constants that each have a trace to a single
requirement. The tracing facility in mbeddr can add traces to any program element
expressed in any language.

Figure 4.14 An example scenario that describes interactions between collaborat-
ing components (and external actors).

While the tracing framework cannot remove the burden on users to manually
establish and maintain the traces according to the actual relationship between
the code and the requirements, the approach does solve all technical chal-
lenges in providing universally-applicable tracing support. However, the fact
that referential integrity is automatically checked and arbitrary analyses can
be built on top of the program/requirement/trace data can be used to ease
the work of the developer: requirements and traces are "real code", and not
just second-class metadata.

Use Cases, Actors and Scenarios Many projects start out by collecting
requirements in prose, for example in the way discussed above. However,
when using prose only it is very hard to keep the overall system consistent
– after all, there is no type checker or compiler for prose. One problem in
this context is the definition of (functional) components, their responsibilities
and their collaborations with other components, which express the high-level,
functional structuring of the system under construction. One way to get to
such components is to play through collaboration scenarios. These scenar-

96

ios help understand which data a components owns, which services it offers,
which other components it collaborates with, and which services one compo-
nent uses from another component as part of such collaborations. However,
if all of this is done only with pen and paper (CRC cards27), it can be tough
to keep things consistent (this is the prose-only problem in a different guise).
At some point, (somewhat) more formal descriptions have to be used.

In mbeddr, this is realized as follows. Since MPS supports arbitrary lan-
guage extension and composition, it is possible to define additional DSLs that
can be plugged into a requirement. To express the functional architecture, we
have defined a DSL that has three top-level concepts: actor (an actor outside
the system boundary), component (a functional building block of the system)
and scenario (an example collaboration scenario between actors and compo-
nents, not unlike sequence diagrams). The code below shows an example of a
functional component. It lives inside a requirement, even though the original
requirements language was not invasively changed.

component InMemoryStore {
collaborates with FlightDataProvider:
owns flights: Flight
capability store(Flight): status
capability setup(): status

}

Figure 4.14 shows a scenario, expressed with a textual language. Using this
language, scenarios that are consistent with the definitions of the actors and
components involved can be defined: if component A uses a capability from
("calls an operation on") a component B, and B is not defined as a collaborator
of A, this results in an error in the IDE. A quick fix can then add B as a collabo-
rator for A. Similarly, one can only use capabilities that are actually defined on
the components. Finally, arguments to capabilities can only be taken from the
data that is owned by the client component, or has been received via another
capability call during that same scenario. As a consequence, after defining a
set of scenarios, the components accumulate the data, capabilities and collab-
orators that are necessary to execute the scenarios: a functional architecture
arises, "enforced" by the underlying language and its constraints. Scenarios
are reminiscent of sequence diagrams, so they can also be visualized in this
way (see Figure 4.15).

Requirements Reports The documents discussed in Section 4.7 cannot
just be written manually, they can also be generated from other artifacts.
For example, mbeddr’s requirements language supports generating require-
ments reports from requirements modules. A report contains the require-
ments themselves, the custom attributes (via specific transformations) and
trace information. This feature is implemented by transforming requirements
collections to documents, then using the generators that come with the docu-
mentation language to generate the PDFs.

27 http://en.wikipedia.org/wiki/CRC_Cards

Chapter 4. An Overview of mbeddr’s Features 97

Figure 4.15 A scenario that describes example interactions between collaborating
components (and external actors).

4.8.2 Extensibility

Use Cases, Scenarios and Actors The language for expressing the func-
tional architecture does not have expressions, sophisticated data types or a
type checker. At this level of abstraction, these would be distractions – the
goal of this language is the allocation of data, responsibilities and collabora-
tions to the high-level functional building blocks of an application.
However, the language is extensible: new entities in addition to components
or actors can be defined; components can have additional contents in addition
to data items and capabilities, and scenarios can contain additional steps in
addition to capability calls, headings, or alternatives. For example, a com-
ponent may contain a wireframe mockup (which would have to be drawn
outside of MPS) to represent UI aspects. It is also possible to add additional
properties and then check constraints based on them. For example, compo-
nents could be allocated to layers, and constraints could be used to check
whether collaborations and capability calls respect layer constraints (for ex-
ample, one can call from the business layer into the persistence layer, but
not vice versa). These additional data and constraints can be added without
invasively changing the basic scenario language, and can also be added after
the initial set of components and scenarios have been defined, supporting in-
cremental refinement of the language as understanding of the system grows.
For example, systems engineers may first define the components and the sce-
narios. Then, in a second step, software architects may add the layer markup

98

Figure 4.16 A calculation is a function embedded into a requirement. They include
test cases that allow "business people" to play with the calculations. An interpreter
evaluates tests directly in the IDE for quick turnaround.

and the associated constraints, and then, if some of the constraints fail, split
up or reallocate components to make them fit with the layer structure. Refac-
torings can be added to provide IDE support for such changes.

Formal Business Logic in Requirements The language for use cases, sce-
narios and actors addresses the challenge of becoming "more formal" with
the goal of narrowing down the functional architecture of a system. Another
way of getting incrementally closer to the implementation is to embed impor-
tant parts of the business logic into requirements, and then use those in the
implementation code.

Figure 4.16 shows two requirements. The first one defines a constant
BASE_POINTS with the type int8 and the value 10. The second requirement
defines a calculation PointsForATrackpoint. A calculation has a name, a list
of parameters, and a result expression, which, in this case, uses a decision
table. The calculation also references the BASE_POINTS constant. Using con-
stants and calculations, business users can formally specify some important
business data and rules, while not having to deal with the actual implemen-
tation of the overall system. To help with getting these data and rules correct,
calculations also include test cases. These are evaluated directly in the IDE,
using an interpreter: users can "play" with the calculations directly.

If the constants and calculations that business users specify in the require-
ments were only used in requirements, this would be only partially useful. In
the end, these calculations should make their way into the code directly, with-
out manual re-coding. Figure 4.17 shows a component, expressed in mbeddr’s
component extension. Inside the component, a calculation (the green code) is
invoked using function call syntax. When this code is translated to C, the
expression in the calculation is translated into C and inlined.

Chapter 4. An Overview of mbeddr’s Features 99

Figure 4.17 Implementation code can directly call calculation functions defined in
requirements. In this case, a calculation is called from a component, expressed in
the mbeddr components C extension.

The constant and the calculation are just examples of possible plug-in lan-
guages in mbeddr’s requirements system. Any DSL, using a wide range of
business user-friendly notations, can be plugged in and made available to
C-based implementations.

Tracing into Other Artifacts In many projects, requirements are not the
last step before coding, and the functional architecture discussed in the pre-
vious section is too simplistic to describe the functionality of the system. In-
stead, other artifacts are developed, including system engineering models,
functional models or physical models. Often these models are built with tools
such as Matlab/Simulink28 or Modelica29, or use formalisms such as EAST-
ADL30, SysML31 or UML. It is usually not possible to derive software artifacts
from such models automatically, since they are too abstract. However, as soft-
ware artifacts are developed, it is necessary to relate the software artifacts to
these models.

To make this possible, mbeddr’s tracing framework is extensible: other ar-
tifacts can be used as trace targets as well, as long as the respective language
constructs implement an mbeddr-provided interface. In this way arbitrary
descriptions or models, such as system models, functional models or compo-
nent models, can be traced to. By adding an import facility, models created
with the above-mentioned engineering tools can be integrated reasonably well
with mbeddr-based artifacts. For example, we are currently implementing an
importer for Matlab/Simulink models to support tracing to Simulink blocks
from mbeddr program nodes. An alternative approach would be to keep the
trace targets outside of mbeddr, for example in models created with SysML

28 http://www.mathworks.com
29 https://www.modelica.org
30 http://www.east-adl.info/
31 http://www.sysml.org/

100

or UML modeling tools, or in enterprise systems that manage these artifacts.
In this case, the trace in mbeddr would be stored as some kind of ID or URL.
By customizing code completion and constraint checking, the APIs of external
tools or systems can be used to enforce consistency.

4.9 P R O D U C T L I N E VA R I A B I L I T Y

The goal of product line engineering (PLE) is to efficiently manage a range
of products (also often called variants in the context of PLE) by factoring out
commonalities such that definitions of products can be reduced to a specifica-
tion of their variable aspects. One way of achieving this is the expression of
product configurations on a higher level of abstraction than the actual imple-
mentation. An automated mapping transforms the configuration to the imple-
mentation. Traditionally this higher level of abstraction is realized with fea-
ture models [Beuche et al., 2004] or similar configuration formalisms such as
orthogonal variability models [Roos-Frantz, 2009] or decision models [Dhun-
gana et al., 2007]. A feature model defines the set of valid configurations for
a product in a product line by capturing all variation points (i.e. features), as
well as the constraints between them.

Feature models are an efficient formalism for configuration, i.e. for select-
ing a valid combination of features from the feature model (this is in contrast
to customization with DSLs; the difference is discussed by Voelter & Visser
[2011]). The set of products that can be defined by feature selection is fixed
and finite: each valid combination of selected features constitutes a prod-
uct. This means that all valid products have to be "designed into" the feature
model, encoded in the features and the constraints among them.

To actually implement a software product line, the variability expressed
in feature models must be mapped to implementation artifacts. This can be
done at runtime by querying which features are selected and then changing
program execution, for example, with an if statement, or during generation.
In the latter case, the program is configured based on the feature configura-
tion, and then the configured model is processed as before via transformation,
generation or interpretation. There are two different kinds of variability: in
negative variability, DSL program elements can be annotated with presence
conditions, Boolean expressions over the features of a feature model. When
the DSL program is mapped to the solution space, a model transformation
removes all those elements whose presence condition is false based on the
current feature configuration. In the case of positive variability, a set of pre-
built model fragments is created. The feature configuration selects a subset
of them. The fragments are then merged using some DSL-specific or generic
merge operator, resulting in a superimposed model representing the variant.

mbeddr supports a textual notation for feature models, and currently sup-
ports negative variability. Runtime variability is supported for C (and its
extensions), whereas static variability is supported for any language.

Addressed Challenges The variability support addresses the respective
aspect of the Process Support challenge.

Chapter 4. An Overview of mbeddr’s Features 101

4.9.1 Languages and Language Extensions

Feature Models mbeddr makes a clear distinction between the high-level
description of variability and the mapping of the variability to artifacts. Fea-
ture modes are used for the specification of variability. In mbeddr, feature
models use a textual notation, along with a graphical visualization. Below
is a simple feature model that expresses variability over how flights are pro-
cessed:

feature model FlightProcessor
processing ? {

nullify
normalizeSpeed xor {

maxCustom [int16/mps/ maxSpeed]
max100

}
}

Every feature model has a root feature (processing in the example above).
Features have child features, and the parent feature defines the constraints
between the child features. By default, children are optional (marked by the
? in the parent), which means that each of the children may be in the system
or not, with no further constraints among them. normalizeSpeed has two
children, maxCustom and max100. They are xor, so exactly one of them must be
in a configuration if their parent feature is in the configuration. In addition to
? and xor, child features can be mandatory (marked as !) or n-of-m (marked
as or). Additional constraints that do not respect the tree structure can also
be defined. For example, a feature may specify a conflicts with or requires
also relationship to other features anywhere in the tree. Finally, features
may have attributes. For example, maxCustom has an attribute int16/mps/
maxSpeed. Each valid configuration of this feature model must assign a value
to each attribute of a selected feature.

Configuration A configuration is an instance of a feature model in which
some of the features are selected, and attributes have values. A configuration
has to be valid with regards to the constraints defined in its feature model:
for example, a configuration for FlightProcessor cannot have maxCustom and
max100 selected at the same time, since those two features are mutually exclu-
sive (xor). Here is the simplest possible configuration which has no feature
except the mandatory root feature:

configuration model cfgDoNothing configures FlightProcessor
processing { }

Another valid configuration includes the maxCustom feature. Note that if
max100 were added as well, an error would be reported – the two are mu-
tually exclusive.

configuration model cfgNullifyMaxAt200 configures FlightProcessor
processing {

nullify

102

normalizeSpeed {
maxCustom [maxSpeed = 200 mps]

}
}

Runtime Variability As mentioned above, runtime variability means that a
configuration is evaluated at runtime. Decisions about program execution are
made based on this evaluation. To make this possible, the configuration has
to be available as the program runs. The following program shows how to do
this in mbeddr:

module RuntimeVariability imports FunctionPointers {
feature model @ runtime for FlightProcessor;
exported test case testRuntimeVar {...}

}

The feature model @ runtime creates a C data structure that can hold in-
stances of the FlightProcessor feature model32. Users can now write varia-
bility-aware code. Below is a function that processes trackpoints depend-
ing on the configuration. Two things are worth mentioning: the first is
the argument of type type fmconfig<FlightProcessor>. It represents a spe-
cific configuration for the FlightProcessor feature model (valid values are
cfgDoNothing, cfgNullifyOnly, and cfgNullifyMaxAt200). The second im-
portant thing is the variant statement, whch is used to make parts of the
procedural code dependent on the set of selected features:

Trackpoint processTrackpoint(fmconfig<FlightProcessor> cfg,
Trackpoint tp) {

Trackpoint result;
variant<cfg> {

case (nullify && maxCustom) {
result = process_nullifyAlt(tp);
if (tp.speed > maxCustom.maxSpeed) {
result.speed = maxCustom.maxSpeed;

}
}
case (nullify && max100) {

result = process_nullifyAlt(tp);
if (tp.speed > 100 mps) {
result.speed = 100 mps;

}
}
case (nullify) { result = process_nullifyAlt(tp); }
default { result = process_doNothing(tp); }

}
return result;

}

32 Currently this data structure is a struct, with a Boolean member for each feature.

Chapter 4. An Overview of mbeddr’s Features 103

The variant construct is a new statement, so this only works for C, not
for other languages. Currently mbeddr support only this form of runtime
variability, but feature-dependent expressions or feature-dependent states (in
state machines) would also be feasible, of course.

Assertions can now be added to the test case, calling the processTrackpoint
function with several configuration models. Below is an example test case; it
first creates a variable of type fmconfig<FlightProcessor> that holds a con-
figuration (the same type as in the argument to processTrackpoint). It then
uses the store config statement to store a configuration (cfgDoNothing) into
the cfg variable. Finally it calls processTrackpoint with the configuration
and the trackpoint and asserts the result:

exported test case testRuntimeVar {

Trackpoint tp = {...};
fmconfig<FlightProcessor> cfg;

store config<FlightProcessor, cfgDoNothing> into cfg;
Trackpoint res1 = processTrackpoint(cfg, tp);
assert(0) res1.alt == 50 m;
assert(1) res1.speed == 220 mps;

store config<FlightProcessor, cfgNullifyOnly> into cfg;
Trackpoint res2 = processTrackpoint(cfg, tp);
assert(2) res2.alt == 0 m;
assert(3) res2.speed == 220 mps;

store config<FlightProcessor, cfgNullifyMaxAt200> into cfg;
Trackpoint res3 = processTrackpoint(cfg, tp);
assert(4) res3.alt == 0 m;
assert(5) res3.speed == 200 mps;

}

In an actual system, cfg would probably be a global variable, so it can be
accessed from everywhere. During program startup, a specific configuration
would be stored in it, for example, after being read from a file.

Static Variability In static variability, a variant of the program is con-
structed before execution. In mbeddr, the variant is created during genera-
tion. Static variability relies on the same variability specification (using fea-
ture models) as the runtime variability discussed above. As an example, a
new implementation module with a test case in it is created, and the test is
called from Main. A function sets the altitude of the trackpoint to zero:

module StaticVariability imports DataStructures {

Trackpoint* process_trackpoint(Trackpoint* t) {
t->alt = 0 m;
return t;

}

104

Figure 4.18 A program with static presence conditions attached to some program
elements. Presence conditions can be attached to any program element, indepen-
dent of the language. The color of a presence condition is derived from the ex-
pression itself, so different parts of the program that depend on the same presence
conditions have the same color (an idea inspired by Kästner [2007]). By evaluating
presence conditions in the projection rules, programs can be shown and edited as
a specific variant.

exported test case testStaticVariability {
Trackpoint tp = { id = 1, alt = 2000 m, speed = 150 mps };
assert(1) process_trackpoint(&tp)->alt == 0 m;

} }

The nullification in the function should only happen if the nullify feature
is selected in a particular configuration. To achieve this, two steps have to
be performed. First, a dependency to a feature model has to be attached
to the implementation module. Second, the t->alt = 0 m; statement has to
be annotated with a presence condition. A presence condition is essentially
a Boolean expression over features in a feature model. If that expression
is false for a given configuration, the annotated element will be removed
during generation. A presence condition is also added to the assertion in the
test case. Figure 4.18 shows the program with the presence conditions.

To actually create the variant model during generation, a new configuration
item has to be added in the build configuration.

variability mappings {
fm FlightProcessor -> cfgNullifyOnly

}

Chapter 4. An Overview of mbeddr’s Features 105

This specifies that the cfgNullifyOnly configuration should be used during
build. By changing this mapping, different variants of the system can be built.

4.9.2 Verification

As described by Batory [2005] and Czarnecki & Wasowski [2007], a particu-
lar advantage of feature models is that a straightforward mapping to logic
exists. Using SAT solvers, it is possible to check, for example, whether a fea-
ture model has valid configurations at all, whether a particular configuration
is valid, or to automatically complete partial configurations. This has been
shown to work for realistically-sized feature models [Mendonça et al., 2009].
Pure::variants33 maps feature models to Prolog to achieve a similar goal, as
does the GEMS-based tool described by White et al. [2010].

mbeddr currently supports checking feature models for consistency, i.e.,
making sure that the additional constraints do not contradict each other. It
also supports checking that a configuration conforms to the feature model.

Future checks will involve checking that presence conditions are plausible.
A presence condition is not plausible if the combination of features expressed
in the condition (for example, f1 && f2) can never happen (for example, be-
cause f1 and f2 are mutually exclusive). A final planned verification will
make sure that artifacts remain structurally correct for any of the variants
it can form according to the presence conditions and the associated feature
model.

4.9.3 Extensibility

Features can have attributes, such as the int16/mps/ maxSpeed attribute on
the maxCustom feature. This attribute uses a primitive type. However, arbi-
trary types can be used here, even types whose values are described with
their own DSL. As a consequence of MPS’ language composition facilities, the
complexity and notation for the DSL can be arbitrary.

The approach described above uses feature models to vary artifacts ex-
pressed with languages. In some sense, the backbone of the system is the
program, and this program is varied with a feature model. Attributes that
use DSLs as their types invert this relationship, at least for parts of the sys-
tem: the feature model is the master (describing a product line of systems),
and the embedded DSL program fragments specify details for some of the
features.

4.10 M I S C E L L A N E O U S

This section discusses a number of additional mbeddr features that are very
important for productive work, but are not directly related to the languages
and language extensions supported by mbeddr. The topics are only intro-
duced briefly; they are explained in more detail in the mbeddr user guide.

33 http://pure-systems.com

106

4.10.1 IDE Support

As discussed in the introduction about language workbenches, one particular
advantage of these tools is that they provide editor support for all languages
built with the workbench, even in the face of modular language extension.
This editor support includes syntax coloring, code completion, go-to-reference
and highlighting for constraint and type system errors. However, many of the
languages provide additional editor facilities such as the following:

• Quick fixes are on-the-fly program transformations. Quick fixes (also
called intentions in MPS) can be accessed using the Alt-Enter menu. In
mbeddr they are used extensively. Examples include marking module
contents as exported, creating empty connectors for required ports in
components, or for adding all transitively dependent modules to the
build configuration.

• Automatic synchronization refers to the case in which one part A of a
program depends completely and deterministically on another part B of
the program. In this case, A can automatically be synchronized with B.
For example, a component runnable must have the same signature as the
operation it is triggered by. Automatic synchronization automatically
ensures this.

• Most language workbenches support Find Usages on a program el-
ement, which finds all other program elements that refer to the se-
lected one. For mbeddr, this functionality has been customized in many
places to specifically find certain references. Examples include finding
runnables that implement interface operations, finding provided and re-
quired ports for interfaces and finding requirements traces for require-
ments.

• A problem in projectional editors such as MPS is that one cannot create
references to a program element that does not exist (yet). This means
that, for example, an operation has to be created before a call to this op-
eration can be written. This prevents top-down programming. mbeddr
supports the on-demand creation of reference targets based on a quick
fix in many cases. Examples include function calls (creating the func-
tion), transitions (creating the target state) or capability calls in require-
ments/scenarios (creating the called capability).

• Refactoring [Fowler & Beck, 1999] refers to improving the structure of
a program without changing its semantics. In mbeddr several refactor-
ings are available. Examples include Introduce Local Variable (which
factors an expression into a new local variable), Extract Into New Mod-
ule (which moves a set of selected module contents into a new module
and imports it from the current one), or Wrap Into Composite State
(which takes a set of selected states in a state machine and wraps them
into a composite state).

Chapter 4. An Overview of mbeddr’s Features 107

Figure 4.19 Dataflow checks detect problems with the dataflow, such as the un-
used arguments shown here. The resulting errors or warnings are highlighted di-
rectly in the IDE, like any other error.

4.10.2 Dataflow Checking

mbeddr supports several kinds of program checks. Simple constraints check
name uniqueness, consistency of the build configuration, or ensure that every
interface operation has an associated runnable in a component. mbeddr also
supports type checks, which ensure that expressions, operation calls or as-
signments are type-compatible. A third kind of check concerns the dataflow
of the program34. Dataflow checks ensure, for example, that every argument
of a function is used (Figure 4.19), that every path through a function returns
a value or detects unnecessary ifs, because the value of the condition expres-
sion is constant true or false.

The dataflow checking facility builds on top of MPS’ dataflow checking
framework, but it is specifically built to be extensible, like any other mbeddr
aspect. This allows the dataflow specifications for components or state ma-
chines to be plugged in.

4.10.3 Debugging

mbeddr supports debugging35 at the level of the language extensions. So
when stepping through state machines or components, the step-in, step-over
or step-out granularity corresponds to the domain-specific code as seen in
MPS, not to the low-level implementation in the generated C code.

The same is true for the Watch window: this shows the symbols that are
relevant to the domain-specific abstractions (for example, component fields
and the connection targets of required ports of a component instance) as op-
posed symbols that are necessary for the implementation (such as the struct
that maintains a component’s internal state). The Watch expressions also take
into account the mbeddr type. For example, Boolean values are represented as
true and false, even though their C-level representation is an integer. Sim-
ilarly, a literal that uses a physical unit will be shown with the unit in the
Watch window.

34 Dataflow checking has been implemented by Malte Jannasch as part of his Master’s thesis.
35 The debugger has been implemented by Domenik Paveltic as part of his Master’s thesis; he

continues working on it as part of his PhD.

108

4.10.4 Importer

To develop realistic systems, it must be possible to work with existing code.
There are two major scenarios: library access and legacy code import.

Library Access In this scenario, only a header file must be imported, so
mbeddr code can refer to its referenceable contents. mbeddr supports external
modules for this purpose. An external module declares referenceable C con-
structs such as functions, constants or structs, and acts as a proxy for the real,
textual header file. In addition, an external module may optionally specify a
library (.a or .o file) that must be linked to the resulting executable:

external module stdio_stub resources header: <stdio.h> {
void printf(const char* format, ...);

}

If a regular mbeddr module M uses an external module (such as the one
shown above), the external module is imported in M. This allows code in
M to reference the external module’s contents (in the example, code in M
could call printf). However, in the C code generated from M the original
header will be included (stdio.h); no code is ever generated from an external
module. This simplifies the task of importing headers, because only those
parts of a header file that can be referenced from mbeddr code have to be
imported. The implementation of macros, inline functions or the values of
constants need not be imported.

External headers can be created manually, which is feasible for small header
files. Alternatively, an importer is available. However, C’s preprocessor some-
times makes importing header files a challenge – see the next paragraph.

Importing Legacy Code Parsing C code and building the respective mbeddr
program tree would not be a problem if it were not for the preprocessor. Many
C grammars are available to parse C programs. mbeddr integrates the Eclipse
CDT C parser36, which even performs name resolution and typing. The re-
sulting AST can be transformed to mbeddr relatively easily.

What makes importing C code hard is the preprocessor: it operates on the
text level and can produce unparseable C code. In addition, the preprocessor
is used to express product line variability [Tomassetti & Ratiu, 2013], which,
ideally, should be retained and mapped to mbeddr’s variability support. Such
an importer is currently being built for mbeddr, but it is not yet finished.

4.10.5 Version Control

MPS stores all programs, including those written with mbeddr languages in
XML files. These files can be managed with any of the existing file-based
version control systems. In particular, we have used Subversion37 and Git38.

36 http://www.eclipse.org/cdt/
37 http://subversion.tigris.org/
38 http://git-scm.com/

Chapter 4. An Overview of mbeddr’s Features 109

Figure 4.20 This dialog shows the diff between the local version and the latest
version from git before a commit. The local version has changed two of the values
in the decision table, has added a comment and has removed one runnable.

However, since the storage is XML-based, diff/merge requires special support
from MPS: it is not feasible to diff/merge MPS files on the level of XML.
However, as Figure 4.20 shows, MPS provides a diff/merge facility on the
level of the projected syntax. This works automatically for any language.
MPS also supports other version control operations directly from within the
IDE. Examples include commit, revert or show history.

4.10.6 Command-Line Build

To be able to build mbeddr programs on a continuous integration (CI) server,
it is necessary that the generation to C can be executed from the command
line. MPS ships with an Apache Ant39 task that can be used for this purpose.
Ant is the lowest common denominator for build tools in the Java world – it
can easily be integrated into newer or more sophisticated build systems such
as Maven40, and it can be called from all CI servers.

mbeddr comes with a wizard that can be used to generate the ant build file
for an mbeddr project. This simplifies the task of setting up the build.xml
correctly for a particular project.

Summary — mbeddr has started out as a set of C extensions (state machines, in-
terfaces and components, units). However, as this chapter has shown, the approach
can be generalized to other aspects of embedded software engineering such as require-
ments, documentation or product line variability. Chapter 8 illustrates how these
languages are built. The next chapter looks at the experience with mbeddr so far and
validates it from the perspective of the application developer. A validation of mbeddr
as an example of Generic Tools, Specific Languages, from the perspective of the
language engineer, is provided in Chapter 10.

39 http://ant.apache.org/
40 http://maven.apache.org/

110

5
Validation I: An Application Developer’s Perspective

Abstract — The Generic Tools, Specific Languages approach is only worthwhile
if it leads to useful tools that address the challenges of embedded software development
discussed in Chapter 3. In addition it should not introduce its own problems in terms
of scalability, usability, learnability, infrastructure integration and interoperability
with existing textual code. This chapter evaluates the use of mbeddr in embedded soft-
ware development based on a number of applications developed with mbeddr: a smart
meter, an AUTOSAR component, an ASIC tester, a Lego Mindstorms robot, a pace-
maker and a synthesizer. The experience from these projects confirms our expectation
of mbeddr’s usefulness for embedded software development.

5.1 E X A M P L E S Y S T E M S A N D T H E I R U S E O F M B E D D R

To validate the usefulness of mbeddr, this section relies heavily on experiences
from a number of development projects run with mbeddr1. The projects range
from demo applications to real-world development projects:

Smartmeter: The Smartmeter project is the first commercial use of mbeddr,
and targets the development of the software for a 3-phase smart meter.
A smart meter is an electrical meter that continuously records the con-
sumption of electric power in a home and sends the data back to the
utility company for monitoring and billing. The software comprises ca.
40,000 lines2 of mbeddr code, has several time-sensitive parts that re-
quire a low-overhead implementation, and will have to be certified by
the future operator. This leads to an emphasis on performance, testing,
formal analyses and requirements tracing. The software exploits exist-
ing code supplied by the hardware vendor in the form of header files,
libraries and code snippets, even though most of the system has since
been rewritten. While the project is still going on, some experience can
already be reported and some conclusions drawn. Smartmeter is propri-
etary, commercial software developed by itemis France, so the code is not
available. J

Park-o-Matic: As part of the LW-ES project, BMW Car IT3 has developed
an AUTOSAR component based on mbeddr. This component, called
Park-o-Matic in this thesis4, coordinates various sensors when assisting

1 Separate documents for some of these can be found at http://mbeddr.com/learn.html
2 Section 5.3.1 discusses how this is measured in MPS’ non-textual editor.
3 http://www.bmw-carit.com/
4 This is not the real name; I was not allowed to use the real name in the thesis.

111

a driver to park their car. It is fundamentally a state-based system. As
part of this project, AUTOSAR-specific generators had to be built for the
mbeddr components language. AUTOSAR defines the notion of software
components that are close to mbeddr’s components (because mbeddr’s
components were consciously modeled on AUTOSAR). However, the cur-
rent mbeddr generators map the components to plain C. In the case of
AUTOSAR, components have to integrate with the runtime environment
(RTE), which means, for example, that calls on a required port have to
be translated to AUTOSAR-specific macro calls. In addition, an XML file
has to be generated that describes the software component, so that it can
be integrated with others by an integration tool. The Park-o-Matic code
is owned by BMW Car IT and is not available. J
ASIC Testing: Developed by Modellwerkstatt5, an ASIC (Application-
Specific Integrated Circuit6) is an electronic chip designed for a particu-
lar purpose. One of Modellwerkstatt’s customers ordered a quite com-
plex ASIC design, providing various I/O functions such as analog/digi-
tal conversion, filters and counters. The ASIC is used in an I/O module
for control systems. One of the most important features the I/O module
provides is an extensive self-test of the ASIC, which consists of approx-
imately 60 cycles of the following procedure: reset chip, configure func-
tionality, write value to output, read value from input and compare it to
expected value. The original developers of the ASIC came up with an
Excel spreadsheet that described the tests. Each row described one cycle
with all configuration details; write values and expected read values were
stored in the columns. What was needed next was a translation of the Ex-
cel file into C, which is executable by the target device. The respective
generator was developed with mbeddr. The ASIC testing code is owned
by Modellwerkstatt/Bachmann Electronic and is not available. J
Lego Mindstorms: This set of extensions for programming Lego Mind-
storms7 robots is the first significant demonstration project built with
mbeddr. Mindstorm robots can be programmed with various tools and
languages, among them C. There is also an implementation of the OSEK8

operating system called Lejos OSEK9. We have developed several robots
(and their respective software) based on a common set of C extensions
on top of Lejos OSEK. OSEK is also used outside of Lego Mindstorms
for real-world embedded applications, so this system is relevant beyond
Lego. The system was developed by the mbeddr team. It has not been
maintained and cannot be used with the current version of mbeddr; how-
ever, a few code examples are included in this chapter and as well as in
Chapter 10. J

5 http://www.modellwerkstatt.org/
6 https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
7 http://mindstorms.lego.com/
8 http://en.wikipedia.org/wiki/OSEK
9 http://lejos-osek.sourceforge.net/

112

Smart Park ASIC Pace Synth Lego

Testing • • • •
Physical units • • •
Components • • • • •
Decision tables • •
State machines • • • •
Documentation •
Requirements/Tracing • • •
Product lines • •
Analysis/Verification • � •
Language extensions • • •
New generator •
Generation target only •

Table 5.1 This table shows which mbeddr extensions were used in which system.
See the text below for details.

Pacemaker: This system addresses mbeddr’s contribution to the Pace-
maker Challenge10, an international, academic challenge addressing the
development and verification of safety-critical software, exemplified by a
pacemaker. This system emphasizes code quality, verification techniques
and systematic management of requirements. However, performance is
also important, since the software must run on the very limited resources
provided by the microcontroller in a pacemaker. This project was devel-
oped by Zaur Molotnikov at fortiss; the code can be downloaded from
github11. J

Synthesizer: Aykut Kilic, a colleague at itemis, has developed a music
synthesizer based on mbeddr. The system connects to an external key-
board and uses its input to synthesize sounds. The actual creation of
the waveform happens with mbeddr code. While the system is relatively
simple, it is quite time-critical: it is a soft realtime system – the sampling
rate is 44.1kHz and control rate is around 800Hz. This system serves
as a demonstration of mbeddr’s capability to create efficient, low-level
software. It also illustrates interfacing to external hardware. The code is
available as MPS sources at github12; a textual read-only version is also
available13. J

Table 5.1 shows how mbeddr’s extensions were used in the various systems.
The ASIC Testing system is an outlier: it uses none of mbeddr’s extensions.
The reason is that in this case separate DSLs were developed (reusing C’s ex-

10 http://sqrl.mcmaster.ca/pacemaker.htm
11 https://github.com/qutorial/PaceMakerMPSModelling
12 https://github.com/aykutkilic/aynth
13 https://github.com/aykutkilic/aynth/blob/master/aynth.core/src_mbd/modulators.mbd

Chapter 5. Validation I: An Application Developer’s Perspective 113

pression language) that used mbeddr’s version of C as a generation target.
It is also obvious that the Smartmeter system is the most exhaustive of the
systems: it uses essentially all of mbeddr’s extensions. As expected, the com-
ponents extension is used most. It provides a well-structured and generic way
to structure applications, and this is useful for most systems. The product line
support is used only in the Smartmeter – it is the only system that exists in
more than one variant. Analysis and verification was used successfully in two
systems, and attempted – unsuccessfully – in one: the Park-o-Matic. Details
are explained below. The reason that the documentation language is only used
in one system is the usual one: documentation is schedule to be done at the
end, then time runs out. Since the Smartmeter is an actual product, not docu-
menting it is not an option. Another use case for the documentation language
is the mbeddr user guide itself, which is currently being ported from LATEXto
the documentation language to simplify maintenance. Three systems have
built custom language extensions, and one project has built new generators
for an existing language. These are discussed and evaluated in Chapter 10.1.

5.2 A D D R E S S I N G T H E C H A L L E N G E S

This section revisits the challenges from Section 3.2 to show how mbeddr’s
features address these challenges. The challenges include abstraction with-
out runtime cost (Section 5.2.1), C considered unsafe (Section 5.2.2), program
annotations (Section 5.2.3), static checks and verification (Section 5.2.4) and
process support (Section 5.2.5).

5.2.1 Abstraction without Runtime Cost

Chapter 4 discusses the abstractions provided by mbeddr for embedded soft-
ware development. This section investigates whether and how these have
been used in the example systems.

Smartmeter: Smartmeter uses mbeddr’s C extensions extensively. It uses
mbeddr’s components to encapsulate the hardware-dependent parts of
the system. By exchanging the hardware-dependent components with
stubs and mocks, integration tests can be run on a PC without using the
actual target device. As a side effect, the software can be debugged on a
normal PC, using mbeddr’s debugger. While this does not cover all po-
tential test and debugging scenarios, a significant share of the application
logic can be handled this way. The smart meter communicates with its
environment via several different protocols. So far, one of these protocols
has been refactored to use a state machine. This has proved to be much
more readable than the original C code. Table 5.2 provides an overview.
In particular, interfaces and components are used heavily to modularize
the system and make it testable. 54 test cases and 1,415 assertions are
used. Physical units are used heavily as well, with 102 unit declarations
and 155 conversion rules. The Smartmeter team reports significant ben-
efits in terms of code quality and robustness. The developers involved

114

in the project had been thinking in terms of interfaces and components
before; mbeddr allows them to express these notions directly in code. J

Area Language Concept No. of Instances

Components Components 99
Ports 335
Runnables ("functions" in components) 368

Interfaces 54
Operations ("methods" in interfaces) 118

Component instances 168
Connectors (connecting ports of instances) 238

C Top Level Modules 219
Module dependencies 976

Struct declarations 94
Struct members 458

Enum declarations 168
Enum literals 1,708

Constants 7,600

Testing Tests 58
Assertions 1,415

Mock components 5
Mock steps 22

Units Unit declarations 102
Conversion rules 155

State Machines State machines 2
States 17

Table 5.2 Numbers of instances of important concepts in the Smartmeter project.

Park-o-Matic: The core of Park-o-Matic is a big state machine which co-
ordinates various sensors and actuators used during the parking process.
The interfaces to the sensors and actuators are implemented as compo-
nents, and the state machine lives in yet another component. By stubbing
and mocking the sensor and actuator components, testing of the overall
system was simplified. J

Lego Mindstorms: mbeddr’s components have been used to wrap low-
level Lego APIs into higher-level units that reflect the structure of the
underlying robot, and hence makes implementing the application logic
that controls the robot much simpler. For example, a interface DriveTrain
supports a high-level API for driving the robots. It uses pre- and post-
conditions as well as a protocol state machine to define the semantics of
the interface.

exported cs interface DriveTrain {
void driveForwardFor(uint8 speed, uint32 ms)

pre(0) speed <= 100
post(1) currentSpeed() == 0
protocol init(0) -> init(0)

void driveBackwardFor(uint8 speed, uint32 ms)

Chapter 5. Validation I: An Application Developer’s Perspective 115

pre(0) speed <= 100
post(1) currentSpeed() == 0
protocol init(0) -> init(0)

void driveContinouslyForward(uint8 speed)
pre(0) speed <= 100
post(1) currentSpeed() == speed
protocol init(0) -> new forward(1)

void driveContinouslyBackward(uint8 speed)
pre(0) speed <= 100
post(1) currentSpeed() == speed
protocol init(0) -> new backward(2)

query uint8 currentSpeed()
void stop()

post(0) currentSpeed() == 0
protocol *(-1) -> init(0) // the asterisk means ’any state’

void turnLeft(uint8 turnDeltaSpeed)
protocol init(0) -> init(0)

void turnRight(uint8 turnDeltaSpeed)
protocol init(0) -> init(0)

}

As a consequence of the separation between specification (interface) and
implementation (component), testing of line-following algorithms was
simplified. For example, since the motors are encapsulated into inter-
faces/components, mock implementations can be provided to simulate
the robot without using the Mindstorms hardware and API. Other com-
ponents such as the Orienter use the motor components and provide a
high-level approach to orienting the robot based on the compass sensor.
The compass sensor itself requires a non-trivial sequence of operations to
retrieve an actual heading. This is encapsulated in the component.

void orienter_orientTowards(int16 heading, uint8 speed, DIR dir)
<- op orienter.orientTowards {

int16 currentDir = compass.heading();
if (dir == COUNTERCLOCKWISE) {

motorLeft.set_speed(-1 * ((int8) speed));
motorRight.set_speed(((int8) speed));

} else {
motorLeft.set_speed(((int8) speed));
motorRight.set_speed(-1 * ((int8) speed));

}
while (!(currentDir in [heading - 4 .. heading + 4]))

currentDir = compass.heading();
motorLeft.stop();
motorRight.stop();

}

The top-level behavior of a line-follower robot was implemented as a state
machine. The state machine calls the above- mentioned components to
cause the necessary changes in direction or speed.

116

While this system was developed specifically for demo purposes early
in the mbeddr project, it did confirm the right direction for mbeddr. The
developers who built the Lego system were not proficient in C or embed-
ded software, but could nonetheless quickly write robust code for NXT
OSEK.
Synthesizer: The synthesizer is essentially a pipes and filters architec-
ture [Buschmann et al., 1996a]. The first element in the chain creates a
waveform (sine, sawtooth or other) and the subsequent filters act as pro-
cessors that modify or distort the waveform in some way to create the
unique sounds associated with synthesizers. The various filters were im-
plemented as components. A single interface acts as the pipe, so that the
implementing components could be chained arbitrarily. The following
shows the outline of a simple example:
ringbuffer[int32, 10] Wavebuffer;

sr interface IWave {
Wavebuffer wave;

}

component Oscillator {
provides IWave out;

}

component RingModulator {
requires IWave in [2]

}

instances example {
instance Oscillator osc1
instance Oscillator osc2
instance RingModulator mod
connect osc1.out -> mod.in[0]
connect osc2.out -> mod.in[1]

}

The synthesizer implementation exploits mbeddr’s polymorphic inter-
faces and the ability to flexibly change the connections between compo-
nents, in order to change the setup of the pipeline and hence change the
sound produced. Components provide additional interfaces to pass con-
trol parameters to the processors (for example, to control the frequency
of the waveform created, or the amount of distortion introduced by a
specific filter). These interfaces are connected to external controls (knobs
and sliders) used by the musician to change the sound.
Pacemaker: The default extensions have proven useful in the develop-
ment of the pacemaker. The pacemaker uses mbeddr’s components to
encapsulate the hardware-dependent parts. Furthermore, the pulse gen-
erator system is divided into subsystems according to the disease these
subsystems treat. The pacemaker logic for treating diseases is imple-

Chapter 5. Validation I: An Application Developer’s Perspective 117

mented as a state machine. This makes the implementation easier to
validate and verify (discussed in Section 5.2.4. Requirements tracing sim-
plifies the validation activities. J

A fundamental problem with higher-level abstractions is that in the event of
an error, unacceptable performance or resource consumption, a user may have
to deal with the underlying low-level implementation. However, the user may
not understand this implementation, because they did not write the code (or
the generator) and had previously just relied on the higher-level abstraction.
This problem exists for macros, libraries and also for mbeddr’s language ex-
tensions. mbeddr tries to limit this problem as far as possible: every valid
extension-level program leads to a valid C program. This is ensured by au-
tomated unit tests and (initially maybe overly-) strict type system rules and
constraints.

Smartmeter: As the largest system built with mbeddr so far, the devel-
opers found a few bugs in the generators, which led to buggy generated
code, even though the mbeddr-level program was valid. However, these
problems were few and far between. It can be concluded from this expe-
rience that the existing language extensions are reasonably mature. J

mbeddr also provides an extensible debugger that lets users debug programs
at the extension level. mbeddr also has a tool to find the source of a log
statement on the extension level based on the log output.

Generating code from higher-level abstractions may introduce performance
and resource consumption overhead. For embedded software, it is unaccept-
able for abstractions to incur significant overhead, although it is not clearly
defined what "significant" means. However, a threshold is clearly reached
when a new target platform is required to run the software, "just because"
better abstractions have been used to develop it. The reason is that for many
embedded systems, the unit cost (of the final product) is the primary cost
driver. A larger hardware platform drives unit cost up, since it has to be de-
ployed in every unit built and sold. As part of mbeddr development, we have
not performed a systematic study of the overhead incurred by the mbeddr
extensions, but preliminary conclusions can be drawn from the existing sys-
tems:

Smartmeter: The Smartmeter code runs on the intended target device.
This means that the overall size of the system (in terms of program size
and RAM use) is low enough to work on the hardware that had been
planned for use with the native C version. As explained above, this is an
important criterion.

Some of the extensions specifically built for in Smartmeter (registers
and interrupts, discussed in Section 10.1) have no runtime footprint at
all; they are mapped to plain C without any specific overhead. This is
important because the realtime core that measures voltage and current
in sync with the 50 or 60 Hz cycle supply is critical in that absolutely
no overhead must be incurred there: "missing a cycle" can lead to faulty

118

measurements, incorrect billing, and ultimately legal consequences. In
fact, the accuracy of the Smartmeter had been increased significantly, a
direct consequence of better performance in the core measurement com-
ponent. This, in turn, is a consequence of better testing and an overall
cleaner architecture. J

Synthesizer: The task of a synthesizer is to create waveforms and process
them with various processors and filters. The input that decides which
frequency to produce and which processors to apply is provided by an
external MIDI keyboard. All of this requires a reasonably fast system.
mbeddr’s components are used extensively, but still the performance is
satisfactory: according to the developer, the system runs robustly. J

Pacemaker: The Pacemaker challenge requires the code to run on a quite
limited target platform, the PIC1814). The C code is compiled with a pro-
prietary C compiler. The overhead of the implementation code generated
from the mbeddr abstractions is small enough for the code to be run on
this platform in terms of performance, program size and RAM use. J

mbeddr’s extensions can be partitioned into three groups. The first group has
no consequences for the generated C code at all – the extensions are related
to metadata (requirements tracing) or type checks (units). During generation,
the extension code is removed from the program.

The second group consists of extensions that are trivially generated to C,
and use at most function calls as indirections. The resulting code is similar in
size and performance to reasonably well-structured manually written code.
State machines (generated to functions with switch statements), unit value
conversions (which inline the conversion expression) or unit tests (which be-
come void functions) are examples of this group.

The third group of extensions incurs additional overhead, even though
mbeddr is designed to keep it minimal. Here are some examples. The runtime
checking of contracts is performed with an if statements that check the pre-
and post-conditions, as well as assignments to and checks of variables that
keep track of the protocol state. The following piece of C code is generated
from a pre-condition that asserts that the argument p is not null; the overhead
is the fact that the precondition leads to the if check:

struct void Nuller_processor_process(struct Trackpoint* p, ...) {
if (!((p != 0))) {

pre_1731059994647781332__1731059994647782993:
// report error

}
// implementation

}

Another example is polymorphism for component interfaces, which use an
indirection through a function pointer when an operation is called on a re-
quired port. The following is the code generated from a component runnable

14 http://en.wikipedia.org/wiki/PIC_microcontroller

Chapter 5. Validation I: An Application Developer’s Perspective 119

that, in the first line of the implementation, invokes the save method on a
store required port:

struct void Interpolator_processor_process(
struct DataStructures_Trackpoint* p,
void* ___instance) {

struct compdata_Interpolator* ___castedInstance =
((struct Components_compdata_Interpolator*)(___instance));

(*___castedInstance->portops_store->save)
(p, ___castedInstance->port_store);

...
}

Every component runnable gets an additional argument, the data for the
current instance, ___instance. For technical reasons it is passed as a void
pointer, and then downcast to the correct concrete type in the first line of ev-
ery runnable. The second line in the code above is the actual call; the call is
performed via a function pointer save (the name of the called operation) in
the portops struct for the store required port. While the accesses to the mem-
bers in the struct has no overhead because the addresses can be calculated by
the compiler, the call through the function pointer is less efficient than a direct
function call.

In this third group of extensions there is no way of implementing the fea-
ture in C without overhead. The user guide points this out to users, who
have to make a conscious decision about whether the overhead is worth the
benefits in flexibility or maintainability. However, in some cases mbeddr pro-
vides different transformation options that make different trade-offs with re-
gards to runtime overhead. For example, if in a given executable an interface
is only provided by one component, and hence no runtime polymorphism
is required, the components can be connected statically, and the indirection
through function pointers is not necessary. This leads to better performance,
but also limits flexibility. Below is the code from above with static wiring en-
abled. The generator knows statically that the TrackpointStore interface is
only provided by the InMemoryStore component. Its save operation is called
directly:

struct void Interpolator_processor_process(
struct DataStructures_Trackpoint* p,
void* ___instance) {

struct compdata_Interpolator* ___castedInstance =
((struct Components_compdata_Interpolator*)(___instance));

InMemoryStore_store_save(p, ___castedInstance->port_store);
...

}

With regard to performance, we conclude that mbeddr generates reasonably
efficient code, both in terms of overhead and performance. It can certainly
be used for soft realtime applications on reasonably small processors. We
are still a unsure about hard realtime applications. Even though Smartmeter
and the Synthesizer are promising, more experience is needed in this area.

120

In addition, additional abstractions to describe worst-case execution time and
to support static scheduling are required. However, these can be added to
mbeddr easily, so in the long term, we are convinced that mbeddr is a very
capable platform for hard realtime applications.

Summing up, the mbeddr default extensions have proved extremely useful
in the development of the various systems. Their tight integration is useful,
since it avoids the mismatch between various different abstractions encoun-
tered when using different tools for each abstraction. This is confirmed by
the developers of the pacemaker, who report that the fact that the extensions are
directly integrated into C, as opposed to the classical approach of using external DSLs
or separate modeling tools, reduces the hurdle of using higher-level extensions and
removes any potential mismatch between DSL code and C code.

5.2.2 C Considered Unsafe

The mbeddr C implementation already makes some changes to C that im-
prove safety. For example, the preprocessor is not exposed to the devel-
oper; its use cases (constants, macros, #ifdef-based variability, pragmas) have
first-class alternatives in mbeddr that are more robust and type-safe. Size-
independent integer types (such as int or short) can only be used for legacy
code integration; regular code has to use the size-specific types (int8, uint16,
etc.). Arithmetic operations on pointers or enums are only supported after an
explicit cast; and mbeddr C has direct support for boolean types instead of
treating integers as Booleans.

Smartmeter: Smartmeter is partially based on code received from the
hardware vendor. This code has been refactored into mbeddr compo-
nents; in the process, it has also been thoroughly cleaned up. Several
problems with pointer arithmetic and integer overflow have been discov-
ered as a consequence of mbeddr’s stricter type system. J

More sophisticated checks, such as those necessary for MISRA-compliance,
can be integrated as modular language extensions. The necessary building
blocks for such an extension are annotations (to mark a module as MISRA-
compliant), checking rules (to perform the required checks on modules marked
as MISRA-compliant), as well as the existing AST, type information and data-
flow graph (to be able to implement these additional checks).

Finally, the existing extensions, plus those potentially created by applica-
tion developers, support writing code at an appropriate abstraction level. The
potentially unsafe lower-level code is generated, reducing the probability of
mistakes.

Smartmeter: Smartmeter combines components and state machines, de-
coupling message assembly and parsing from the application logic in the
server component. Parsing messages according to their definition is no-
toriously finicky and involves a lot of direct memory access and pointer
arithmetic. This must be integrated with state-based behavior to keep
track of the protocol state. State machines, as well as declarative descrip-

Chapter 5. Validation I: An Application Developer’s Perspective 121

tions of the message structure15 make this code much more robust and
maintainable. J

5.2.3 Program Annotations

The physical units are an example of program annotations. Program annota-
tions are data that improves the type checking or other constraints in the IDE,
but have no effect on the running program.

Smartmeter: Extensive use is made of physical units. According to Ta-
ble 5.2, there are 102 unit declarations in the Smartmeter project. Smart
meters deal with various currents and voltages, and distinguishing and
converting between these using physical units has helped uncover several
bugs. For example, one code snippet squared a temperature value and
assigned it back to the original variable (T = T * T;). After adding the
unit K to the temperature variable, the type checks associated with the
units extension discovered this bug immediately and it was fixed easily.
Units also help a lot with the readability of the code. J

As part of mbeddr’s tutorials, an example extension has been built that an-
notates data structures with information about which layer of the system is
allowed to write and read these values. By annotating program modules with
layer information, the IDE can now check basic architectural constraints, such
as whether a data element is allowed to be written from a given program
location.

In discussions with a prospective mbeddr user other use cases for anno-
tations were discovered. Instead of physical units, types and literals could
be annotated with coordinate systems. The type checker would then make
sure that values that are relative to a local coordinate system and values that
are relative to a global coordinate systems are not mixed up. In the second
use case, program annotations would have been used to represent secure and
insecure parts of a crypto system, making sure that no data ever flows from
the secure part to the insecure part. Neither customer project materialized,
though.

5.2.4 Static Checks and Verification

Forcing the user to use size-specific integer types, providing a boolean type
instead of interpreting integers as Boolean, and prohibiting the preprocessor
are all steps that make a program more easily analyzable by the built-in type
checker. The physical units serve a similar purpose. In addition, the inte-
grated verification tools provide an additional level of analysis. By integrat-
ing these verification tools directly with the language (they rely on domain-
specific language extensions) and integrating the tool into the IDE, it is much
easier for users to adopt static analyses.

15 This is an extension that is currently being built.

122

Smartmeter: Decision tables are used to replace nested if statements,
and the completeness and determinism analyses (Section 4.5) have been
used to uncover bugs. The protocol state machines are model-checked.
This uncovered bugs introduced when refactoring the protocol imple-
mentation from the original C code supplied by the vendor to mbeddr
state machines. J

Pacemaker: The core behavior of the pacemaker is specified as a state
machine. To verify this state machine and to prove correctness of the
code, two additional C extensions have been developed. One supports
the specification of nondeterministic environments for the state machine
(simulating the human heart), the other allows the specification of tempo-
ral properties (expressing the correctness conditions for the state machine
in the face of its nondeterministic environment). All three – the state ma-
chine, the environment and the properties – are transparently translated
to C code and verified with CBMC. J

Park-o-Matic: It was attempted to use formal analyses for verifying var-
ious aspects of the state machine. However this attempt failed, because
the analyses were only attempted after the state machine was fully de-
veloped, at which point it was tightly connected to complex data struc-
tures via complex guard conditions. This complexity thwarted the model
checker. J

The overall experience with the formal analyses is varied. Based on the (neg-
ative) experience with Park-o-Matic and the (positive) experience with Smart-
meter and Pacemaker, we conclude that a system has to be designed for an-
alyzability to avoid running into scalability issues. In Park-o-Matic, analysis
was attempted for an almost finished system, in which the modularizations
necessary to keep the complexity at bay were not made.

5.2.5 Process Support

mbeddr directly supports requirements and requirements tracing (Section 4.8),
product line variability (Section 4.9) and prose documentation that is tightly
integrated with code (Section 4.7). This directly addresses the three process-
related challenges identified earlier. All of them are directly integrated with
the IDE, work with any language extension and are often themselves extensi-
ble. For example, new attributes for requirements or new kinds of paragraphs
for documents can be defined.

Smartmeter: Smartmeter also make use of requirements traces: during
the upcoming certification process, these will be useful for tracking if
and how the customer requirements have been implemented. Because of
their orthogonal nature, the traces can be attached to the new language
concepts specifically developed for Smartmeter. J

Pacemaker: Certification of safety-critical software systems requires re-
quirements tracing; mbeddr’s ubiquitous support makes it painless to

Chapter 5. Validation I: An Application Developer’s Perspective 123

use. Even though this is only an demo system for the Pacemaker Chal-
lenge, it is nonetheless an interesting demonstration how domain-specific
abstractions, verification, requirements and requirements tracing fit to-
gether. J

Lego Mindstorms: Lego being what it is, it is easy to develop hardware
variants. We have used mbeddr’s support for product line variability to
reflect the modular hardware in the software: sensor components have
been statically exchanged based on feature models. J

The requirements language has been proven very useful. In fact, it has been
used as a standalone system for collecting requirements (briefly discussed in
Section 11.3). Tracing has also proved to be useful, in particular because it
works out of the box with any language.

The documentation language has not been used much in the six example
systems, since it is relatively new. However, we are currently in the process of
porting the complete mbeddr user guide to the documentation language. The
tight integration with code will make it very easy to keep the documentation
in sync with an evolving mbeddr.

Experience with product line support is more varied. The definition of fea-
ture models and configuration works well (which is not surprising, since it is
an established approach for modeling variability). Experience with mapping
the variability onto programs using presence conditions is mixed. It works
well if the presence condition is used to remove parts of programs that are
not needed in particular variants. However, once references to variable pro-
gram parts get involved, the current, simple approach starts to break down:

{feature1 || feature2}
int32 speed = 100;

void aFunction(int32 s) {
speed = s;

}

This program is invalid, because the reference to speed from within aFunction
breaks if feature1 and feature2 are both not selected. The program could be
fixed if the same presence condition (or a more restrictive one) is attached to
either the assignment speed = s or to the whole function. Checking for such
problems is currently not supported, but it could be added in a generic way
so that it would still work with any language.

It becomes even more tricky once the type system gets involved. Consider
the following example:

[float <- int32 if feature1] speed = 100.0;

void aFunction(int32 s) {
speed = s;

}

This expresses that the type of speed is float by default, and int32 if feature1
is selected. In this case, the default value 100.0 would be invalid. Similarly,

124

the type of the argument s would also have to vary consistently. In short, a
variability-aware type system would be required. At this point it is not clear
whether this is feasible algorithmically and in terms of performance. Also,
without enhancement of MPS itself it is probably not possible to build such
a variability-aware type system generically, i.e. without explicit awareness of
the underlying language. This would be unfortunate, since extensions would
have to built in a variability-aware way.

5.3 O T H E R C O N C E R N S

In addition to the explicitly stated challenges from Section 3.2, mbeddr must
also fulfill a number of additional properties, discussed in this section. These
include scalability (Section 5.3.1), usability (Section 5.3.2), infrastructure inte-
gration (Section 5.3.4) and interoperability with textual code (Section 5.3.5).

5.3.1 Scalability

In terms of scalability, there are two potential problems: the generation time
and the performance of the editor.

Generation Time The granularity of generation in MPS are models, which
are the files that contain program nodes. If a project consists of several mod-
els, then only those models that have been changed are regenerated when
the developer hits Make Project. So, during development, the relevant time
with respect to generator performance is the time it takes to generate a single
model. We have performed measurements that show that the time for gen-
eration scales linearly with the number of program nodes in a model. Table
5.2 shows the data, and Figure 5.1 shows the resulting diagram that reveals
the linearity. For an equivalent of 100,000 lines of C code, the total build time
(generation plus compile and link) is roughly 20 seconds. Most developers are
not willing to wait longer than 5 to 10 seconds when they hit Make Project,
which means at roughly 50,000 LOC of equivalent C code developers should
start modularizing their system into several models.

Once the user starts modularizing their system into several models, the
total generation time goes up, of course, but since only one model is typically
generated after an incremental change16 by the developer, one can reasonably
assume that dozens of models can be used in a single system. This indicates
that mbeddr may be able to handle systems of up to 1 million LOC equivalent
in terms of generation performance.

Smartmeter: The Smartmeter system, the largest system built with mbeddr
so far, is currently ca. 109,431 nodes. Using the ratios between generated
LOC and number of nodes derived from the above data, this corresponds

16 This assumes that no cross-model transformations are applied. This is true for most of
mbeddr’s extensions. An exception is product-line variability, which is inherently cross-
cutting.

Chapter 5. Validation I: An Application Developer’s Perspective 125

Roots Nodes generated LOC LOC
no.o f nodes tgen tmake

20 3,168 8,448 2.6 2.2 s 0.3
32 5,854 16,532 2.8 4.4 s 0.7 s
56 11,226 32,876 2.9 7.1 s 1.2 s

104 16,651 65,564 3.9 14.0 s 2.8 s
149 21,617 96,477 4.4 18.0 s 4.0 s

Table 5.3 This table shows the time it takes to generate C from mbeddr models.
The table shows the number of roots, the number of nodes, as well as the LOC of
generated C. It then reports the time to generate the C code, as well as the time to
compile and link it. It was measured on a Macbook Pro 11’, 2.9 GHz Intel Core i7,
8 GB 1600 MHz DDR3 RAM. As the diagram in Figure 5.1 shows, the generation
time increases roughly linearly. The table also shows the ratio between number
of nodes and generated LOC. The ratio increases with the number of roots. This
is because each root is generated into a .c and a .h file, each with its own LOC
overhead (double inclusion guards, include statements).

to between 262,000 and 480,000 LOC generated (ratios between 2.6 and
4.4). Running wc on the generated code counts 312,342 LOC. Table 5.2
shows the numbers of instances of important concepts. J

The model used for the measurements above is the mbeddr tutorial default-
Extensions model. It uses all mbeddr languages, which means that all the
generators of these languages are engaged. The generation process comprises

Figure 5.1 This diagram shows the generation time (solid line), as well as the time
it takes to compile and link the generated code (dashed line), depending on the
number of nodes in the model. The lines in the plot are a linear fit for the data in
Table 5.2.

126

59 mapping configurations ("generation steps") in 10 different phases. The
generation times get lower if fewer languages are used. Figure 5.2 shows the
effect. The solid line represents the data for the model from the earlier bench-
mark. The dashed line is a model that uses fewer languages; the generation
process comprised 41 mapping configurations in 9 phases. Finally, the dotted
line is C only, without only the few built-in extensions; it comprises 4 phases
and 27 mapping configurations. There are two conclusions we can draw from
this data:

• If only plain C is used, the generation time is of the same order of
magnitude as the call to make. In other words, using mbeddr without
any extensions leads to duplication in "compile time".

• The difference between plain C vs. few languages is much larger than
the difference between few vs. many languages, even though the dif-
ference in the number of mapping configurations is relatively similar.
However, the number of generation phases is quite different (10 vs. 9
vs. 4). So for the generation time, the deciding factor is the number of
phases, not the number of transformations17.

Editor Performance Editor performance in MPS is driven by several factors.
The first one is the rendering of the cells in the editor. The second factor is
the resolutions of scopes and other structural constraints. The third factor
are the type system rules. To find out the limits of scalability of the editor,
the following experiment was performed. The Components module in the
defaultExtensions model in the tutorial was taken as the benchmark. The
contents of the module were automatically duplicated. Two time periods were
measured: the time it took for the editor to open after a double click on the
module, and the time it took for the editor to react when trying to enter a
new function. The experiment was performed with realtime type checking
enabled, and with realtime type checking disabled. In this case, the type
checks can be explicitly requested by pressing F5. The results are shown in
Table 5.4.

It is obvious that the type system is what limits editor scalability, which
is proportional to the size of single module (root node). Somewhere around
1,000 LOC it becomes prohibitively slow when realtime type checking is en-
abled. Switching off the realtime type checking, one can probably go up to
10,000 LOC until the editor starts feeling sluggish. The performance of the
type system depends on the number and complexity of typing rules used, so
switching off realtime type checking for complex languages is an option. In
addition, the following steps are currently being investigated to improve type
system performance:

17 Phases are automatically computed by the generation scheduler based on the relative priorities
between transformations. Since a new phase always leads to a complete copy of the models in
memory, it is not surprising that this is what costs performance.

Chapter 5. Validation I: An Application Developer’s Perspective 127

Figure 5.2 The more languages and generation phases are involved in the gen-
eration process, the longer the generation time (for similarly sized models). The
solid line uses essentially all of mbeddr’s extensions, resulting in 10 phases, the
dashed line uses only some of the extensions (9 phases), and the dotted line is
plain C (4 phases). The fact that the effect is not obvious for small models and
short generation times is probably due to the interference of multitasking and/or
garbage collection on the benchmark computer.

• Several of mbeddr’s typing rules use the when concrete keyword, which
forces the type system engine into serial operation. Together with the
JetBrains team we are investigating whether some of these typing rules
can be formulated in a way that does not require serialization.

• Many of the slow typing rules relate to the physical units. Performing
the symbolic unit simplifications as part of the realtime type checking
may be overloading the declarative type checker. Extracting the unit
checking into a separate checking phase may be necessary.

• More generally, MPS evaluates all typing rules in realtime, or not at all
(by switching off realtime type checking). A more granular approach,
similar to what Xtext provides, may be useful. In Xtext, constraints can
be marked as FAST, NORMAL and SLOW. Fast rules are executed essentially
on every keypress, normal rules are executed on save, and slow rules
are executed only on demand. We are discussing with JetBrains whether
such a facility makes sense for MPS as well.

Summing up, developers have to make sure that single roots do not contain
more than 1,000 to 2,000 LOC, depending on the complexity of the language.
If, for some reason, bigger roots are required, switching off the realtime type
checking makes roots with up to 10,000 lines feasible.

128

Add Function Open Editor

LOC Without TS With TS Without TS With TS

280 0 s 0 s 0 s 0 s
510 0 s 0.1 s 0 s 0.5 s
970 0 s 0.5 s 0.8 s 4 s

1,883 0.1 s 1.0 s 1.2 s 6 s
3,718 0.2 s 3.0 s 2.1 s 10 s
7,393 0.4 s - 4.5 s - s

14,740 1.0 s - 8.2 s - s

Table 5.4 Editor scalability as measured by the time it takes for the editor to react
to an attempt to enter a new function and by the time it takes to open the editor,
depending on the size of the module shown in the editor. Lines of code (LOC)
refers to the "lines as projected" in the MPS editor, not to the generated LOC.

5.3.2 Usability

Projectional editing has advantages: it contributes to enabling the modulariza-
tion, extension and composition of languages, it supports mixing textual and
non-textual notations (for example, in decision tables), allows annotations of
programs (as in product line and traceability support) and it supports partial
projection of programs (as in product line support).

However, projectional editing also has drawbacks. First, while MPS’ user
experience comes very close to real text editing (see Section 6.2.1), there are
some idiosyncrasies users have to get used to, such as selecting parts of pro-
grams along the tree as opposed to selecting along the linear text. Experience
shows that after a few days the editor is no longer perceived as a disadvan-
tage; some people actually prefer it to normal text editors. However, users
have to get through the first few days of adapting to the editor.

Park-o-Matic: One of the Park-o-Matic developers was extremely skep-
tical about the projectional editor at the start of the project. After a few
weeks, she reported that she is actually quite comfortable with the editor,
and misses some of its editing gestures when using Eclipse. J

In an ongoing study18 on the usability of MPS, where ca. twenty MPS users
were asked to fill in a questionnaire, the first results are positive.

A few things are impossible with projectional editors. One of them is
putting comments around certain code segments. Commenting is easily sup-
ported for entire subtrees. However, cross-tree comments, as in boolean b =
true /*|| false*/; are not possible, since the true node is a child of the
OrExpression. It remains to be seen whether this is a significant issue in
practice. So far, users did not complain about this specific issue.

18 This study was not specific to mbeddr; users of other MPS-based languages were interviewed
as well. The study was performed with Janet Siegmund and Thorsten Berger. The results have
not been analyzed or published; this thesis only a few preliminary results.

Chapter 5. Validation I: An Application Developer’s Perspective 129

Figure 5.3 Left: This diagram shows the level of agreement with the statement "I

can work productively with MPS". The majority agrees or agrees strongly. Right:

The second diagram shows agreement and disagreement for "It was easy to get

used to programming in MPS". The results for this question is overall agreement.
This is in line with our experience that, once users have gotten used to MPS (and
its editor) they can work productively with it.

5.3.3 Learnability

mbeddr is a comprehensive system that addresses a variety of aspects in em-
bedded software engineering. The reason for this variety is that mbeddr first
and foremost serves as an example for the Generic Tools, Specific Languages
approach; for this to be convincing, it is important that mbeddr be compre-
hensive and address many different kinds of languages. However, this has
the potential to overwhelm (new) users and hamper learnability.

In our experience, this is not a significant problem in mbeddr for the fol-
lowing three reasons. First, the extensions provide linguistic abstractions for
concepts that are usually well-known to the users: state-based behavior, inter-
faces and components or test cases. They only have to learn the language, not
the underlying concepts.

Smartmeter: One of the Smartmeter developers (not the mbeddr team
member) has a background in component-oriented software development
in C. He was very happy to be able to mix C with a real component
language in mbeddr. He said that, for this reason alone, he does not
want to go back to plain C. J

Second, the additional language features are easily discoverable because of
the IDE support. Third, and most important, these extensions are modular-
ized, and any particular application developer will only use those extensions
that are relevant to whatever their current program addresses. This avoids
overwhelming the user with too much "stuff" at a time.

Pacemaker: The pacemaker team reports that the learning curve for C
programmers who want to use mbeddr takes ca. 2 days, to become ac-
customed to projectional editors and to the default extensions. J

130

The assumption underlying the first point (that new users already under-
stand the concepts underlying the mbeddr languages) has been true for all
the mbeddr users involved in all the systems built so far. Hence they did not
report any particular challenges in learning mbeddr. If this assumption does
not hold, learnability may be a bigger problem.

5.3.4 Infrastructure Integration

Since models are not stored as readable text, but rather as an XML doc-
ument, infrastructure integration can be challenging. MPS integrates with
mainstream version control systems including CVS, Subversion and git, and
also supports diff/merge based on the projected syntax. We have a lot of
experience with using MPS in a team of eight people in the research project
during language development. Except for a few bugs in MPS (fixed in the
meantime), teamwork has always worked well. Since application developers
use the same approach, we assume that this will also be the case for applica-
tion developers.

Smartmeter: The Smartmeter team currently has three developers and
uses git as the version control system. So far it has worked well. J

Park-o-Matic: Park-o-Matic uses subversion. The team has not reported
any issues. J

However, the projected diff/merge is only supported inside MPS, so a diff
shown on the command line or the browser (for example as part of the gerrit19

code review tool) will show the XML and is hence not useful. None of the
systems built with mbeddr so far uses gerrit, so this has not been a problem
so far.

Another important aspect of infrastructure integration is building the soft-
ware and running the tests on a continuous integration server. Since MPS
supports a command-line build via ant, this integration works in principle.
The documentation for this aspect of MPS is limited, so setting up the re-
spective MPS classpath can be challenging. Since mbeddr provides a wizard
for creating the ant file with all necessary settings for mbeddr application
projects, this problem is not relevant to end users.

Smartmeter: The Smartmeter project, for example, is built completely on
a Teamcity integration server. Unit tests are executed automatically. J

A problem with build server integration is that the command line build via
ant is slow. Remember from Table 5.2 that the pure generation time for the
tutorial defaultExtensions model is 2.2 seconds. When running that same
build on the command line, it takes ca. 30 seconds. The difference, ca. 27
seconds, is the time it takes to start up MPS for the generation job. This
unacceptably long and needs to be shortened significantly. Unfortunately,
MPS’ architecture does not support starting only the generator component,

19 https://code.google.com/p/gerrit/

Chapter 5. Validation I: An Application Developer’s Perspective 131

which would presumably be faster. The good news is that as the project
becomes bigger, these 27 seconds do not get longer; only the actual generation
time increases according to Table 5.2.

5.3.5 Interoperability with Textual Code

Additional effort is required to integrate with legacy code. As a consequence
of the projectional editor, textual sources cannot simply be used in mbeddr.
The remainder of this section addresses handling header files and implemen-
tation files separately (cf. Section 4.10).

mbeddr provides an importer for header files as a means of connecting
to existing libraries. However, this importer currently cannot handle #ifdef-
based product line variability. Users have to specify a specific configuration
to be imported. Also, header files often contain platform-specific keywords or
macros. Since they are not supported by mbeddr C, these have to be removed
before they can be imported. The header importer provides a regex-based
facility to remove these platform specifics before the import.

Smartmeter: As its processor, Smartmeter uses a member of Texas In-
strument’s MSP 430 series20. Smartmeter extensively calls into processor-
specific header files supplied by Texas Instruments. Since there are many
variants of the MSP 430, the header files are full of mutual includes and
#ifdefs. Only a very small subset of the overall set of header files is
actually used by Smartmeter, since it is known exactly which processor
variant is used. To simplify the import in terms of variability and sheer
size, the team has identified the variant-specific header file that is neces-
sary for Smartmeter and has imported just this file. The import of this file
worked reasonably well, with only few manual fixes after the automated
import. J

Lego Mindstorms: When the Lego Mindstorms system was built, no
header file importer was available for mbeddr. However, the system used
only about 30 relatively simple NXT OSEK API functions. The corre-
sponding external module has been manually created. For projects that
use small and well-defined APIs, this approach is perfectly feasible. J

The Smartmeter project, which is heavily based on an existing code base, also
drives the need for a complete source code importer (including .c files, not
just header files), which is currently being developed.

The parser behind this importer will also be integrated into MPS’ paste
handler, so textual C source can be pasted into the projectional editor. Copy
and pasting from MPS to text works by default as long as the syntax of the
code is textual. The reverse is not true, however – it has to be built specifically.

Smartmeter: In Smartmeter, the complete code for a smartmeter applica-
tion had been made available to the development team by the processor
vendor. It was decided to reimplement it completely in mbeddr. No

20 http://msp430.com

132

importer for C files was available at the time, so the required code was
retyped into mbeddr. In the process, the code was structured into compo-
nents with well-defined interfaces, thereby increasing quality, testability
and modularity in the way discussed in Section 4. J

The integration of legacy code described in this section is clearly a disadvan-
tage of projectional editing, and a robust importer for header files is definitely
required. However, we feel that for dealing sensibly with legacy code in the
context of mbeddr, the code should be partitioned into components and other
higher-level abstractions. It is not yet clear how important a source code im-
porter is in this context.

5.4 R E L AT I O N S H I P T O K U H N ’ S S U RV E Y

[Kuhn et al., 2012] present an empirical study of the problems that currently
plague model-driven development in the industry. They performed in-depth
interviews with 12 engineers from General Motors who use mainstream model-
driven development tools (mostly Matlab/Simulink, IBM Rhapsody and MS
Word) for embedded software development. Since the study fits well with the
mbeddr story it is interesting to discuss. The next paragraphs analyze how
and why mbeddr improves on the problems identified in the study.

Diffing Diffing between various versions of the same model is insufficiently
supported. Because of the fear of missing a change, developers have resorted
to manually written comments that describe each change. Sometimes they
even use a textual diff tool on the generated source. In some cases they create
screenshots of a new version of a model, mark the changes with a red pen, and
send the picture back to the owner of the model to incorporate the changes.
When stating their requirements towards model diffing, they suggested that
a facility like the diff support for code would be just what they needed.

mbeddr improves on this situation, since any model or program can be
diffed (and merged) with the diff and merge tooling provided by MPS. This
works for any language, regardless of abstraction level and notation, as long
as MPS is used for diffing and merging (as discussed in the previous subsec-
tion).

Point-to-Point Tracing Traceability between implementation artifacts (code,
model) and requirements is very important to all engineers interviewed in the
study. The current tool-chain only provides document-to-document traceabil-
ity, which is not granular enough. Traceability is required on the level of
model or program elements, for any level of abstraction. Currently, the en-
gineers rely on naming conventions and ticket IDs (as defined by their issue
tracker) as a workaround. Since only very limited tool support is provided,
this approach is tedious and error-prone.

mbeddr solves this problem completely by providing element-level trace-
ability from arbitrary program elements to requirements or other high-level
specifications. The traces are actual references and not just based on name

Chapter 5. Validation I: An Application Developer’s Perspective 133

equality. Tracing works for program elements expressed in any language,
representing any abstraction level. Since all languages live inside the same
language workbench, consistent tracing is much simpler than across a set of
non-integrated (and often non-extensible) tools.

Problem-Specific Expressibility The engineers interviewed in the study
complained about the need for problem-specific expressibility, i.e. the ability
to define their own "little languages" for particular abstractions relevant in the
domain. The study cites two particular examples. One refers to the ability for
domain experts to use concise visual notations when they describe require-
ments, and then generate code from the resulting diagrams. The other exam-
ple identifies support for physical units as a major problem in the (Matlab-
based) implementation models. They reverted to Hungarian notation21 to
encode unit information into signal and variable names ("The printed list of
all prefixes used in the system fills four pages").

mbeddr improves on this situation generally and specifically. The ability to
extend existing languages with domain-specific concepts allows application
developers to plug in their own "little languages" and generate abstractions
available in the base language. Admittedly, mbeddr does not yet support
graphical languages, as requested by the engineers in the study. However, it
is safe to assume that the same kind of problems will arise with predefined
textual languages. mbeddr also helps specifically with the two problems dis-
cussed in the study. mbeddr’s requirements language can be extended with
arbitrary domain-specific languages, and the models that become part of the
requirements in this way can be used directly in the implementation of the
final system. Also, mbeddr ships with a language extension for physical units
that can be used with C or any of its other extensions.

Long Build Times The engineers in the study report build times of the
model-driven tool-chain in the range of several hours – in contrast to ca. 30
minutes in the old, C-based tool-chain. These long build times prevent ex-
ploratory development of control algorithms, especially while in the car on
the test track: whenever a change had to be made, the test drive had to be
rescheduled for another day. Ideally, developers should be able to apply (cer-
tain kinds of) changes at runtime and continue the test drive immediately.

mbeddr does not provide an out-of-the-box solution for this problem, but it
can help. To be able to change parts of a system on the fly, two approaches can
be used (both suggested in the study). The first one relies on interpretation
or data-driven development, where the behavior of a part of a system can be
changed at runtime, for example, by changing the values of configuration pa-
rameters. To enable this approach, these configuration parameters have to be
integrated with the hard-coded algorithm, and the constraints on the values
of the parameters have to be described in a rigid way to prevent misconfig-
uration. Specific extensions of C (or other languages) can be developed with
mbeddr, where the parameters and their constraints can be described suc-

21 http://en.wikipedia.org/wiki/Hungarian_notation

134

cinctly, integrated with the hard-coded algorithm. Static consistency checking
and IDE support is provided as well, which potentially makes this approach
more robust than the ad-hoc XML-file based descriptions of configurability
often used today.

The second approach for improving turn-around times mentioned in the
study is hot-swapping of code in the field. To make this possible, the under-
lying system must be partitioned well, and the interfaces between different
program parts must be clearly defined and enforced. mbeddr’s interfaces and
components, plus a suitable DSL for defining the partitioning of the target bi-
nary, can help to solve this problem. Note that better modularity and clearer
interfaces reduce build times in general, since there is no need to regenerate
the whole system when a part changes. Together with mbeddr’s support for
testing and mocking, this can improve testability. Taken together, these two
approaches can reduce turn-around times during the development phase.

Graphical Notations The paper does not identify the graphical notations
provided by the mainstream tools used by the engineers as a point of fric-
tion. However, the paper does point out a set of problems with graphical
notations22 and the limited set of abstractions provided by the modeling tools
(such as scopes or subroutines). Another problem is reported to be the fact
that diagrams have no obvious reading direction, which is compensated by
modeling guidelines. Developers report struggling with reading visual mod-
els to make sure they do not miss important parts. The paper states that:

[..] when offered an alternative to visual programming, engineers seem
to prefer non-visual representations.

In the available tools these were forms and tree views. It is reasonable to
assume that, if textual notations had been available, these would have been
preferred over trees and forms, since the developers said that they miss "pro-
gramming" in other parts of the paper. The discussion of the visual notations
provided by the tools used in the study also points out the following:

While this language is visual, it does not seem to be an actual abstraction
from source code. Even worse, as we learned through our interviews, the
level of abstraction seems to be lower than high-level source code. For
example, engineers reported that they struggled to introduce abstraction
such as nested scopes of variable visibility, enumerators, or refactoring
duplicated code into a new method.

mbeddr takes a fundamentally different approach. First, it generally relies on
textual, symbolic and tabular notations. Second, since it starts out from C,
existing C abstraction mechanisms such as the nested scopes of variable vis-
ibility or enumerators are supported. The IDE supports various refactorings.

22 The paper points out that these problems apply to the notations and tools used in the study,
but may not be generalizable to graphical notations in general.

Chapter 5. Validation I: An Application Developer’s Perspective 135

Third, additional domain-specific abstractions can be added at any time, in a
modular way.

Summing up, the paper draws a rather bleak picture of today’s mainstream
use of model-driven development in embedded software (and our experience
is certainly in line with this picture). mbeddr improves on several of the
problems discussed in the study.

Summary — This chapter discusses the experience from several projects conducted
with mbeddr, which seem to confirm that mbeddr is a productive environment for em-
bedded software development. The various example systems also show that domain-
specific extension is useful for the end user and feasible in terms of efforts and exten-
sibility of the mbeddr core system. To validate the overall Generic Tools, Specific
Languages approach, however, the validation also has to include the construction of
mbeddr itself. Chapter 10 provides this validation. To provide context, Part III of the
thesis introduces language workbenches, language modularity and JetBrains MPS. It
also discusses how many of mbeddr’s languages have been implemented.

136

Part III

Implementing mbeddr with
Language Engineering

137

6
Language Workbenches and MPS

Abstract — Language workbenches are tools for efficiently developing and using
general-purpose and domain-specific languages. JetBrains MPS is an example of such
a language workbench that emphasizes the integration and composition of sets of lan-
guages. It supports the implementation of a wide range of language aspects including
structure, editor, type system, refactoring, transformations and debugging. MPS’
most distinguishing feature is its projectional editor, which, in addition to helping
with language composition, also supports a wide range of notations, including tex-
tual, tabular and symbolic. This chapter illustrates the basics of building languages
with MPS and introduces a simple language that acts as the basis for the discussion
on language modularization and composition in the next chapter.

6.1 O V E RV I E W

The Meta Programming System1 is a projectional language workbench avail-
able as open source software under the Apache 2.0 license. It was initiated
by JetBrains founder and president Sergey Dmitriev, and has been developed
continuously over the last ten years2. The term language workbench was coined
by Fowler [2005]. He defines a language workbench as a tool with the follow-
ing characteristics, all exhibited by MPS:

1. users can define languages which are fully integrated with each other.

2. the primary source of information is a persistent abstract representation.

3. a DSL is defined in three parts: schema, editor(s), and generator(s).

4. language users manipulate a DSL through a projectional editor.

5. a language workbench can persist incomplete/contradictory data.

For the Generic Tools, Specific Languages approach, the most important state-
ment in this definition is languages which are fully integrated with each other. It
is not enough for a language workbench to address the definition of a single
language: it must be possible to define sets of languages, and, while each of
them should be a well-defined module, it is also essential to be able to define
how these languages integrate. MPS is particularly good at this.

1 http://jetbrains.com/mps
2 MPS has not been developed as part of this thesis. However, a lot of feedback has been

provided to JetBrains based on the experience gained during the development of mbeddr,
which is likely MPS’ most advanced and demanding use case.

139

This chapter introduces MPS as a language workbench. It starts out by
discussing MPS’ most distinguishing feature, the projectional editor, in Sec-
tion 6.2. It then looks at MPS’ support for modular, multi-stage transfor-
mations in Section 6.3. Section 6.4 discusses the various aspects of language
definition supported by MPS. To further illustrate how MPS works, Section 6.5
discusses the development of a simple language. The next chapter then dis-
cusses several ways of composing languages, both conceptually and in terms
of the implementation with MPS. A comparison of MPS with other language
workbenches and language implementation techniques can be found at the
end of the next chapter (Section 7.5), because modularization and composi-
tion is an important aspect of this comparison.

6.2 P R O J E C T I O N A L E D I T I N G

For textual languages, text editors are traditionally used to enter character
sequences that represent programs. Based on a grammar, a parser then checks
the text for syntactic correctness and constructs an abstract syntax tree (AST)
from the character sequence. The AST contains all the data expressed by the
text, but ignores notational details. It is the basis for all downstream analysis
and processing.

Projectional editing does not rely on parsers. As a user edits a program,
the AST is modified directly. A projection engine then creates some repre-
sentation of the AST with which the user interacts, and which reflects the
resulting changes (Figure 6.1). This approach is well-known from graphical
editors: when editing a UML diagram, users do not draw pixels onto a can-
vas and a "pixel parser" then creates the AST. Rather, the editor creates an
instance of uml.Class as a user drags a class from the palette onto the canvas.
A projection engine renders the diagram by drawing a rectangle for the class.
Programs are stored using a generic tree persistence format (such as XML).
This approach can be generalized to work with any notation, including tex-
tual.

In projectional editors, every program element is stored as a node with a
unique ID (UID). References between program elements are represented as

Figure 6.1 Left: In parser-based systems a user sees and manipulates the con-
crete textual syntax of a program. A parser then (re-)constructs the AST from the
text (going from the AST to the concrete syntax requires extra care to retain for-
matting, and is not supported out of the box by most parsers – hence the dotted
line). Right: In projectional editing, while the user still sees a concrete syntax, an
editing gesture directly changes the AST. No parser is involved, and the AST must
never be reconstructed from a flat text structure. Instead, the concrete syntax is
projected from the AST. Storage is based on the abstract syntax.

140

references to the UID, so the AST is actually a graph. These references are es-
tablished during program editing by directly selecting reference targets from
the code completion menu. This is in contrast to parser-based environments
in which a reference is expressed as a string in the source text and a separate
name resolution phase resolves the target AST element.

What makes projectional editing interesting for language workbenches in
general, and for mbeddr in particular, are the following two characteristics.
First, the approach can deal with arbitrary syntactic forms including textual,
symbolic/mathematical, tabular and graphical3. This means that much richer
notations can be used in an integrated fashion, improving the programming
experience for the application developer. An example from mbeddr is the
decision table shown in Figure 3.1. Traditionally the tools for building textual
and tabular/symbolic/graphical editors were very different in terms of their
architecture and user experience, and integrating them seamlessly was a lot
of work, and sometimes impossible. Projectional editing solves this problem.
Second, if independently developed languages are composed, the resulting
composite program will never be syntactically ambiguous. This is in contrast
to mainstream parser-based systems that rely on a limited grammar class such
as LR or LL(k), where such compositions are often ambiguous and require
invasive change to the composite grammar to resolve the ambiguities.

Traditionally, projectional editing has also had a number of problems. The
most important of them are discussed in the following subsections: editor
usability (Section 6.2.1), language evolution (Section 6.2.2), infrastructure in-
tegration (Section 6.2.3) and tool lock-in (Section 6.2.4). These sections also
look at the extent and the way in which MPS solves these issues.

6.2.1 Editor Usability

In principle, projectional editing is simpler than parsing, since there is no
need to "extract" the syntactic structure from a linear textual source. The chal-
lenge for projectional editors lies in making them convenient to use for end
users. Traditionally, projectional editors have had a bad reputation, because
users had to construct the syntax tree more or less manually, instead of "just
typing". MPS has solved this problem to a large extent; the editing experience
is comparable to traditional text editors (cf. Section 5.3.2). Here are some of
the approaches MPS uses to achieve this.

Code Completion and Aliases Every language concept that is legal at a
given program location is available in the code completion menu. In naive
implementations, users have to select the language concept based on its name
and instantiate it. This is inconvenient. In MPS, language concepts define
an alias, allowing users to "just type" the alias to immediately instantiate the

3 MPS does not yet support graphical syntax, but will in 2014. Other projectional editors, such
as Intentional Software’s Domain Workbench [Simonyi et al., 2006] support graphical notations
already.

Chapter 6. Language Workbenches and MPS 141

concept. By making the alias the same as the leading keyword (for example,
if for an IfStatement), users can "just type" the code.

Side Transforms Side transforms make sure that expressions can be entered
conveniently. Consider a local variable declaration int a = 2;. If this should
be changed to int a = 2 + 3; the 2 in the init expression needs to be replaced
by an instance of the binary + operator, with the 2 in the left slot and the 3
in the right. Instead of removing the 2 and manually inserting a +, users
can simply type + on the right side of the 2. The system performs the tree
restructuring that moves the + to the root of the subtree, puts the 2 in the
left slot, and then puts the cursor into the right slot, so the user can enter
the second argument. This means that expressions (or anything else) can be
entered linearly, as expected. For this to work, operator precedence has to
be specified, and the tree has to be constructed taking these precedences into
account. In MPS, precedence is specified by a number associated with each
operator, and whenever a side transformation is used to build an expression,
the tree is automatically reshuffled to make sure that those operators with a
higher precedence number are further down in the tree.

Delete Actions Delete actions are used to similar effect when elements are
deleted. Deleting the 3 in 2 + 3 first keeps the plus, with an empty right slot.
Deleting the + then removes the + and puts the 2 at the root of the subtree.

Wrappers Wrappers support instantiation of concepts that are actually chil-
dren of the concepts allowed at a given location. Consider again a local vari-
able declaration int a;. The respective concept could be LocalVariableDecla-
ration, a subconcept of Statement, to make it legal in method bodies (for ex-
ample). However, users simply want to start typing int, i.e. entering the
content of the type field of the LocalVariableDeclaration. A wrapper can
be used to support entering Types where LocalVariableDeclarations are
expected. Once a Type is selected, the wrapper implementation creates a
LocalVariableDeclaration, puts the Type into its type field, and moves the
cursor into the name slot. Summing up, this means that a local variable decla-
ration int a; can be entered by starting to type the int type, as expected.

Smart References Smart references achieve a similar effect for references
(as opposed to children). Consider pressing Ctrl-Space after the + in 2 + 3.
Assume further, that a couple of local variables are in scope and that these
can be used instead of the 3. The local variables should be available in the
code completion menu. However, technically, a VariableReference has to be
instantiated first, whose variable slot is then made to point to any of the
variables in scope. This is tedious. Smart references trigger special editor
behavior: if in a given context a VariableReference is allowed, the editor first
evaluates its scope to find the possible targets, then puts those targets into the
code completion menu. If a user selects one, then the VariableReference is
created, and the selected element is put into its variable slot. This makes the
reference object effectively invisible in terms of the editing experience.

142

Smart Delimiters Smart delimiters are used to simplify inputting list-like
data, in which elements are separated with a specific separator symbol. An
example is argument lists in functions: once a parameter is entered, users can
press comma, i.e. the list delimiter, to instantiate the next element.

6.2.2 Language Evolution

If the language changes, existing instance models temporarily become out-
dated, in the sense that they were developed for the old version of the lan-
guage. If the new language is not backward compatible, these existing models
have to be migrated to conform to the updated language.

Since projectional editors store the models as structured data in which each
program node points to the language concept it is an instance of, the tools
have to take special care that such "incompatible" models can still be opened
and then migrated, manually or by a script, to the new version of the lan-
guage. MPS supports this feature, and it is also possible to distribute migra-
tion scripts with (updated) languages to run the migration automatically. It is
also possible to define quick fixes that run automatically; so whenever a con-
cept is marked as deprecated, this quick fix can trigger an automatic migration
to a new concept4.

6.2.3 Infrastructure Integration

Today’s software development infrastructure is typically text-oriented. Many
tools used for diff and merge, or tools like grep and regular expressions, are
geared towards textual storage. Programs written with parser-based textual
DSLs and stored as plain text integrate automatically and seamlessly with
these tools.

In projectional IDEs, special support must be provided for infrastructure
integration. Since the concrete syntax is not pure text, a generic persistence
format is used, typically based on XML. While XML is technically text as
well, it is not practical to perform diff, merge and the like on the level of
the XML-based storage format. Therefore, special tools need to be provided
for diff and merge. MPS provides integration with the usual version control
systems and handles diff and merge in the IDE, using the concrete, projected
syntax5. Figure 4.20 shows an example of an MPS diff. However, it clearly
is a drawback of projectional editing and the associated abstract syntax-based
storage that many well-known text utilities do not work. For example, web-
based diffs in github or gerrit are not very helpful when working with MPS.

4 The key to making this possible is that MPS stores programs on the meta-meta level. This
allows XML files that represent programs that no longer conform to the language structure to
still be opened. By using MPS’ reflection, the raw data stored in these files can be accessed.
This way a migration script can "recover" the stored data that corresponds to the old language
structure and transform it to the new (current) one.

5 Note that since every program element has a unique ID, move can potentially be distinguished
from delete/create, providing richer semantics for diff and merge.

Chapter 6. Language Workbenches and MPS 143

Figure 6.2 Higher-level abstractions such as state machines or components are
transformed (T) to their lower-level equivalent. C text is generated from the C pro-
gram, (G), that is subsequently compiled (C).

Also, copy and paste with textual environments may be a challenge. MPS,
for example, supports pasting a projected program that has a textual-looking
syntax into a text editor. These is no automatic support for the way back from
a textual environment to the projectional editor. However, special support for
specific languages can be provided via paste handlers. Such a paste handler
is available for Java, for example: when a user pastes Java text into a Java
program in MPS, a parser is executed that builds the respective MPS tree.
While this already works reasonably well for Java, it has to be developed
specifically for each language used in MPS. If a grammar for the respective
language is available for a Java-based parser generator, it is relatively simple
to provide such an integration.

6.2.4 Tool Lock-In

In the worst case, textual programs can be edited with any text editor. Unless
one is prepared to edit XML, programs expressed with a projectional editor
always require that editor to edit programs. This leads to tool lock-in. How-
ever, as soon as one takes IDE support into account, both the textual and the
projectional approaches lock users into a particular tool. Also, there is essen-
tially no standard for exchanging language definitions between the various
language workbenches6. So the effort of implementing a language is always
lost if the tool must be changed.

6.3 M U LT I - S TA G E T R A N S F O R M AT I O N

A transformation maps one program tree or graph to another one. In the
context of processing programs expressed with DSLs, the languages used to
express these two graphs will usually be different: a more high-level and
domain-specific language is mapped to a more general one (Figure 6.2).

However, for modular language extension and composition, transforma-
tions have to be composable as well. In particular, it must be possible to chain

6 There is some support for exchanging the abstract syntax based on formalisms such as MOF or
Ecore, but most of the effort for implementing a language is in areas other than the abstract
syntax.

144

transformations, where the result of one transformation acts as the input to
another. To avoid unnecessary overhead in this case, intermediate transfor-
mations should be AST-to-AST mappings. Only if a subsequent tool requires
textual input (for example, an analysis tool or a compiler) should textual out-
put be generated. To make a set of transformations extensible, the following
features, both supported by MPS, are required.

First, several transformations for the same model have to be supported,
executable either in parallel, creating several products from a single input,
for example, configuration files and visualizations, or alternatively, creating
different, alternative products from a given input, for example, for realizing
different non-functional characteristics of an extension; the static component
connections discussed in Section 4.4 are an example.

Second, dependencies between transformations must be specified in a rel-
ative way, and the transformation engine must compute a global transforma-
tion sequence based on the transformations configured for a particular pro-
gram. This supports plugging in additional transformations into the chain
without invasive modification of other transformations (see, for example, the
transformation of mocks in Section 8.5). In MPS, a transformation specifies a
relative priority (before, together with, or after) relative to the transforma-
tions it depends on.

Many transformation engines do not support the second item. While they
provide languages to express transformation, they often do not address the
extensible composition of transformations. Eclipse Xtend7 is an example that
does not explicitly address composition. In contrast, Stratego [Bravenboer
et al., 2008] provides higher-order functions to orchestrate transformations.

6.4 M P S L A N G U A G E A S P E C T S

In MPS, the ingredients of languages are called concepts. A concept has sev-
eral aspects, including structure, editor, or type systems. Like other language
workbenches, MPS comes with a set of DSLs for language definition, a sep-
arate DSL for each language aspect. MPS is bootstrapped, so these DSLs are
built (and can be extended) with MPS itself. Figure 6.3 provides an overview
of the most important aspects of MPS language definition. The following
paragraphs briefly introduce every language aspect supported by MPS.

Structure The structure, or abstract syntax or metamodel, has been dis-
cussed earlier. In terms of structure, a language concept consists of a name,
child concepts, references to other concepts and primitive properties (integer,
boolean, string or an enumeration). A concept may also extend one other
concept and implement any number of concept interfaces. In addition, a con-
cept can also have static properties, children and references; MPS refers to
those as concept properties/children/references. The definition of a new con-
cept always starts with the structure.

7 http://eclipse.org/xtext

Chapter 6. Language Workbenches and MPS 145

Figure 6.3 In MPS, a language consists of several aspects. The figure shows the
most important ones (language structure is MPS’ term for abstract syntax). In ad-
dition, languages can specify refactorings, find-usages strategies, migration scripts
and debuggers. Languages can make use of other languages in their definition
and generate down to other languages. Transformations specify priorities relative
to other transformations; MPS calculates a global transformation schedule based
on these priorities.

Editor The editor aspect defines the concrete syntax, or the projection rules.
Each concept has exactly one editor unless a concept inherits the editor from
its super-concept8. Interface concepts do not have editors, but they may define
editor components that can be embedded into other editors. Editors consist of
cells, where each cell may contain a constant (i.e. a keyword or a symbol), a
property value (such as the name), a child cell, a reference cell or a collection
of other cells. In fact, the editor for a concept is defined in two parts: the editor
for the concept in the primary editor, as well as the concept’s representation
in the inspector (essentially a properties view). The editor aspect also defines
(some) actions and keymaps. These determine the reaction of MPS if a specific
key is pressed in given cell or when a node is deleted.

Actions The actions aspect contains mostly wrappers and side transforma-
tions (as discussed in Section 6.2.1).

Behavior The behavior aspect essentially contains methods defined on con-
cepts. Such methods can implement arbitrary behavior and can be called on
each instance of the concept. Note that concept interfaces can not only declare
methods (as in Java), but can also provide an implementation. In that sense,
interfaces are more like Scala traits.

Constraints The constraints aspects comprises scopes for references (i.e.,
the set of valid target nodes beyond their type), constraints for properties

8 Future versions of MPS will support the definition of several independent editors for a single
concept, leading to the ability to change the representation of a program at any time.

146

(value ranges, regular expressions), as well as context dependencies for con-
cepts. The latter allows restrictions on where a concept can be used; for ex-
ample, an assert statement may be restricted to anywhere under a test case.

Type System The type system is used to specify typing rules for concepts.
These include inference rules (the type of a variable reference is the type of
the variable referenced by it), subtyping rules (int is a subtype of float) and
checking rules. The latter are essentially Boolean expressions that evaluate
any part of the model9. For example, they can be used to check for name
uniqueness or naming conventions. The type system aspect may also contain
quick fixes that can be used to resolve errors reported by type system rules.

Intentions Intentions are similar to quick fixes in that they can be activated
via Alt-Enter and selected from the menu that pops up. They are different
in that an intention is not associated with an error, but just generally with a
concept. For example, an intention could allow a user to mark a type as const
by selecting Make Const from the intentions menu of a Type.

Refactorings Refactorings are similar to intentions in that they change the
structure of a program. They are also typically associated with a specific
concept. There are several differences though: a refactoring shows up in the
Refactorings menu, it can have a keyboard shortcut associated with it, it can
be written to be able to handle several nodes at a time, and it can query the
user for input before it is executed.

Generator The generator aspect is used to define mappings of subtrees to
other subtrees. MPS relies on multi-stage transformations, where only the
last one creates text and all others are tree-to-tree mappings. The genera-
tor aspects contains the tree-to-tree mappings, and the textgen aspect (dis-
cussed below) handles the final to-text transformation. A generator consist of
mapping configurations that contain transformation rules. There are different
kinds of rules that transform nodes in different ways. For example, a reduc-
tion rule replaces any instance of a concept with the tree fragment created
by the template associated with the reduction rule. Note that IDE support is
available for the target language in the transformation template. A generator
may also contain procedural mapping scripts.

Textgen The textgen aspect for a language concept defines the mapping of
the concept to a text buffer. This should only be used for the concept of a
base language such as Java, C or XML. Any higher-level concepts that create
programs expressed in a base language should use generators (discussed in
the previous paragraph).

Find Usages The Find Usages aspect supports custom finders: when the
Find Usages item is selected from the context menu of a node, the custom
finders show up there. Instead of finding all usages of a node, these custom

9 These are usually known as constraints in other language workbenches or modeling tools.

Chapter 6. Language Workbenches and MPS 147

finders can filter based on the usage context. For example, for a local variable
a finder may only show usages where the variable is used on the left side of
an assignment statement (i.e., is assigned).

Dataflow The dataflow aspect constructs a dataflow graph for a program.
For each language concept, a dataflow builder can be defined whose task is
to construct the dataflow graph fragment for the respective concept. Based on
this program-specific dataflow graph, a set of generic dataflow analyses can
be performed.

Scripts The scripts aspect contains migration or enhancement scripts for
language concepts. They are useful in handling language migration problems.

6.5 I M P L E M E N T I N G A D S L W I T H M P S

This section illustrates language definition with MPS with a simple entities
language. This language will also be used in the next chapter as the basis
for demonstrating language modularization and composition. Some example
code is shown below.

module company // continued...
entity Employee { entity Department {

id: int id: int
name: string description: string
role: string }
worksAt: Department }
freelancer: boolean

}

Structure and Syntax Figure 6.4 shows a UML diagram of the concepts
involved in the entities language. Language definition in MPS always starts
with the structure. The following code shows the definition of the Entity con-
cept. Entity extends BaseConcept, the top-level concept similar to java.lang.
Object in Java. It implements the INamedConcept interface to inherit a name
property. It declares a list of children of type Attribute in the attributes
role.

concept Entity extends BaseConcept implements INamedConcept
is root: true
children:

Attribute attributes 0..n

Editors in MPS are based on cells. Cells are the smallest unit relevant for
projection. Consequently, defining an editor consists of arranging cells and
defining their content. Different cell types are available. Figure 6.5 explains
the editor for Entity. The editors for the other concepts are defined similarly.

Type System Language developers specify typing rules for language con-
cepts. To calculate and check types for a program, MPS "instantiates" these

148

rules for each instance of the concept, resulting in a set of type equations for
a program. These equations contain type values (such as int) as well as type
variables, which stand in for the type of program elements whose type has not
yet been calculated. MPS then solves the set of type equations, trying to as-
sign type values to the type variables in such a way that all the equations for a
program are free from contradictions. If a contradiction arises, this is flagged
as a typing error. For the entities language, only two simple typing rules
are needed. The first one specifies the type for the Type nodes themselves (for
example, the int node in attributes such as int age;):

rule typeof_Type for Type as t {
typeof(t) :==: t.copy;

}

This rule has the (semantically irrelevant) name typeof_Type, and applies
to the language concept Type (int or string are subconcepts of the abstract
Type concept). The typeof(...) operator creates a type variable associated
with a program element – in this case, with an instance t of Type. The type
is calculated by cloning t itself. In other words, if the type system engine
needs to find the type of an int program element, that type is int as well.
This may be a bit confusing, because instances of Type (and its subconcepts)
play two roles. First, they are part of the program itself if they are explicitly
specified in attributes (int age;). Second, they are also the objects with which
the type system engine works. Cloning the program element expresses that
types represent themselves in the type system engine10. Another typing rule

10 A clone is needed because if the node itself were used, it would be "ripped out" of the AST by
the type system engine. A node can be owned either by the AST or by the type system engine.

Figure 6.4 The abstract syntax of the entities language. An Entity has
Attributes which have a Type and a name. EntityType extends Type and ref-
erences Entity. This adapts entities to types (cf. the Adapter pattern [Gamma
et al., 1995]). Concepts like EntityType which have exactly one reference are
called smart references and are treated specially by MPS: instead of proposing to
explicitly instantiate the reference concept and then selecting the target, the code
completion menu shows the possible targets of the reference directly. The refer-
ence concept is implicitly instantiated once a target is selected.

Chapter 6. Language Workbenches and MPS 149

Figure 6.5 The editor for Entity. The outermost cell is a vertical list [/ .. /].
The first line contains a horizontal list [> .. <] that contains the keyword entity,
the name property and an opening curly brace. The second line uses indentation
--> and a vertical arrangement of the contents of the attributes collection (> ..
<). Finally, the third line contains the closing curly brace.

defines the type of the Attribute as a whole to be the type of the attribute’s
type property:

rule typeof_Attribute for Attribute as a {
typeof(a) :==: typeof(a.type);

}

This rule answers the question of what the type system engine’s type should
be for instances of Attribute. Note how this equation has two type variables
and no type values. It simply propagates the type of the attribute’s specified
type (the int in int age;) to be the type of the overall attribute. Note how the
two typing rules discussed in this section work together to calculate the type
of the Attribute from the type specified by the user: the type of the specified
type is calculated by cloning, and then this type is propagated to the type of
the whole attribute.

One more rule has to be defined that is not strictly part of the type calcu-
lation. It is a constraint that checks the uniqueness of attribute names for any
given Entity:

checking rule check_Entity for Entity as e {
set<string> names = new hashset<string>;
foreach a in e.attributes {

if (names.contains(a.name)) {
error "duplicate attribute name" -> a;

}
names.add(a.name);

} }

This rule does not establish typing equations, it just checks a property of
the program (note the checking in the rule header). It checks attribute name
uniqueness based on a set of the names, and reports an error if it finds a du-
plicate. It annotates the error with the attribute a, so the editor can highlight
the respective program element.

150

Generator From entities models, Java Beans are generated. Since Java
is available in MPS (called the BaseLanguage), the generation is actually a
model-to-model transformation: from the entities model, a Java model is
generated. MPS supports several kinds of transformations. The default case
is the template-based transformation which maps ASTs onto other ASTs. Al-
ternatively, one can use an API to manually construct the target tree.

MPS templates look like text generation templates known from tools such
as Xpand11, Jet12 or StringTemplate13, since they use the concrete syntax of
the target language in the template. However, this concrete syntax is pro-
jected like any other program, and the IDE can provide support for the target
language in the template (details of the support for the target language in tem-
plates is discussed in Related Work, Section 7.5). This also means that the
template code itself must be valid in terms of the target language.

Template-based generators consist of mapping configurations and tem-
plates. Mapping configurations define which elements are processed by which
templates. For the entities language, a root mapping rule and reduction
rules are needed. Root mapping rules create new root nodes from existing root
nodes. In this case, a Java class is generated from an Entity. Reduction rules
are in-place transformations. Whenever the engine encounters an instance of
the specified source concept somewhere in a model, it replaces the element
with the result of the associated template. In this case, the various types (int,
string, etc.) are reduced to their Java counterparts. Figure 6.6 shows a part
of the entities mapping configuration.

Figure 6.7 shows the map_Entity template. It generates a complete Java
class from an input Entity. To understand how templates work in MPS, the
generation of Java fields for each Entity Attribute is discussed next:

• In MPS, a template developer first writes structurally correct example
code in the target language. To generate a field into a class for each
Attribute of an Entity, one would first add a field to a class (see aField
in Figure 6.7).

• Then macros are attached to those program elements in the example
code that have to be replaced with elements from the input model dur-
ing the transformation. In the Attribute example in Figure 6.7, the first
step is to attach a LOOP macro to the whole field. It contains an expres-
sion node.attributes; where node refers to the input Entity (this code
is entered in the Inspector window and is not shown in the screenshot).
This expression returns the set of Attributes from the current Entity,
making the LOOP iterate over all attributes of the entity and create a field
for each of them.

• At this point, each created field would be identical to the example code
to which the LOOP macro was attached (private int aField;). To make

11 http://www.eclipse.org/modeling/m2t/?project=xpand
12 http://www.eclipse.org/modeling/m2t/?project=jet
13 http://www.stringtemplate.org/

Chapter 6. Language Workbenches and MPS 151

Figure 6.6 The mapping configuration for the entities language. The root map-
ping rule for Entity specifies that instances of Entity should be transformed with
the map_Entity template, which produces a Java class and is shown in Figure 6.7.
The reduction rules use inline templates, i.e. the template is embedded in the map-
ping configuration. For example, the IntType is replaced with the Java int and the
EntityRefType is reduced to a reference to the class generated from the target en-
tity. The ->$ is a reference macro. It contains code (not shown) that "rewires" the
reference (that points to the Double class in the template code) to a reference to
the class generated from the target entity.

the generated field specific to the particular Attribute currently iterated
over, more macros are used. A COPY_SRC macro is used to transform
the type. COPY_SRC copies the input node (the Inspector specifies the
current attribute’s type as the input here) and applies reduction rules
(those defined in Figure 6.6) to map types from the entities language
to Java types. Finally, a property macro (the $ sign around aField) is
used to change the name property of the currently generated field to the
name of the current source Attribute.

Most regular template engines mix template code and target language code,
separating them with some kind of escape character. In MPS, instead regular,
valid target language code is annotated with macros. Macros can be attached
to arbitrary program elements. In this way the target language code in tem-
plates is always structurally correct, but it can still be annotated to control the
transformation. Annotations are a generic MPS mechanism not specific to
transformation macros, and are discussed in Section 7.4.5.

Summary — Based on the foundation laid in this chapter, more advanced aspects
of MPS and mbeddr can be tackled. In particular, the next chapter systematically

152

Figure 6.7 The template for creating a Java class from an Entity. The generated
class contains a field, a getter and a setter for each of the Attributes of the
Entity. The running text explains the details.

discusses language modularization and composition, which serves as an enabler for
mbeddr. Chapters 8 and 9 then discuss the implementation of mbeddr itself, illustrat-
ing the power of MPS to realize Generic Tools, Specific Languages.

Chapter 6. Language Workbenches and MPS 153

154

7
Language Composition and MPS

Abstract — Language modularization and composition is the backbone of Generic
Tools, Specific Languages. Based on the two dimensions of syntactic mixing and
dependencies, this chapter identifies four major composition techniques: referencing,
reuse, extension and embedding. In addition, restriction, annotations and extension
composition are special cases of the four major techniques. All of these techniques are
supported by MPS, and this chapter provides simple examples that act as the basis
for the discussion of the implementation of mbeddr languages discussed in Chapters
8 and 9. The chapter concludes by comparing and contrasting MPS’ approach with
other approaches to language composition.

7.1 I N T R O D U C T I O N

As mentioned in the introduction to Chapter 6, language composition is an
important capability provided by language workbenches. This is for several
reasons. One reason is the rising level of complexity of target platforms. For
example, web applications consist of business logic on the server, a database
backend, business logic on the client as well as presentation code on the client.
Most of these are implemented with their own set of languages, and these
have to be integrated in some way when applications are developed for this
platform. A particular language stack could use Java, SQL, JavaScript and
HTML.

The second reason driving multi-language programming is the increasing
popularity of DSLs. Since these are specialized and often small languages that
are optimized for expressing programs in a particular domain, several such
languages will have to be composed to implement a complete system. DSLs
may be used to describe technical domains (for example, database querying,
user interface specification or scheduling) or business domains (such as in-
surance contracts, refrigerator cooling algorithms or state-based programs in
embedded systems). mbeddr’s extensions to C can be seen as a set of DSLs
for embedded software development – these all have to be integrated in some
way.

The combined use of multiple languages in a single system raises the ques-
tion of how the syntax, semantics, and the development environments (IDEs)
of the various languages can be integrated. In particular, syntactic compo-
sition has traditionally been hard [Kats et al., 2010]. Adding a requirement
for decent IDE support, such as code completion, syntax coloring, static error
checking, refactoring or debugging for the syntactically composed languages
makes the challenge even harder. In some rare cases, syntactic integration be-
tween specific pairs of languages has been built, for example, embedded SQL

155

in Java [Bravenboer et al., 2010]. A more systematic approach for language
and IDE modularization and composition is required to provide IDE support
for arbitrary combinations of languages.

Language and IDE modularization and composition addresses the follow-
ing concerns. First, the concrete and the abstract syntax of the two languages
have to be composed. This may require the embedding of one syntax into
another. This, in turn, requires modular syntax definitions. Second, the static
semantics (constraints and type system) have to be integrated. For example,
existing operators have to be overridden for new types. Third, the execution
semantics have to be combined as well. In practice, this may mean mixing the
code generated from the composed languages, or composing the generators
or interpreters. Finally, the IDE services have to be composed as well.

This chapter discusses the challenge of language and IDE modularization
and composition; it proceeds as follows: Section 7.2 defines terms and con-
cepts used throughout the chapter. Section 7.3 introduces four composition
approaches and provides a rationale for why these four approaches are dis-
cussed, and not others: referencing, reuse, extension and embedding. The
main section of the chapter is Section 7.4 which shows the implementation of
the four composition approaches in MPS.

The discussion in Section 7.4 is based on a set of languages that compose in
various ways with the entities language developed in Section 6.5: the uispec
language illustrates referencing with entities. relmapping is an example of
reuse with separated generated code. rbac illustrates reuse with intermixed
generated code. uispec_validation demonstrates extension (of the uispec
language) and embedding with regards to the expressions language. Exten-
sion is also illustrated by extending MPS’ built in BaseLanguage, a variant of
Java.

Figure 7.1 entities is the central language. uispec defines UI forms for the
entities. uispec_validation adds validation rules, and embeds a reusable
expressions language. relmapping provides a reusable database mapping lan-
guage, relmapping_entities adapts it to the entities language. rbac is a reus-
able language for specifying access control permissions; rbac_entities adapts
this language to the entities language.

156

7.2 T E R M I N O L O G Y

Programs are represented in two ways: concrete syntax and abstract syntax.
A language definition comprises both concrete syntax and abstract syntax, as
well as rules for mapping one to the other. Parser-based systems map the con-
crete syntax to the abstract syntax. Users interact with a stream of characters,
and a parser derives the abstract syntax tree (AST) by using a grammar. Pro-
jectional editors go the other way round: user editing gestures directly change
the AST, the concrete syntax being a mere projection that looks (and mostly
feels) like text. MPS is a projectional editor.

The abstract syntax of programs is primarily a tree of program elements.
Every element (except the root) is contained by exactly one parent element.
Syntactic nesting of the concrete syntax corresponds to a parent-child relation-
ship in the abstract syntax. There may also be any number of non-containment
cross-references between elements, established either directly during editing
(in projectional systems) or by a linking phase that follows parsing.

A program may be composed from several program fragments that may
reference each other. Each fragment f is a standalone AST. In file-based tools,
a fragment corresponds to a file. Ef is the set of program elements in a
fragment.

A language l defines a set of language concepts Cl and their relationships.
The term concept is used to refer to concrete syntax, abstract syntax plus the
associated type system rules and constraints, as well as a definition of its se-
mantics. In a fragment, each program element e is an instance of a concept c
defined in a language l. The concept-of function co is defined to return the con-
cept of which a program element is an instance: co(element)) concept. Simi-
larly, the language-of function lo returns the language in which a given concept
is defined: lo(concept)) language. Finally, the fragment-of function f o returns
the fragment that contains a given program element: f o(element)) fragment.

The following sets of relations between program elements are defined. Cdnf
(short for children) is the set of parent-child relationships in a fragment f . Each
c 2 Cdn has the properties parent and child. Since fragments are primarily
trees and Cdnf essentially represents this tree structure, both parent and child
reside in the same fragment, so child 2 Ef and parent 2 Ef . Refsf (short
for references) is the set of non-containment cross-references between program
elements in a fragment f . Each reference r 2 Refsf has the properties f rom
and to, which refer to the two ends of the reference relationship. Finally, an
inheritance relationship applies the Liskov Substitution Principle [Liskov &
Wing, 1994] to language concepts: a concept sub that extends another concept
super can be used in places where an instance of super is expected. Inhf (short
for inheritances) is the set of inheritance relationships for a fragment f . Inhf is
a unidirectional relationship from the perspective of sub pointing to super.

Note that Refs and Inh can be used for languages as well (as Refsl and
Inhl). On fragment level, these relations look at particular program nodes.
At language level they refer to the definitions of the nodes, i.e., language

Chapter 7. Language Composition and MPS 157

concepts. Since Inhl is seen from the perspective of sub, the referenced super
may reside in another language.

An important concern in language and IDE modularization and composi-
tion is the notion of independence. An independent language does not depend
on other languages. It can be defined as follows:

8r 2 Refsl | lo(r.to) = lo(r.from) = l (7.1)
8s 2 Inhl | lo(s.super) = lo(s.sub) = l (7.2)
8c 2 Cdnl | lo(c.parent) = lo(c.child) = l (7.3)

An independent fragment is one where all references stay within the fragment:

8r 2 Refsf | fo(r.to) = fo(r.from) = f (7.4)

Homogeneous fragments are distinct from heterogeneous fragments. A homo-
geneous fragment is one in which all elements are expressed with the same
language:

8e 2 Ef | lo(e) = l (7.5)

As elaborated by Harel & Rumpe [2004] the execution semantics of a lan-
guage l is defined by mapping the syntactic constructs of l to concepts from
the semantic domain S of the language. Different representations of S and
the mapping l ! S exist. Harel and Rumpe prefer to use mathematical for-
malisms as S because their semantics are well known, but acknowledge that
other formalisms are useful as well. In this thesis the semantics of a language
l is considered to be defined via a transformation that maps a program ex-
pressed in l to a program in another language l2 that has the same observable
behavior. The observable behavior can be determined in various ways, for ex-
ample using a sufficiently large set of test cases. A discussion of alternative
ways to define language semantics is beyond the scope of this thesis, and,
in particular, interpretation is not discussed as an alternative to transforma-
tions in this chapter. This decision is driven partly by the fact that, in my
experience, transformations are the most widely used approach for defining
execution semantics in real-world language workbenches.

The chapter emphasizes IDE modularization and composition in addition
to language modularization and composition. IDE services refers to syntax
highlighting, code completion and static error checking, refactoring, quick
fixes, support for testing, debugging and version control integration. When
composing languages in MPS, these services are (mostly) automatically com-
posed as well. As a consequence, this chapter does not discuss IDE services
explicitly.

7.3 C L A S S I F I C AT I O N O F C O M P O S I T I O N A P P R O A C H E S

This chapter defines and discusses the following four modularization and
composition approaches: referencing, extension, reuse and embedding. Below

158

Figure 7.2 The four modularization and composition approaches are distinguished
regarding their fragment structure and language dependencies. The dependen-
cies dimension captures whether or not the languages have to be designed specif-
ically for a specific composition partner. The fragment structure dimension captures
whether or not the composition approach supports mixing of the concrete syntax
of the composed languages.

is an intuitive description of each approach; stricter definitions follow in the
remainder of the chapter.

Referencing Referencing refers to the case in which a program is expressed
in two languages A and B, but the parts expressed in A and B are kept in sepa-
rate homogeneous fragments (files), and only name-based references connect
the fragments. The referencing language has a direct dependency on the ref-
erenced language. An example for this case is a language that defines user
interface (UI) forms for data structures defined by another language. The UI
language references the data structures defined in a separate program.

Extension Extension also allows a dependency of the extending language to
the extended language (also called base language). However, in this case the
code written in the two languages resides in a single, heterogeneous fragment,
i.e. syntactic composition is required. An example is mbeddr’s extension of
C with new types, operators or literals.

Reuse Reuse is similar to referencing in that the respective programs reside
in separate fragments, connected only by references. However, in contrast to
referencing, no direct dependencies between the languages are allowed. An
example would be a persistence mapping language that can be used together
with different data structure definition languages. To make this possible, the
persistence mapping language cannot depend on any particular data defini-
tion language.

Embedding Embedding combines the syntactic integration introduced by
extension with not having dependencies introduced by reuse: independent lan-
guages can be used in the same heterogeneous fragment. An example is em-
bedding a reusable expression language into another DSL. Since neither of
the two composed languages can have direct dependencies, the same expres-
sion language can be embedded into different DSLs, and a specific DSL could
integrate different expression languages.

As can be seen from the above descriptions, the four approaches are dis-
tinguished regarding fragment structure and language dependencies, as il-

Chapter 7. Language Composition and MPS 159

lustrated in Figure 7.2 (other classifications have been proposed; these are
discussed in Section 7.5). Figure 7.3 shows the relationships between frag-
ments and languages in these cases. These two criteria are essential for the
following reasons. Language dependencies capture whether a language has to
be designed with knowledge about a particular composition partner in order
to be composable with that partner. It is desirable in many scenarios that
languages be composable without previous knowledge about possible compo-
sition partners. Fragment structure captures whether the composed languages
can be syntactically mixed. Since modular concrete syntax can be a challenge,
this is not always easily possible, though often desirable.

Figure 7.3 The relationships between fragments and languages in the four com-
position approaches. Boxes represent fragments, rounded boxes are languages.
Dotted lines are dependencies, solid lines references/associations. The shading of
the boxes represent the two different languages.

7.4 L A N G U A G E C O M P O S I T I O N W I T H M P S

This section discusses the four language and IDE modularization and compo-
sition techniques introduced in Section 7.3, plus an additional one that works
only with a projectional editor such as MPS. The four major techniques are
defined with a concise prose definition plus a set of formulas. Each technique
is then illustrated with a detailed example based on the entities language
introduced in the previous chapter1.

7.4.1 Language Referencing

Language referencing enables homogeneous fragments with cross-references
among them, using dependent languages (Figure 7.4).

A fragment f2 depends on f1. f2 and f1 are expressed with languages l2
and l1, respectively. l2 is called the referencing language, and l1 the referenced
language. The referencing language l2 depends on the referenced language
l1 because at least one concept in the l2 references a concept from l1. While
equations (7.2) and (7.3) (from Section 7.2) continue to hold, (7.1) does not.

1 I have decided against using mbeddr examples in this systematic and introductory chapter to
keep the overall complexity lower. The next chapter shows how mbeddr’s C extensions have
been built.

160

Figure 7.4 Referencing: language l2 depends on l1, because concepts in l2 refer-
ence concepts in l1. (Rectangles represent languages, circles represent language
concepts, and UML syntax is used for the lines: dotted = dependency, arrows =
associations, hollow-triangle-arrow for inheritance.)

Instead

8r 2 Refsl2 | lo(r.from) = l2 ^ (lo(r.to) = l1 _ lo(r.to) = l2) (7.6)

From a concrete syntax perspective, such a reference is a simple identifier,
(possibly with dots). This terminal can easily be redefined in the referencing
language and does not require reusing and embedding non-terminals from
the referenced language. Hence no syntactic composition is required in this
case.

The uispec language serves as an example for referencing; it defines UI
forms for entities. Below is an example. This is a homogeneous fragment,
expressed only in the uispec language. Only the identifiers of the referenced
elements (such as Employee.name) have been added to the referencing lan-
guage, as discussed in the previous paragraph. However, the fragment is
dependent, since it references elements from another fragment (expressed in
the entities language).

form CompanyStructure
uses Department
uses Employee
field Name: textfield(30) -> Employee.name
field Role: combobox(Boss, TeamMember) -> Employee.role
field Freelancer: checkbox -> Employee.freelancer
field Office: textfield(20) -> Department.description

Structure and Syntax The abstract syntax for the uispec language is shown
in Figure 7.5. The uispec language extends2 the entities language, which
means that concepts from the entities language can be used in the definition
of the uispec language. A Form owns a number of EntityReferences, which
in turn reference an Entity. Below is the definition of the Field concept. It
has a label property, owns exactly one Widget (hence the cardinality of 1) and
refers to the Attribute it edits.

2 MPS uses the term extension whenever the definition of one language uses or refers to concepts
defined in another language. This is not necessarily an example of language extension as
defined in this thesis.

Chapter 7. Language Composition and MPS 161

Figure 7.5 The abstract syntax of the uispec language. Dotted boxes represent
classes from another language (here: the entities language). A Form contains
EntityReferences that connect to an entities model. A Form also contains
Fields, each referencing an Attribute from an Entity and containing a Widget.

concept Field extends BaseConcept
properties:

label: string
children:

Widget widget 1
references:

Attribute attribute 1

Note that there is no composition of concrete syntax, since the programs writ-
ten in the two composed languages remain separated into their own frag-
ments. No grammar ambiguities or clashes between names of concepts may
occur in this case.

Type System There are limitations regarding which widget can be used
with which attribute type. For example, a checkbox widget can only be used
with Boolean attributes. The typing rule below implements these checks and
is defined in the uispec language. It references types from the entities lan-
guage. A checking rule is used to illustrate how constraints can be written
that do not use the inference engine introduced earlier.

checking rule checkTypes for Field as f {
node<Widget> w = f.widget;
node<Type> t = f.attribute.type;
if (w.isInstanceOf(CheckBoxWidget) &&

!(t.isInstanceOf(BooleanType))) {
error "checkbox can only be used with booleans" -> w;

}
if (w.isInstanceOf(ComboWidget) &&

!(t.isInstanceOf(StringType))) {
error "combobox can only be used with strings" -> w;

}
}

162

Generator The defining characteristic of referencing is that the two lan-
guages only reference each other, and the instance fragments are dependent,
but homogeneous. No syntactic integration is necessary. In this example, the
generated code exhibits the same separation. From a Form, a Java class is gen-
erated that uses Java Swing to render the UI. It uses the Beans generated from
the entities: they are instantiated, and the setters are called. The generators
are separate but they are dependent, since the uispec generator knows about
the names of the generated Java Beans, as well as the names of the setters and
getters. This dependency is realized by defining a set of behavior methods on
the Attribute concept that are called from both generators. The code below
shows these methods. Note that the colon in the code represents the node cast
operator and binds tightly; the code casts the Attribute’s parent to Entity
and then accesses the name property.

concept behavior Attribute {
public string qname()

{ this.parent:Entity.name + "." + this.name;}
public string setterName() { "set" + this.name.toFirstUpper(); }
public string getterName() { "get" + this.name.toFirstUpper(); }

}

7.4.2 Language Extension

Language extension enables heterogeneous fragments with dependent languages
(Figure 7.6). A language l2 extending l1 adds additional language concepts to
those of l1. l2 is called the extending language, and l1 the base language. To
allow the new concepts to be used in the context of l1, some of them typically
extend concepts in l1. While l1 remains independent, l2 is dependent on l1:

9i 2 Inh(l2) | i.sub = l2 ^ (i.super = l2 _ i.super = l1) (7.7)

A fragment f contains language concepts from both l1 and l2:

8e 2 Ef | lo(e) = l1 _ lo(e) = l2 (7.8)

In other words f is heterogeneous. For heterogeneous fragments (1.3) no longer
holds, since:

8c 2 Cdnf | (lo(co(c.parent)) = l1 _ lo(co(c.parent)) = l2) ^
(lo(co(c.child)) = l1 _ lo(co(c.child)) = l2) (7.9)

Note that copying a language definition and changing it does not constitute a
case of extension, because the approach is not modular – it is invasive. Also,
native interfaces that supports calling one language from another (such as
calling C from Perl or Java) is not extension; rather it is a form of language
referencing. The fragments remain homogeneous.

As an example, the MPS BaseLanguage is extended with block expressions
and placeholders. These concepts make writing generators that generate Base-
Language code much simpler. Figure 7.7 shows an example.

Chapter 7. Language Composition and MPS 163

A block expression is a block that can be used where an Expression is ex-
pected [Bravenboer et al., 2005]. It can contain any number of statements;
yield can be used to "return values" from the block. A block expression can
be seen as an "inlined method" or a closure that is defined and called directly.
The generator of the block expression from Figure 7.7 transforms it into a
method and calls the generated method from the location where the block
expression is used:

aEmployee.setName(retrieve_name(aEmployee, widget0));
...

public String retrieve_name(Employee aEmployee, JComponent w) {
String newValue = ((JTextField) w).getText();
return newValue;

}

Structure and Syntax The exprblocks language extends MPS’ BaseLan-
guage. The block expression is used in places where the base language expects
an Expression, so a BlockExpression must extend Expression. Consequently,
fragments that use the exprblocks language can now use BlockExpressions
in addition to the concepts provided by BaseLanguage. The fragments become
heterogeneous.

concept BlockExpression extends Expression implements INamedConcept
children:

StatementList body 1

Type System The type of the yield statement is the type of the expression
that is yielded, specified by typeof(aYield) :==: typeof(aYield.result)
(the type of yield 1; is int, because the type of 1 is int). Since the BlockEx-
pression is used as an expression, it has to have a type as well: the type of
the BlockExpression is the common supertype of the types of all yields used
in the block expression:

var resultType;
for (node<BlockExpressionYield> y:

Figure 7.6 Extension: l2 extends l1. It provides additional concepts B3 and B4. B3
extends A3, so it can be used as a child of A2, plugging l2 into the context provided
by l1. Consequently, l2 depends on l2.

164

Figure 7.7 Block expressions (rendered with a shaded background) are basically
anonymous inline methods. Upon transformation, an actual method is generated
that contains the block content, and the block expression is replaced with a call
to this generated method. Block expressions are used mostly when implementing
generators; this screenshot shows a generator that uses a block expression.

blockExpr.descendants<BlockExpressionYield>) {
resultType :>=: typeof(y.result);

}
typeof(blockExpr) :==: resultType;

This equation iterates over all yield statements in a block expression and es-
tablishes an equation between the current yield’s type and a type variable
resultType. It uses the :>=: operator to express the fact that the resultType
must be the same or a supertype of the type of each yield. The only way to
make all these equations true (which is what the type system solver attempts
to do) is to assign the common supertype of all yield types to resultType.
This resultType is then associated with the type of the overall block expres-
sion.

Generator The generator reduces BlockExpressions to BaseLanguage. It
transforms a heterogeneous fragment (BaseLanguage plus exprblocks) to a
homogeneous fragment (BaseLanguage only). The first step is the creation of
the additional method for the block expression, as shown in Figures 7.8 and
7.9.

Figure 7.8 A weaving rule is used to create an additional method for a block ex-
pression. A weaving rule processes an input element (a BlockExpression) by
creating another element in a different location. The context function defines the
target location. In this example, it simply gets the class in which the particular block
expression is defined, so the additional method is generated into that same class.
The called template weaveBlockExpression is shown in Figure 7.9.

The template shown in Figure 7.9 shows the creation of the method. The
mapping label (b2M) creates a mapping between the BlockExpression and the

Chapter 7. Language Composition and MPS 165

created method. This label is used to refer to this generated method when
generating the method call that replaces the BlockExpression (Figure 7.10).

Figure 7.9 This generator template creates a method from the block expression. It
uses COPY_SRC macros to replace the string type in the template with the com-
puted return type of the block expression, inserts a computed name using a prop-
erty macro ($[]), adds a parameter for each referenced variable outside the block
(with the help of a LOOP macro), and inserts all the statements from the block ex-
pression into the body of the method (using a COPY_SRCL macro attached to the
return statement). The b2M (block-to-method) mapping label is used later when
generating the call to this generated method (shown in Figure 7.10 directly below).
The macros contain expression that return the to-be-created property values or the
nodes that must be inserted.

Another concept introduced by the exprblocks language is the Placehol-
derStatement. This extends Statement so that it can be used in function
bodies. It is used to mark locations at which subsequent generators can add
additional code. These subsequent generators will use a reduction rule to
replace the placeholder with whatever they want to put at this location. It is
a means to build extensible generators, as shown below.

Figure 7.10 This generates the call to the method generated in Figure 7.9. The
reference macro ->$[] around the callee dummy method is used to "reroute" the
invocation to generated method. The expression behind the the reference macro
(not shown) uses the b2M mapping label to retrieve the correct method; that label
had been attached by the generator that created the method in Figure 7.9. The
variables from the call’s environment are passed in as actual arguments using the
LOOP and COPY_SRC macros.

Extension comes in two flavors. One feels like actual extension, the other more
like embedding. This section has described the extension flavor: provide (a
little, local) additional syntax (block expressions and placeholders) to an oth-
erwise unchanged language (BaseLanguage). The programs still essentially
look like BaseLanguage programs, but in a few particular places, something
is different. Extension with embedding flavor is when a completely new lan-
guage is created that uses some of the syntax provided by a base language.
An example could be a state machine language that reuses Java’s expressions
in guard conditions. This use case feels like embedding, since syntax from

166

Figure 7.11 Reuse: l1 and l2 are independent languages. Within an l2 fragment,
nodes in a fragment expressed with l1 should still be referenceable. To do this, an
adapter language lA is added that uses extension and referencing to adapt l1 to l2.

the base language is embedded in the new language, but in terms of the clas-
sification (Section 7.3) it is still extension. True embedding would prevent
a dependency between the state machine language and Java. Embedding is
discussed in Section 7.4.4.

7.4.3 Language Reuse

Language reuse enables homogenous fragments with independent languages.
Consider two independent languages l2 and l1 and two fragment f2 and f1.
f2 depends on f1, so that:

9r 2 Refsf2 | fo(r.from) = f2 ^ fo(r.to) = f1

Since l2 is independent, its concepts cannot directly reference concepts in l1.
This makes l2 reusable with different languages, in contrast to language ref-
erencing, where concepts in l2 reference concepts in l1. l2 is called the context
language and l1 the reused language.

A way of realizing dependent fragments with independent languages is by
using an adapter language lA (cf. [Gamma et al., 1995]) that contains concepts
that extend concepts in l2 and reference concepts in l1 (Figure 7.11). One could
argue that in this case reuse is just a combination of referencing and extension.
This is true from an implementation perspective, but it is worth describing as
a separate approach, because it enables the combination of two independent
languages with an adapter after the fact, so no pre-planning during the design
of l1 and l2 is necessary.

Reuse covers the case in which a language has been developed indepen-
dently of its reuse context. The respective fragments remain homogeneous.
Two alternative cases are covered in the remainder of this section. In the first
one (a persistence mapping language) the generated code is separate from the
code generated from the entities language. The second one, a language for
role-based access control, describes the case in which the generated code has
to be "woven into" the entities code.

Chapter 7. Language Composition and MPS 167

Separated Generated Code

relmapping is a reusable language for mapping arbitrary data to relational
tables. It supports the definition of relational table structures, but leaves the
actual mapping of the source data to these tables unspecified. When the lan-
guage is adapted to a specific context, this mapping has to be provided. The
left side of the code below shows the reusable part. A database is defined that
contains tables with columns. Columns have (database-specific) data types.
The right side shows the database definition code when it is reused with the
entities language; each column is mapped to an entity attribute.

database CompanyDB database CompanyDB
table Departments table Departments

number id number id <- Department.id
char descr char descr <-Department.description

table People table People
number id number id <- Employee.id
char name char name <- Employee.name
char role char role <- Employee.role
char isFreelancer char isFreelancer <-

Employee.freelancer

Structure and Syntax Figure 7.12 shows the structure of the relmapping
language. The abstract concept ColumnMapper serves as a hook: if this lan-
guage is reused in a different context, this hook is extended in a context-
specific way.

The relmapping_entities language extends relmapping and adapts it for
reuse with the entities language. To this end, it provides a subconcept of
ColumnMapper, the AttributeColMapper, which references an Attribute from
the entities language as a means of expressing the mapping from the attri-
bute to the column. The relmapping language projects the column mapper
– and its context-specific subconcepts – on the right of the field definition,
resulting in heterogeneous fragments.

Figure 7.12 A Database contains Tables which contain Columns. A column has a
name and a type. A column also has a ColumnMapper. This is an abstract concept
that determines where the column gets its data from. It is a hook intended to be
specialized in sublanguages, specific to the particular reuse context.

168

Type System The type of a column is the type of its type property. In addi-
tion, the type of the column must also conform to the type of the column map-
per, so the concrete subtype must provide a type mapping as well. This "typ-
ing hook" is implemented as an abstract behavior method typeMappedToDB on
the ColumnMapper. The typing rules then look as follows:

typeof(column) :==: typeof(column.type);
typeof(column.type) :==: typeof(column.mapper);
typeof(columnMapper) :==: columnMapper.typeMappedToDB();

The AttributeColMapping concept implements this method by mapping Int-
Type to NumberType, and everything else to CharType:

public node<> typeMappedToDB()
overrides ColumnMapper.typeMappedToDB {

node<> attrType = this.attribute.type.type;
if (attrType.isInstanceOf(IntType)) {

return new node<NumberType>();
}
return new node<CharType>();

}

Generator The generated code is separated into a reusable base class gen-
erated by the generator of the relmapping language and a context-specific
subclass, generated by relmapping_entities. The generic base class contains
code for creating the tables and for storing data in those tables. It contains
abstract methods for accessing the data to be stored in the columns. The
dependency structure of the generated fragments, as well as the dependen-
cies of the respective generators, resembles the dependency structure of the
languages: the generated fragments are dependent, and the generators are
dependent as well: they share the name and implicitly the knowledge about
the structure of the class generated by the reusable relmapping generator.

public abstract class CompanyDBBaseAdapter {

private void createTableDepartments() {
// SQL to create the Departments table }

private void createTablePeople() {
// SQL to create the People table }

public void storeDepartments(Object applicationData) {
Insert i = new Insert("Departments");
i.add("id", getValueForDepartments_id(applicationData));
i.add("descr", getValueForDepartments_descr(applicationData));
i.execute();

}

public void storePeople(Object applicationData) { // like above }
public abstract String valueForDepartments_id(Object appData);

Chapter 7. Language Composition and MPS 169

public abstract String valueForDepartments_descr(Object appData);
// abstract methods for obtaining the data to be stored in the
// respective table columns - to be implemented by subclass.

}

The subclass generated by the generator (shown below) in the relmapping_-
entities language implements the abstract methods defined by the generic
superclass. The interface, represented by the appData object, has to be generic,
so that any kind of user data can be passed in. Note how this class references
the Beans generated from the entities.

public class CompanyDBAdapter extends CompanyDBBaseAdapter {

public String valueForDepartments_id(Object appData) {
Object[] arr = (Object[]) appData;
Department o = (Department) arr[0];
return o.getId();

}
public String valueForDepartments_descr(Object appData) {

Object[] arr = (Object[]) appData;
Department o = (Department) arr[0];
return o.getDescription();

}
}

Interwoven generated code

rbac is a language for specifying role-based access control. The code be-
low shows an example fragment when used together with entities: it ref-
erences entities (Department) and attributes (Employee.name) defined in some
entities fragment.

users: user mv: Markus Voelter
user ag: Andreas Graf
user ke: Kurt Ebert

roles: role admin: ke
role consulting: ag, mv

permissions: admin, W: Department
consulting, R: Employee.name

Structure and Syntax The structure is shown in Figure 7.13. Like relmapping,
rbac provides a hook Resource to adapt it to context languages. The sub-
language rbac_entities provides two subconcepts of Resource, namely At-
tributeResource to reference to an Attribute, and EntityResource to refer
to an Entity, to define permissions for entities and their attributes.

Type System No type system rules apply here, because none of the con-
cepts added by the rbac language are typed or require constraints regarding
the types in the entities language.

170

Figure 7.13 The language structure of the rbac language. An RBACSpec contains
Users, Roles and Permissions. Users can be members in several roles. A per-
mission assigns a role and right (read, write) to a Resource (such as an Entity or
an Attribute).

Generator What distinguishes this case from the relmapping case is that
the code generated from the rbac_entities language is not separated from
the code generated from the entities; the convenient base class/subclass
approach cannot be used. Instead, a permission check is required inside the
setters of the Java Beans. Here is some example code:

public void setName(String newValue) {
// check permission (from rbac_entities language)
if (!new RbacSpecEntities().hasWritePermission("Employee.name")) {

throw new RuntimeException("no permission");
}
this.name = newValue;

}

The generated fragment is homogeneous (it is all Java code), but it is multi-
sourced, since several generators contribute to the same fragment. To imple-
ment this, several approaches are possible:

• AspectJ3 could be used. This would allow separate Java artifacts (all
single-sourced) to be generated, "mixed" together by the aspect weaver.
While this would be a simple approach in terms of MPS (because only
singled-sourced artifacts need to be generated), it fails to illustrate ad-
vanced MPS generator concepts (the point of this subsection), which is
why the approach is not used here.

• An interceptor framework (see the Interceptor pattern by Buschmann
et al. [1996b]) could be added to the generated Java Beans, with the
generated code contributing specific interceptors. This would effectively
mean building a custom aspect-oriented programming (AOP) solution.
This approach is not used either, for the same reason that AspectJ is not
used.

3 http://www.eclipse.org/aspectj/

Chapter 7. Language Composition and MPS 171

• Additional code could be "injected" into the generation templates of the
existing entities generator from the rbac_entities generator. This
would make the generators woven, as opposed to just dependent. How-
ever, weaving generators in MPS is not supported.

• A hook in the generated Java beans code could be defined, with the
rbac_entities generator contributing code to this hook. The genera-
tors remain dependent because they share knowledge about the way
the hook works. This is the approach used in the remainder of this
section.

Notice that only the AspectJ solution would work without any pre-planning
from the perspective of the entities language, because it avoids mixing the
generated code artifacts (mixing is handled by AspectJ). All other solutions re-
quire the original entities generator to "expect" extensions. In this case, the
entities generator was modified to generate a PlaceholderStatement (Fig-
ure 7.14) into the setters. The placeholder acts as a hook at which subsequent
generators can add statements.

The rbac_entities generator contains a reduction rule for Placeholder-
Statements. If the generator encounters a placeholder (that has been put
there by the entities generator), it replaces it with code that checks for the
permission (Figure 7.15). To make this work, the generator priorities have to
specify that this generator runs strictly after the entities generator (since the
entities generator has to create the placeholder before it can be replaced) and
strictly before the BaseLanguage generator (which transforms BaseLanguage
code into Java text for compilation). Priorities specify a partial ordering (cf.
the strictly before and strictly after) on generators and can be set in
a generator properties dialog. Note that specifying the priorities does not
introduce additional language dependencies; modularity is retained.

7.4.4 Language Embedding

Embedding enables heterogeneous fragments with independent languages. Sim-
ilar to reuse, there are two independent languages l1 and l2, but instead of just
having references between two homogeneous fragments, instances of concepts
from l2 are now embedded in a fragment f expressed with l1:

Figure 7.14 This generator fragment creates a setter method for each attribute of
an Entity. The LOOP iterates over all attributes. The $ macro computes the name
of the method, and the COPY_SRC macro on the argument type computes the type.
The placeholder is used later to insert the permission check.

172

Figure 7.15 This reduction rule replaces PlaceholderStatements with a per-
mission check. Using the condition, only those placeholders whose identifier is
pre-set are matched. This identifier has been defined in the template in Fig-
ure 7.14. The inserted code queries another generated class that contains the
actual permission check. A runtime exception is thrown if the check fails.

8c 2 Cdnf | lo(co(c.parent)) = l1 ^
(lo(co(c.child)) = l1 _ lo(co(c.child)) = l2)) (7.10)

Unlike language extension, where l2 depends on l1 because concepts in l2
extend concepts in l1, there is no such dependency in this case. Both languages
are independent. l2 is called the embedded language and l1 the host language.
Again, an adapter language can be used to achieve this (embedding without
adapters in described Section 7.4.5). However, in this case concepts in lA do
not just reference concepts from l1. Instead, they contain them. The diagram
is similar to Figure 7.11, but with a containment link between B5 and A3.

As an example, an existing expressions language is embedded into the
uispec language without modifying either the uispec language or the ex-
pression language, since, in the case of embedding, none of them may have a
dependency on the other. Below is an example program using the resulting
language that uses expressions after the validate keyword:

form CompanyStructure
uses Department
uses Employee
field Name: textfield(MAX_NAME_LEN) -> Employee.name

validate lengthOf(Employee.name) < MAX_NAME_LEN
field Role: combobox(Boss, TeamMember) -> Employee.role
field Freelancer: checkbox -> Employee.freelancer

validate if (isSet(Employee.worksAt))
Employee.freelancer == true

else
Employee.freelancer == false

field Office: textfield(20) -> Department.description

Chapter 7. Language Composition and MPS 173

Structure and Syntax A new language uispec_validation is created that
extends uispec and also extends expressions. Figure 7.16 shows the struc-
ture. To be able to use the validation expressions, the user has to use instances
of ValidatedField instead of plain Fields. ValidatedField is also defined in
uispec_validation and is a subconcept of Field.

Figure 7.16 The uispec_validation language defines a subtype of
uispec.Field that contains an Expression from a reusable expressions
language. The language also defines a couple of additional expressions, including
the AttributeRefExpr, which can be used to refer to attributes of entities.

To support the migration of existing models that already contain Field in-
stances, an intention is created. An intention is an in-place model transforma-
tion that can be triggered by the user by selecting it from the intentions menu
accessible via Alt-Enter. This particular intention is defined for a Field, so
the user can press Alt-Enter on a Field and select Add Validation4. This
transforms an existing Field into a ValidatedField, so that a validation ex-
pression can be entered. The core of the intention is the following script,
which performs the actual transformation:

execute(editorContext, node)->void {
node<ValidatedField> vf = node.replace with new(ValidatedField);
vf.widget = node.widget;
vf.attribute = node.attribute;
vf.label = node.label;

}

As mentioned, the uispec_validation language extends the uispec and ex-
pressions languages. ValidatedField has a property expr that contains the
actual Expression. As a consequence of polymorphism, any existing subcon-
cept of Expression defined in the expressions language can be used here.
So without doing anything else, one could write 20 + 40 > 10, since inte-
ger literals and the + and > operators are defined as part of the embedded
expressions language. However, to express useful field validations, entity
attributes must be referenceable from within validation expressions. The
AttributeRefExpr (as shown in Figure 7.16) is created to achieve this. Also,

4 Alternatively, a way for people to just type validate on the right side of a field could be
implemented to trigger this transformation.

174

the LengthOfExpr and IsSetExpression are created as further examples of
how to adapt an embedded language to its new context (the uispec and
entities languages in the example). As an example, the following is the
structure definition of the LengthOfExpr:

concept LengthOfExpr extends Expression
children: Expression expr 1

The AttributeRefExpr references entity attributes. However, it may only ref-
erence attributes of entities that are used in the Form within which the valida-
tion expression resides. The code below defines the necessary scoping rule:

(model, scope, referenceNode, enclosingNode) -> sequence<node< >> {
nlist<Attribute> res = new nlist<Attribute>;
node<Form> form = enclosingNode.ancestor<Form>;
for (node<EntityReference> er: form.usedEntities)

res.addAll(er.entity.attributes);
return res;

}

Notice that, in terms of the concrete syntax, the actual embedding of the
expressions into the uispec_validation language is not a problem because of
how projectional editors work. No ambiguities can arise.

Type System Primitive types such as int and string are defined in the
entities language and in the reusable expression language. Although they
have the same names, they are not the same concepts, so the two sets of
types must be mapped. For example, the type of the IsSetExpression is
expressions.BooleanType so it fits in with the expressions language. The
type of the LengthOfExpr, which takes an AttributeRefExpression as its ar-
gument, is expressions.IntType. The type of an attribute reference is the
type of the attribute’s type property, as in typeof(attrRef) :==: typeof(
attrRef.attr.type). However, consider the following code:

field Freelancer: checkbox -> Employee.freelancer
validate if (isSet(Employee.worksAt))

then Employee.freelancer == false
else Employee.freelancer == true

This code states that if the worksAt attribute of an employee is set, then its
freelancer attribute must be false, else it must be true. It uses the == oper-
ator from the expressions language. However, that operator expects two
expressions.BooleanType arguments, but the type of the Employee.free-
lancer is entities.BooleanType. In effect, the typing rules for the == op-
erator in the expressions language have to be overridden. The expressions
language contains overloaded operation rules which specify the resulting type
for an EqualsExpression depending on its argument types. Below is the code
in the expressions language that defines the resulting type to be boolean if
the two arguments are expressions.BooleanType. The keywords left/right
operand type and the operation type function signature are predefined; only
the (new node<...>) expressions must be manually written:

Chapter 7. Language Composition and MPS 175

Figure 7.17 A number of reduction rules that map the reusable expressions lan-
guage to BaseLanguage (Java). Since the languages are very similar, the mapping
is trivial. For example, a MultiExpression is mapped to a * in Java; the left and
right arguments are reduced recursively through the COPY_SRC macro.

operation concepts: EqualsExpression
left operand type: new node<BooleanType>
right operand type: new node<BooleanType>
operation type: (op, leftOperandType, rightOperandType)->node< > {

new node<BooleanType>;
}

To override these typing rules for BooleanType from the entities language,
the uispec_validation provides another overloaded operation specification:

operation concepts: EqualsExpression
one operand type: new node<BooleanType> // entities.BooleanType!
operation type: (op, leftOperandType, rightOperandType)->node< > {

node<BooleanType>; // expressions.BooleanType
}

Generator For the generator, the following two alternative approaches can
be used. The first alternative uses the expressions language’s existing to-text
generator and wraps the expressions in some kind of TextWrapperStatement.
A wrapper is necessary because text cannot simply be embedded in BaseLan-
guage – this would not work structurally. The alternative is to write a (reus-
able) transformation from expressions to BaseLanguage; these rules would
be used as part of the transformation of uispec_validation code to BaseLan-
guage. Since many DSLs will map code to BaseLangauge, it is worth the effort
to write a reusable generator from expressions to BaseLanguage expressions.
The second alternative is chosen here.

The actual expressions defined in the expressions language and those of
BaseLanguage are almost identical, so this generator is trivial. A new lan-

176

Figure 7.18 References to entity attributes are mapped to a call to their getter
method. The template fragment (inside the <TF .. TF>) uses reference macros
(->$) to "rewire" the reference to the Java Bean instance, and the toString method
call to a call to the getter.

guage project expressions.blgen is created, and reduction rules are added.
Figure 7.17 shows some of these reduction rules.

Reduction rules for the new expressions added in the uispec_validation
language (AttributeRefExpression, isSetExpression, LengthOfExpr) are nec-
essary as well. Those rules are defined in uispec_validation. As an example,
Figure 7.18 shows the rule for handling the AttributeRefExpression. The
validation code itself is "injected" into the UI form via the same placeholder
reduction, as in the case of the rbac_entities language.

7.4.5 Language Annotations

In a projectional editor, the concrete syntax of a program is projected from the
AST. A projectional system always goes from abstract syntax to concrete syn-
tax, never from concrete syntax to abstract syntax (as parsers do). This has the
important consequence that the concrete syntax does not have to contain all
the data necessary to build the AST, which, in the case of parsers, is necessary.
This has two consequences:

• A projection may be partial. The abstract syntax may contain data that
is not shown in the concrete syntax. The information may, for example,
only be changeable via intentions (see Section 7.4.4), or the projection
rule may project some parts of the program only in some cases, con-
trolled by some kind of configuration.

• It is also possible to project additional concrete syntax that is not part
of the concrete syntax definition of the original language. Since the
concrete syntax is never used as the information source, such additional
syntax does not confuse the tool (in a parser-based tool the grammar
would have to be changed to take into account this additional syntax in
order not to derail the parser).

This section discusses the second alternative. It represents a variant of em-
bedding (no dependencies, but syntactic composition). The mechanism MPS
uses for this is called annotations; their use has already been illustrated in the
context of generator templates (Section 6.5): an annotation can be attached to

Chapter 7. Language Composition and MPS 177

arbitrary program elements and can be shown together with the concrete syn-
tax of the annotated element. This section uses this approach to implement
an alternative approach for the entity-to-database mapping. Using this ap-
proach, the mapping from entity attributes to database columns can be stored
directly in the Entity, resulting in the following code:

module company
entity Employee {

id: int -> People.id
name: string -> People.name
role: string -> People.role
worksAt: Department -> People.departmentID
freelancer: boolean -> People.isFreelancer

}

entity Department {
id: int -> Departments.id
description: string -> Departments.descr

}

This is a heterogeneous fragment, consisting of code from entities, as well
as the annotations (for example, -> People.id). From a concrete syntax per-
spective, the column mapping is embedded in the Entity. In the AST the
mapping information is also actually stored in the entities model. However,
the definition of the entities language does not know that this additional
information is stored and projected "inside" entities. The entities language
is not modified.

Structure and Syntax An additional language relmapping_annotations
is defined which extends the entities language as well as the relmapping
language. This language contains the following concept:

concept AttrToColMapping extends NodeAnnotation
references:

Column column 1
properties:

role = colMapping
concept links:

annotated = Attribute

AttrToColMapping concept extends NodeAnnotation, a concept predefined by
MPS. Concepts that extend NodeAnnotation have to provide a role property
and an annotated concept link. Structurally, an annotation is a child of the
node it annotates. So the Attribute has a new child of type AttrToColMapping,
and the reference that contains the child is called @colMapping – the value of
the role property prepended with @. The annotated concept link points to
the concept to which this annotation can be added. AttrToColMappings can be
annotated to instances of Attribute.

While structurally the annotation is a child of the annotated node, the rela-
tionship is reversed in the concrete syntax: The editor for AttrToColMapping

178

Figure 7.19 The editor for the AttrToColMapping embeds the editor of the concept
it is annotated to (using the attributed node cell). It then projects the reference
to the referenced column. This gives the editor of the annotation control of whether
and how the editor of the annotated element is projected.

wraps the editor for Attribute, as Figure 7.19 shows. A slight drawback of
this approach is that, since the annotation is not part of the original language,
it cannot just be "typed in": it must be attached to nodes via an intention.

It is possible to define the annotation target to be BaseConcept, which
means the annotation can be attached to any program element. This is useful
for generic metadata such as documentation, requirements traces or presence
conditions in product line engineering (discussed in Sections 4.8 and 4.9).
MPS’ template language uses this approach as well. Note that this is a way
to support embedding generically, without the use of an adapter language.
The reason why this generic approach is useful mostly for metadata is related
to semantics: since the annotations can be composed with any other language
without an adapter, the semantics must be generic as well, i.e. not related
to any particular target language. This is true for the generic metadata men-
tioned above.

Type System The same typing rules are necessary as in relmapping_enti-
ties described previously. They reside in relmapping_annotations.

Generator The generator is also similar to the one for relmapping_entities.
It takes the entities model as the input, and then uses the column mappings
in the annotations to create the entity-to-database mapping code.

7.4.6 Language Restriction

Mernik et al. [2005] suggest restriction as another means of language modu-
larization and composition. In the context of this thesis, however, restriction
is considered a special case of extension: a restriction is implemented as a set
of additional constraints on an existing language. The restrictions live in a
separate language that extends the restricted language. As usual in the case
of extension, the language that defines these restrictions has a dependency on
the restricted language.

Restrictions are often used together with extension or embedding. For
example, in the example in Section 7.4.4, the validation expressions may be
restricted to only use arithmetic expressions, comparison expressions and the
special expressions built for the purpose (AttributeRefExpr or LengthOfExpr),
and not all the other expressions potentially available in a reusable expression
language.

Chapter 7. Language Composition and MPS 179

Another example is the restriction on use of return statements in the block
expressions introduced in Section 7.4.2. As a consequence of how block ex-
pressions are generated to Java, return statements cannot be used inside a
block expression. To express such a restriction, a can be ancestor constraint
is defined for the BlockExpression in the blockexpr language:

concept constraints for BlockExpression {
can be ancestor:

(operationContext, scope, node, childConcept, link)->boolean {
childConcept != concept/ReturnStatement/;

}
}

The childConcept variable represents the concept of which an instance is
about to be added under a BlockExpression. The constraint expression has
to return true if the respective childConcept is valid in this location. True
is returned if the childConcept is not a ReturnStatement. Note how this
constraint is written from the perspective of the ancestor (the BlockExpression).
MPS also supports writing constraints from the perspective of the child. This
is important to keep dependencies pointing in the right direction.

7.4.7 Extension Composition

Erdweg et al. [2012] suggest another composition mechanism called extension
composition. This refers to the ability of using several independently developed
extensions of a base language together in the same program. This feature is
extremely important to exploit the benefits of extension.

The reason why it is worth mentioning explicitly is this. As discussed in
this chapter, extension implies that when defining the extension language, the
base language is known, so the extension language can be defined in a way
that is compatible with the base language. In particular, syntactic ambiguities
can be avoided. However, in extension composition, several independently
developed extensions to the same base language are combined in a single
program. While each of the extensions can be designed to be compatible with
the common base language, they cannot be designed to be compatible with
each other, since, at the time of developing either of the two, it is not known
that they will be used together in the future. The same issue arises if several
languages are embedded into a common host language.

MPS supports extension composition, and mbeddr uses it extensively: all
C extensions discussed in this thesis can be used together in a single program.
As a consequence of MPS’ projectional editor, no ambiguities may arise. The
following illustrates how MPS handles potential ambiguities:

Same Concept Name: Two languages (independent extensions or embeddings)
may define concepts with the same name as the host language. This
will not lead to ambiguity because concepts have a unique ID as well. A
program element will use this ID to refer to the concept whose instance
it represents.

180

Same Concrete Syntax: The projected representation of a concept is not rele-
vant to the functioning of the editor. The program would still be un-
ambiguous to MPS even if all elements had the same notation. Of course
it would be confusing to the users. However, users can always see the
qualified name of the instantiated concept in the inspector as a means
of disambiguation.

Same Alias: If two concepts that are valid at the same location use the same
alias, then, as the user types the alias, it is not clear which of the two
concepts should be instantiated. This problem is solved by MPS opening
the code completion window and requiring the user to select which
alternative to choose explicitly. Once the user has made the decision,
the unique ID is used to create an unambiguous program tree.

7.5 R E L AT E D W O R K

This section discusses related work regarding the core contribution of this
thesis: language engineering, language workbenches and extensible IDEs.

Parsers and Grammars MPS is a projectional editor, and does not use gram-
mars and parsers. As this chapter has demonstrated, this enables language
and IDE modularization and composition. This section discusses the funda-
mental limitations and recent advances of parser-based tools in this respect.

Kats et al. [2010] describe the trade-offs with non-declarative grammars. Gram-
mar formalisms that cover only subsets of context-free grammars are not
closed under composition and composed grammars are likely to be outside
of the respective grammar class. Composition (without invasive change) is
prohibited. Formalisms that implement full context-free grammars avoid this
problem and compose much better.

Most mainstream parser generators (such as ANTLR [Parr & Quong, 1995])
do not support the full set of context-free grammars and hence face problems
with composition. In contrast, version 2 of the Syntax Definition Formalism
(SDF2, [Visser, 1997]) does support full context-free grammars. Based on a
scannerless GLR parser, it parses tokens and characters in a context-aware
fashion. There will be no ambiguities if grammars are composed that both
define the same token or production in different contexts. This allows, for
example, embedding of SQL into Java (as Bravenboer et al. discuss by Bra-
venboer et al. [2010]). However, if the same syntactic form is used by the
composed grammars in the same location, manual disambiguation becomes
necessary. In SDF2, disambiguation is implemented via quotations and an-
tiquotations ("escape characters"), which are defined in a third grammar that
defines the composition of two other independent grammars [Bravenboer &
Visser, 2004]. The SILVER/COPPER system described by Wyk et al. [2008]
instead uses disambiguation functions written specifically for each combina-
tion of ambiguously composed grammars. In MPS disambiguation is never
necessary – in the worst case, the user makes the disambiguating decision by

Chapter 7. Language Composition and MPS 181

picking the correct concept from the code completion menu. Given a set of
extensions for a language, SILVER/COPPER allows users to include a sub-
set of these extensions into a program as needed (demonstrated for Java in
AbleJ [Wyk et al., 2007] and for SPIN/Promela in AbleP [Mali & Wyk, 2011]).
A similar approach is discussed for an SDF2-based system by Bravenboer &
Visser [2007]. However, ad-hoc inclusion only works as long as the set of
included extensions (presumably developed independently of each other) are
not ambiguous with regards to each other. Otherwise disambiguation has to be
used. Again, MPS does not have this limitation.

Polyglot, an extensible compiler framework for Java [Nystrom et al., 2003]
also uses an extensible grammar formalism and parser to supports adding,
modifying or removing productions and symbols defined in a base grammar.
However, since Polyglot uses the LALR grammar class, users must make sure
manually that the base language and the extension remains LALR.

Monticore is another parser-based tool that generates parsers, metamodels
and editors based on extended grammar. Languages can extend each other
and can be embedded within each other [Krahn et al., 2010]. An important
idea is the ability to not regenerate the parsers or any of the related tools for
a composed language. However, ambiguities have to be avoided manually.

Macro systems support the definition of additional syntax for existing lan-
guages (i.e. they can be seen as some form of language extension). The new
syntax is reduced in place to valid base language code. The definition of
the syntax and the transformation is expressed with special host language
constructs, not with a separate meta language. Macro systems differ with
regard to the degree of freedom they provide for the extension syntax, and
whether they support extensions of type systems and IDEs. The most prim-
itive macro system is the C preprocessor, which performs pure text replace-
ment during macro expansion. The Lisp macro system is more powerful be-
cause it is aware of the syntactic structure of Lisp (see Guy Steele’s Growing
a Language keynote [Jr., 1999]). An example of a macro system with limited
syntactic freedom is the Java Syntactic Extender [Bachrach & Playford, 2001],
in which each macro has to begin with a unique keyword, and only a limited
set of syntactic forms is supported. In OpenJava [Tatsubori et al., 1999], the lo-
cations where macros can be added is limited. More fine-grained extensions,
such as new operators, are not possible. Some of the C extensions developed
in mbeddr are macro-style (they are reduced in place to the corresponding
C code). However, MPS enforces no limitations on the granularity, syntax or
location of such extensions, and supports extending the type system and the
IDE.

MPS’ template language provides IDE support for the target language in
the template. In traditional text-generation template languages this is not possi-
ble, because it requires support for language composition: the target language
must be embedded in the template language. However, there are examples
of template languages that support this, built on top of modular grammar
formalisms. An example is the Repleo template language [Arnoldus et al.,
2007], which is built on SDF2. However, as explained in the discussion on

182

SDF above, SDF requires the definition of an additional grammar that defines
how the host grammar (template language in this case) and the embedded
grammar (target language) fit together (quotations). In MPS, any target lan-
guage can be marked up with template annotations. No separate language
has to be defined for the combination of template and target language.

Projectional Editing This section discusses other tools, that, like MPS, are
based on a projectional editor. The section focuses on flexibility and in partic-
ular on usability, since MPS is groundbreaking in this space.

An early example of a projectional editor is the Incremental Programming
Environment (IPE, [Medina-Mora & Feiler, 1981]). It provides a projectional
editor and an integrated incremental compiler. It supports the definition of
several notations for the same program (supported by MPS from late 2013)
as well as partial projections. However, the projectional editor forces users to
build the program tree top-down. For example, to enter 2+3, users first have to
enter the + and then fill in the two arguments. This is tedious and forces users
to be aware of the language structure at all times. In contrast, as illustrated in
Section 6.2.1, MPS supports editing that resembles linear text editing, partic-
ularly for expressions. IPE also does not address language modularity. In fact
it comes with a fixed, C-like language, and does not have a built-in facility for
defining new languages. Another projectional system is GANDALF [Notkin,
1985]. Its ALOEGEN component generates projectional editors from a lan-
guage specification. It has the same usability problems as IPE. This is nicely
expressed by Porter [1988]: Program editing will be considerably slower than nor-
mal keyboard entry although actual time spent programming non-trivial programs
should be reduced due to reduced error rates.

The Synthesizer Generator [Reps & Teitelbaum, 1984] also supports projec-
tional editing. However, at the fine-grained expression level, textual input and
parsing is used. This destroys many of the advantages of projectional editing
in the first place, because simple language composition at the expression level is
prohibited. This thesis shows that extensions of expressions are particularly
important to tightly integrate an embedded language with its host language.
MPS does not use this parsing "trick", and instead supports projectional edit-
ing also on the expression level, with convenient editing gestures.

The Intentional Domain Workbench [Simonyi et al., 2006] is a contempo-
rary projectional editor that has been used in real projects. While not too
much has been published about it, it is well-known that it supports mixing
graphical, tabular and textual notations.

Modular Compilers Language extension does not just include modular
concrete syntax. It also requires the extension or composition of static seman-
tics and transformations.

Many systems (including SILVER [Wyk et al., 2008] mentioned above, Jast-
Add [Hedin & Magnusson, 2003] and LISA [Mernik et al., 2002]) describe
static semantics using attribute grammars. These associate attributes with
AST elements. An attribute can hold arbitrary data about the element (such

Chapter 7. Language Composition and MPS 183

as its type). Forwarding [Wyk et al., 2002] is a mechanism that improves the
modularity of attribute grammars by delegating the look-up of an attribute
value to another element. While MPS’ type system can be seen as associating
a type attribute with AST elements using the typeof function, it is different
from attribute grammars. Attribute values are calculated by explicitly referring
to the values of other attributes, often recursively. MPS’ type system rules are
declarative. Developers specify typing rules for language concepts and MPS
"instantiates" each rule for each AST element. A solver then solves all type
equations in that AST. In this way the typing rules of elements contributed by
language extensions can implicitly affect the overall typing of the program.

For language extension the execution semantics is usually defined by a
transformation to the base language. van Wyk shows that this is valid only
if the changes to the AST are local, avoiding unintended interactions between
independently developed extensions used in the same program [Wyk et al.,
2008]. In MPS such local changes are performed with reduction rules. Based
on the experience with mbeddr, it is also feasible to add additional elements
to the AST in selected places. In MPS, this is achieved using weaving rules.
However, in both local reduction and selective adding, there is no way to
detect in advance whether using two extensions in the same program will
conflict semantically or not.

As mentioned before, the Stratego [Bravenboer et al., 2008] term rewriting-
based transformation engine separates the transformations themselves from
the orchestration of sets of transformations. The latter is achieved with several
predefined strategies that can be parameterized with the actual transforma-
tions. This way, the same transformations can be reused in different contexts.
The facility can also be used to define the global order of independently de-
veloped transformations.
Extensible Tools and Language Workbenches While projectional tools al-
ways requires an IDE for editing programs, textual languages can be used
with any text editor. Modular languages have already been discussed above;
modular IDEs and full-blown language workbenches are discussed here.

Early examples include the Synthesizer Generator [Reps & Teitelbaum,
1984] (mentioned above) and the Meta Environment [Klint, 1993], which pro-
vides an editor for languages defined via ASF+SDF. Rascal [Klint et al., 2009]
and Spoofax [Kats & Visser, 2010] provide Eclipse-based IDE support for SDF-
based languages. In both cases the IDE support for composed languages is
still limited (for example, at the time of this writing, Spoofax only provides
syntax highlighting for an embedded language, but no code completion), but
improving rapidly. To implement semantics, Rascal uses a Java-like language
that has been extended with features for program construction, transforma-
tion and analysis. Spoofax uses term rewriting based on Stratego [Bravenboer
et al., 2008], which supports transformation composition based on higher-
order strategies. An interesting tool is SugarJ [Erdweg et al., 2011] also based
on SDF2, which supports library based language extension, which can be seen
as a sophisticated macro system. Spoofax-based IDE support is available as
well [Erdweg et al., 2011].

184

LISA [Mernik et al., 2002] (mentioned earlier) supports the definition of
language syntax and semantics (via attribute grammars) in one integrated
specification language. It then derives, among other things, a syntax-aware
text editor for the language, as well as various graphical and structural view-
ing and editing facilities. Users can use inheritance and aspect-orientation to
define extended languages. The use of this approach for incremental language
development is detailed by Mernik & Zumer [2005]. However, users have to
make sure manually that sub-grammars remain unambiguous with respect to
the base grammar. The same is true for the combination of independently
developed grammars.

Eclipse Xtext5 generates sophisticated text editors from an EBNF-like lan-
guage specification. Syntactic composition is limited, since Xtext is based on
ANTLR [Parr & Quong, 1995], which is a two phase LL(k) parser. It is possible
for a language to extend one other language. Concepts from the base language
can be used in the sub-language. and it is possible to redefine grammar rules
defined in the base language. Combination of independently defined exten-
sions or embedding is not supported. Xtext’s abstract syntax is based on EMF
Ecore6, so it can be used together with any EMF-based model transformation
and code generation tool (such as Xtend, Xpand, ATL, and Acceleo, all part
of Eclipse Modeling7). Static semantics is based on constraints written in Java
or on third-party frameworks that support declarative description of type sys-
tems, such as XTS8 or XSemantics9. Xtext comes with Xbase, an expression
language that can be used as the basis for custom DSL [Efftinge et al., 2012].
Xbase also comes with a framework that simplifies the creation of interpreters
and compilers for Xbase-based DSLs.

An interesting comparison can be made with the Renggli et al’s Helvetia
[Renggli et al., 2010]. This supports language embedding and extension of
Smalltalk using homogeneous extension, which means that the host language
(Smalltalk) is also used for defining the extensions. In contrast to macro sys-
tems, it can embed languages with full-blown grammars. The authors argue
that the approach is independent of the host language and could be used with
other host languages as well. While this is true in principle, the implemen-
tation strategy relies heavily on the unique aspects of the Smalltalk system,
which are not available for other languages, and in particular, not for C. Also,
since extensions are defined in the host language, the complete implementa-
tion would have to be redone if the approach were used with another lan-
guage. This is particularly true for IDE support, where the Smalltalk IDE is
extended using this IDE’s APIs. mbeddr uses a heterogeneous approach which
does not have these limitations: MPS provides a language-agnostic framework
for language and IDE extension that can be used with any language, once the
language is implemented in MPS.

5 http://eclipse.org/Xtext
6 http://eclipse.org/emf
7 http://eclipse.org/modeling
8 http://code.google.com/a/eclipselabs.org/p/xtext-typesystem
9 http://xsemantics.sourceforge.net

Chapter 7. Language Composition and MPS 185

Cedalion [David H. Lorenz, Boaz Rosenan, 2011] is a host language for
defining internal DSLs, based on a projectional editor and logic programming
semantics. Both Cedalion and language workbenches such as MPS aim to
combine the best of both worlds from internal DSLs (combination and exten-
sion of languages, integration with a host language) and external DSLs (static
validation, IDE support, flexible syntax). Cedalion starts out from internal
DSLs and adds static validation and projectional editing, the latter avoiding
ambiguities resulting from combined syntaxes. Language workbenches start
from external DSLs and add modularization, and, as a consequence of imple-
menting GPLs with the same tool, optional tight integration with GPL host
languages. Cedalion could not be used for mbeddr though, since mbeddr
requires its own base language (C), and the logic-based semantics would not
have been a good fit.

An older line of work is focused on meta-CASE tools that aim at rapid
development of CASE tools in order to support customized development
methodologies [Ferguson et al., 2000]. They support specifying a metamodel
and a typically visual notation; editors are then synthesized. Tools that imple-
ment this approach range from academic tools such as Pounamu [Grundy &
Hosking, 2007] to industry quality tools based on Eclipse [Grünbacher et al.,
2009]. MetaEdit+ [Tolvanen & Kelly, 2009] is one of the most well-known tools
used in this space. It was and is used in several industry projects. The focus
of mbeddr is different: it focuses on mixed-notation languages and on the in-
cremental extension of languages, general-purpose and domain-specific. This
goes far beyond the creation of (often relatively high-level) graphical model-
ing languages.

Domain-Specific Tools based on Language Workbenches mbeddr is an
example of instantiating a language workbench to build a domain-specific
tool. While we believe that mbeddr is one of the largest and most sophis-
ticated examples of this class of tools, it is not the only one. For example,
WebDSL [Visser, 2007] is a set of DSLs for building (form-based) web applica-
tions based on Spoofax. mobl [Hemel & Visser, 2011] is a similar approach for
mobile web applications. WebDSL in particular has proven to be useful for re-
alistically sized applications, as exemplified by the researchr.org website. In
contrast to mbeddr, both WebDSL and Spoofax are not incremental extensions
of a general-purpose language, and are based on a parser-based language
workbench. The only other example that uses a projectional workbench is
Intentional’s Pension Workbench, discussed in a presentation on InfoQ titled
Domain Expert DSLs10.

Summary — This chapter demonstrated a number of techniques for language mod-
ularization and composition. As the discussion of related work shows, MPS has a
number of advantages compared to existing tools. These have been exploited in the
implementation of mbeddr, as Chapters 8 and 9 illustrate.

10 http://www.infoq.com/presentations/DSL-Magnus-Christerson-Henk-Kolk

186

8
Implementing mbeddr Languages

Abstract — mbeddr’s features, as demonstrated in Chapter 4, require many different
kinds of extensions to C, fully exploiting MPS’ capabilities for language modular-
ization and composition. This chapter illustrates how some interesting aspects of
the mbeddr languages are implemented, including extensions of top level constructs,
statements, expressions as well as types and literals. The chapter also discusses how
to plug in alternative transformations, annotate programs with meta data and restrict
the language. Integration of new languages, new prose words and new requirements
details is also discussed. The example extensions are selected to illustrate the various
aspects of language definition supported by MPS, including structure, editor, type
system and transformations.

8.1 I N T R O D U C T I O N

C can be partitioned into expressions, statements, functions, etc. These are
factored into separate language modules to make each of them reusable with-
out pulling in all of C. The expressions language is the most fundamental
language. It depends on no other language and defines the primitive types,
the corresponding literals and the basic operators. Support for pointers and
user-defined data types (enum, struct, union) is factored into the pointers
and udt languages respectively. statements contains the procedural part of C,
and the modules language covers modularization. Figure 8.1 shows an over-
view of some of the languages and constructs. This implementation of C must
be extensible in the following ways to ensure that meaningful systems can be
built (see also table Table 8.1):

Top Level Constructs Top level constructs (on the level of functions or
struct declarations) are necessary. This enables the integration of test cases
or new programming paradigms relevant in particular domains such as state
machines, or interfaces and components.

Statements New statements, such as assert or fail statements in test
cases, must be supported. If statements introduce new blocks, then vari-
able visibility and shadowing must be handled correctly, just as in regular
C. Statements may have to be restricted to a specific context; for example the
assert or fail statements must only be used in test cases and not in any other
statement list.

Expressions New kinds of expressions must be supported. An example
is the decision table expression that represents a two-level decision tree as a

187

Figure 8.1 Anatomy of the mbeddr language stack: the diagram shows some of
the language concepts, their relationships and the languages that contain them.

two dimensional table (Figure 4.4). Another example is references to event
arguments in state machines.

Types and Literals New types, for example, for matrices, complex num-
bers or quantities with physical units, must be supported. This also requires
defining new operators and overriding the typing rules for existing ones. New
literals may also be required: for example, physical units could be attached to
number literals (as in 10kg), or vectors may use the familiar vertical arrange-
ment of their elements.

Transformation Alternative transformations for existing language concepts
must be possible. For example, in a module marked as safe, the expression
x + y may be translated to addWithBoundsCheck(x, y), a call to an inline
function that performs bounds-checking in addition to adding x and y.

Metadata Decoration It should be possible to add metadata such as trace
links to requirements or product line variability constraints to arbitrary pro-
gram nodes, without changing the concept of the node.

Restriction It should be possible to define contexts that restrict the use of
certain language concepts. Like any other extension, such contexts must be
definable after the original language has been implemented, without invasive
change. For example, the use of pointer arithmetic should be prohibited in
modules marked as safe, or the use of real numbers should be prohibited in
state machines that are intended to be model checked (model checkers do not
support real numbers).

New Languages It must be possible to add new languages. These may be
completely independent of C or reuse some parts of C (for example, expres-

188

Structure Editor Behavior Scoping Type System Constraints Transform

Top level Tests Tests Tests
Contents Mocks

Statements Safeheap Safeheap Safeheap Safeheap SM Triggers

Expressions Dec. Tables Dec. Tables Dec. tables
Postconds. Postconds.

Types and Matrices Units Units
Literals Matrices

Alternative Ranges
transform

Metadata Traces Traces Arch. constr. Variants

Restriction Tests
Arch. constr.

Separate OS Config OS Config OS Config OS Config OS Config OS Config
language

Extending Req. Data Req. Data Req. Data
requirements

New words Words Words Words Words
in prose

Table 8.1 This table provides an overview of the remainder of this chapter. It re-
lates the means of extension (row headers), the discussed language aspect (col-
umn headers) and the examples (content cells). The examples are covered in the
following sections: Test cases and assert statements 8.2, State machine triggers
8.4, transformation of mock components 8.5, safeheap statement 8.6, decision ta-
bles 8.7, post-conditions 8.8, physical units 8.9, vectors and matrices 8.10, range
checking 8.11, requirements traces 8.12, product line variability 8.13, architecture
constraints 8.14, OS configuration 8.15, additional requirements data 8.16, and
new words in prose blocks 8.17.

sions). They may also define new entities that can be referenced from C. An
example would be a configuration for an operating system that declares tasks,
memory regions or interrupts.

New Requirements Details mbeddr supports languages that are not di-
rectly related to C, such as the requirements language. Such languages may
also have to be extended, for example, with ways to add business rules di-
rectly to requirements.

Documentation Words Finally, mbeddr makes use of blocks of prose text in
various contexts, such as comments, requirements descriptions or documents.
It must be possible to add new kinds of words (i.e., nodes rendered in prose
blocks). An example would be words that reference function arguments that
can be used in function documentation comments.

Chapter 8. Implementing mbeddr Languages 189

8.2 T E S T C A S E S A N D A S S E RT / FA I L S TAT E M E N T S

This section illustrates the implementation of test cases. Test cases were intro-
duced in Section 4.2. The test cases themselves are a top-level construct, and
the assert and fail statements available inside test cases are statement-level
extensions.

Structure Modules own a collection of IModuleContents, an interface that
acts as the supertype of everything that can reside directly in a module. All
top-level constructs, such as C’s Functions, structs or typedefs, implement
IModuleContent. IModuleContent extends MPS’ IIdentifierNamedConcept
interface, which provides a name property. IModuleContent also defines a
Boolean property exported that determines whether the respective module
content is visible to modules which import this module. This property is
queried by the scoping rules that determine which elements can be referenced
from within any given module. Since the IModuleContent interface can also be
implemented by concepts in other languages, new top-level constructs such as
the TestCase in the unittest language can implement this interface, as long
as the respective language has a dependency on the modules language, which
defines IModuleContent. Figure 8.1 shows some of the relevant concepts and
languages.

Constraints A test case contains a StatementList, so any C statement can
be used in a test case. StatementList becomes available to the unittest
language through its dependency on the statements language. unittest also
defines additional statements: assert and fail. They extend the abstract
Statement concept defined in the statements language. This makes them
valid in any statement list, for example in a function body. This is undesirable,
since the transformation of asserts into C depends on them being used in a
TestCase. To enforce this, a can be child constraint is defined (see below).
This constraint restricts an AssertStatement to be used only inside a TestCase
by checking that at least one of its ancestors is a TestCase.

concept constraints AssertStatement {
can be child

(context, scope, parentNode, link, childConcept)->boolean {
parentNode.ancestor<TestCase>.isNotNull;

}
}

Transformation The new language concepts in unittest are reduced to C
concepts: the TestCase is transformed to a void function without arguments
and the assert statement is transformed into a report statement defined in
the logging language. The report statement, in turn, is transformed into a
platform-specific way of reporting an error (console, serial line or error mem-
ory). Figure 8.2 shows an example of this two-step process.

190

8.3 E M B E D D I N G S TAT E M A C H I N E S I N C O M P O N E N T S

Ideally, independently developed extensions should be usable together in the
same program without explicitly designing them for any particular combina-
tion (this is extension composition as explained in Section 7.4.7). For example,
any concept that implements the IModuleContent interface can be used along-
side any other IModuleContent in a single program as long as their transfor-
mations do not interfere with each other.

However, sometimes it is not so simple. For example, while state machines
have been designed to be used as top-level concepts in modules (they im-
plement IModuleContent), they should also be usable in components. Those,
however, expect their contents to implement IComponentContent. The mis-
match can be resolved by using the Adapter pattern [Gamma et al., 1995]: a
new concept SmCompAdapter is defined which implements IComponentContent
and contains a State Machine. The editors can be built in a way that users
do not notice this adapter element when entering or reading the code. The
adapter concept lives in a separate language, so neither the components nor
the statemachines languages have a dependency on each other.

8.4 T R A N S F O R M I N G S TAT E M A C H I N E T R I G G E R S

State machines are top-level extensions (for an example, see Section 4.6) and
have to be transformed into an enum for the states, an enum for the events,
a struct that holds the state machine’s data (variables, current state), and a
function that implements the behavior. The function takes two arguments:
a struct that represents a state machine instance as well as the event the
instance is supposed to consume1.

The trigger statement is a statement-level extension which fires an event
into a state machine instance (for example, trigger(aStatemachineInstance,

1 The actual implementation is a little more complicated, since events can also have arguments.
This is ignored here for reasons of brevity.

test case exTest {
int x = add(2, 2);
assert(0) x == 4;
}

void test_exTest {
int x = add(2, 2);
report
test.FAIL(0)
on !(x == 4);

}

void test_exTest {
int x = add(2, 2);
if (!(x == 4)) {
printf("fail:0");

}
}

Figure 8.2 Two-stage transformation of TestCases. The TestCase is transformed
into a C function using the logging framework to output error messages. The
report statement is in turn transformed into a printf statement if code is gen-
erated for the Windows/Mac environment. It would be transformed into something
else if code were generated for the actual target device, a choice configured by the
user in the build configuration.

Chapter 8. Implementing mbeddr Languages 191

anEvent)). It must be transformed to a call to the function that implements the
state machine behavior, supplying the struct instance that corresponds to the
instance of the triggered state machine, plus the enum literal that represents
the event. Figure 8.3 shows the respective transformation rule. It has three
parts: the part above the -> specifies that the transformation rule applies to
instances of TriggerSMStatement. The part enclosed in <TF .. TF> is called
the template fragment. Its content replaces the TriggerSMStatement during ex-
ecution of the transformation. The rest of the code is used for scaffolding.
Scaffolding is necessary for the following reason: as mentioned earlier, the
code inside the template must be valid C code, even in the template (this is
why MPS can provide IDE support for the code in the template). So to be
able to generate a reference, the template must contain a node that can be
referenced by the reference, even if it is not intended to generate the refer-
enced node, because it already exists in the output AST. So, for example, to
be able to write a function call in the template, there first has to be a function
(smExecuteFunction), to be able to reference an enum literal, there has to be an
enum, and so on. During the execution of the transformation, references are
"rewired" using the ->$ macro. Its embedded expression returns the target for
the reference, typically an element that already exists (or has been created by
the transformation) in the output AST.

In the case discussed here, a call to a function with two arguments must be
generated, so the scaffolding has to contain a function with two arguments as
well – and they must have the correct type, to avoid getting type errors in the
template. Please see the caption of Figure 8.3 for further details.

The transformation rule above is an example of a reduction rule. Reduction
rules replace the input node with the code generated by the template associ-

Figure 8.3 Transformation macros are used to replace dummy nodes (such as
the reference e1) with the code created by the transformation based on the input
node. Reference macros (->$) are used to wire up references, and $COPY_SRC$
macros are used to replace entire nodes. Behind each macro is an expression
that computes the node that should be used to replace the dummy node. For
example, behind the $COPY_SRC$[theStatemachine] is an expression that returns
the variable that holds the instance data for the current state machine instance.
More details about transformations are discussed in the running text.

192

ated with the rule. MPS also supports various other kinds of rules, including
conditional root rules, which create a new node without a specific input el-
ement, and weaving rules, which create a new node at a specified location
different from the input node’s location in the output tree.

8.5 T R A N S F O R M I N G A M O C K C O M P O N E N T

Mock components (discussed in Section 4.4) are a special kind of component
that declaratively express the behavior they expect to see on their provided
ports in the context of a test case. They are a top-level extension, but they are
transformed to regular components, not to plain C. Here is an example:

mock component PasswordMock {
total number of calls is 3
sequence {

step 0: energyDataAccess.hasMeterStatus return false;
assert 0: parameter expectedStatus:

expectedStatus == PASSWORD_OK
step 1: energyDataAccess.hasMeterStatus return false;
step 2: setPasswordHandler.processCommand return true;

These expectations are transformed into implementations of the component
operations that track invocations and check whether the expectations are met.
For this to work, the mock-to-component transformation has to run before
the component-to-C transformation. To achieve this, the mock-to-components
generator specifies a strictly before constraint relative to the components-
to-C generator. Based on the specified relative priorities, MPS computes an
overall order comprising four separate phases. The following code shows the
overall mapping configuration for a program that uses mocks, components,
unit tests, and, of course, C:

[1] core.removeCommentedCode
[2] ext.components.mock
[3] ext.components.main, core.unittest
[4] core.ctext

Phase 1 removes commented code, since it should not end up in the resulting
C text file. Phase 2 runs the mock component transformation. As expected,
it runs before the components-to-C transformation, which runs in phase 3,
together with the unit-test-to-C transformation. Phase 4 finally generates the
resulting C text.

8.6 S A F E H E A P S TAT E M E N T

The basics of integrating new statements have been discussed in the previous
sections, for example, when assert and fail extended the Statement concept
inherited from the C core languages. This section focuses on statements that
require handling local variable scopes and visibilities. To do so, the imple-
mentation of the safeheap statement is illustrated, which automatically frees

Chapter 8. Implementing mbeddr Languages 193

dynamically allocated memory (an example is shown in Figure 8.4). The vari-
ables introduced by the safeheap statement must only be visible inside its
body, and they must shadow variables of the same name declared in outer
scopes (such as the a declared in the second line of the measure function in
Figure 8.4).

Figure 8.4 A safeheap statement declares heap variables which can only be used
inside its body. When control flow leaves the body, the memory is automatically
freed. Notice also how an error is reported if the variable tries to escape.

Structure Like any statement in C, the safeheap statement extends the ab-
stract concept Statement. It contains a StatementList as its body, as well as
a list of SafeHeapVars. These extend LocalVarDecl, a pre-condition for inte-
grating with the existing mechanism for handling local variable shadowing
(explained below).

Behavior LocalVarRefs are expressions that reference a LocalVarDecl. A
scope constraint determines the set of visible variables for a given LocalVarRef.
This constraint is implemented by plugging into mbeddr’s generic local vari-
able scoping mechanism using the following approach. The constraint as-
cends the containment tree until it finds a node which implements the concept
interface ILocalVarScopeProvider and calls its getLocalVarScope method.
A LocalVarScope has a reference to an outer scope, which is set by find-
ing its ILocalVarScopeProvider ancestor, effectively building a hierarchy of
LocalVarScopes. To get at the list of the visible variables, the LocalVarRef
scope constraint calls the getVisibleLocalVars method on the innermost
LocalVarScope object. This method returns a flat list of LocalVarDecls, taking
into account that variables owned by a LocalVarScope that is lower in the hier-
archy shadow variables of the same name from a higher level in the hierarchy.
So, to plug the SafeHeapStatement into this mechanism, it has to implement
ILocalVarScopeProvider and implement the following two methods:

public LocalVarScope getLocalVarScope(node<> ctx, int stmtIdx) {
LocalVarScope scope = new LocalVarScope(

getContainedLocalVars());
node<ILocalVarScopeProvider> outerScopeProvider =

194

this.ancestor<ILocalVarScopeProvider>;
if (outerScopeProvider != null)

scope.setOuterScope(outerScopeProvider.
getLocalVarScope(this, this.index));

return scope;
}

public sequence<node<LocalVariableDecl>> getContainedLocalVars() {
this.vars; // the list of SafeHeapVars

}

getContainedLocalVars returns the LocalVarDecls that are declared between
the parentheses of a safeheap statement (see the example in Figure 8.4).
getLocalVarScope constructs a scope that contains these variables and then
builds the hierarchy of outer scopes by relying on its ancestors that also im-
plement ILocalVarScopeProvider. The index of the statement that contains
the reference is passed in to make sure that only variables declared before the
reference site are visible.

Type System To make the safeheap statement work correctly, the vari-
ables declared and allocated in the safeheap statement must not escape from
the safeheap’s body. To prevent this, an error is reported if a reference to
a safeheap variable is passed to a function (see the code below). This type
system rule reports an error if a reference to a local variable declared and
allocated by the safeheap statement is used in a function call.

checking rule check_safeVarRef for LocalVarRef as lvr {
boolean isInSafeHeap =

lvr.ancestor<SafeHeapStatement>.isNotNull;
boolean isInFunctionCall =

lvr.ancestor<FunctionCall>.isNotNull;
boolean referencesSafeHeapVar =

lvr.var.parent.isInstanceOf(SafeHeapStatement);
if (isInSafeHeap && isInFunctionCall && referencesSafeHeapVar)

error "cannot pass a safe heap var to a function" -> lvr;
}

8.7 D E C I S I O N TA B L E E X P R E S S I O N S

Expressions are different from statements in that they evaluate to a value as
the program executes. During editing and compilation, the type of an ex-
pression is relevant for the static correctness of the program. So extending a
language in terms of expressions requires extending the type system as well.

Figure 4.4 shows an example decision table expression. It is evaluated to
the expression in a cell c if the column header of c and the row header of c
are true. If none of the condition pairs is true, then the default value, FAIL in
the example, is used as the resulting value. The type of the overall decision
table is the least common supertype of all value expressions. The type of the
header cells has to be Boolean.

Chapter 8. Implementing mbeddr Languages 195

Structure The decision table extends the Expression concept defined in the
expressions language. Decision tables contain a list of expressions for the
column headers, one for the row headers and another for the result values.
It also contains a child of type Expression to hold the default value. The
concept defines an alias dectab to allow users to instantiate a decision table in
the editor. Obviously, for non-textual notations such as the table, the alias will
be different than the concrete syntax (in textual notations, the alias is typically
made to be the same as the "leading keyword", for example, assert).

Editor Defining a tabular editor is straightforward: the editor definition
contains a table cell, which delegates to a Java class that implements ITable-
Model. This is similar to Java Swing. It provides methods such as getValueAt
(int row, int col) or deleteRow(int row), which have to be implemented
for any specific table-based editor. To embed another node in a table cell,
such as the expression in the decision table, the implementation of getValueAt
simply returns this node, which supplies its own editor.

Type System As mentioned above, MPS uses unification in the type system.
Language concepts specify type equations that contain type literals (such as
boolean) as well as type variables (such as typeof(dectab)). The unification
engine then tries to assign values to the type variables so that all applicable
type equations become true. New language concepts contribute additional
type equations. The code below shows those for decision tables; dectab rep-
resents a decision table.

// calculate the common supertype of all element
// types, reports an error if there is none
var commonElementType;
foreach e in dectab.resultValues {

infer typeof(e) :<=: commonElementType;
}

// commonElementType must also be
// a supertype of the default value
infer typeof(dectab.defaultValue) :<=: commonElementType;

// the type of the whole decision table expression
// is the common supertype calculated above
typeof(dectab) :==: commonElementType;

// for each of the expressions inside
// the column headers, the type must be Boolean
foreach expr in dectab.colHeaders {

typeof(expr) :==: <boolean>;
}

// ... same for the row headers
foreach expr in dectab.rowHeaders {

typeof(expr) :==: <boolean>;
}

196

The interesting part is the first part, where the commonElementType is com-
puted. First, a new, unbound type system variable is declared using the var
keyword. The code then iterates over all elements in the resultValues and
defines the following equation for each of them:

infer typeof(e) :<=: commonElementType;

This expresses the fact that the type of the element e must be the same as
or a subtype of (:<=:) the commonElementType variable. Note how, through
the iteration, one such equation for each element is created. The only way in
which the type system engine can make all of these equations true is to make
commonElementType represent the common supertype of all of the element
types.

New equations are solved along with those for existing concepts. For
example, the typing rules for a ReturnStatement ensure that the type of
the returned expression is the same as or a subtype of the type of the sur-
rounding function. If a ReturnStatement uses a decision table as the re-
turned expression, the type calculated for the decision (typeof(dectab) :==:
commonElementType;) table must be compatible with the return type of the
surrounding function.

8.8 P O S T- C O N D I T I O N S F O R I N T E R FA C E O P E R AT I O N S

Section 4.4 has shown how interface operations can declare pre- and post-
conditions. These are Boolean expressions that specify parts of the semantics
of the operation: pre-conditions have to be true before the operation is in-
voked, and if they are true, the post-conditions are guaranteed to be true after
the execution of the operation finishes. This section explains how to add an
expression that acts as a placeholder for the result value in an operation’s
post-condition.

Structure An Operation has a list of PrePostConditions, an abstract con-
cept that acts as the supertype of Precondition and Postcondition. It con-
tains a child called expr of type Expression. In post-conditions, the user
must have access to the result of the context operation to express things like
the result value is greater than zero. To make this possible, a new subconcept of
Expression is created, the ResultExpression:

concept ResultExpression extends Expression

By making ResultExpression a subtype of Expression, it can be used any-
where an Expression is expected. However, this is not what is required in this
case; the ResultExpression has to be restricted to inside of PostConditions.
And it should only be allowed if the return type of the owning Operation
is not void, since there is no meaningful result for void operations. Both
restrictions are implemented by a can be child constraint:

can be child constraint for ResultExpression {
(operationContext, scope, parent, link, childConcept)->boolean {

boolean isUnderPost = parent.ancestor<PostCondition>.isNotNull;

Chapter 8. Implementing mbeddr Languages 197

boolean isVoid = parent.ancestor<Operation>.returnType.
isInstanceOf(VoidType));

return isUnderPost && !isVoid;
}

}

Type System The type of the ResultExpression must be the return type of
the ancestor Operation:

rule typeof_ResultExpression for ResultExpression as resultExpr {
node<Operation> op = resultExpr.ancestor<concept = Operation>;
typeof(resultExpr) :==: typeof(op.returnType);

}

8.9 P H Y S I C A L U N I T S

Physical units are used to illustrate the extension of C with new types and
literals. An example was shown in Figure 4.1.

Structure Derived and convertible UnitDeclarations are IModuleContents.
Derived unit declarations specify a name (mps or kmh) and the corresponding
SI base units (m, s) plus an exponent; a convertible unit declaration speci-
fies a name and a conversion formula. The backbone of the extension is the
UnitType, which is a composite type that has another type (int, float) in
its valueType slot, plus a unit. The unit is either an SI base unit or a refer-
ence to a UnitDeclaration. It is represented in programs as baseType/unit/.
mbeddr also provides LiteralWithUnits, which are expressions that contain
a valueLiteral and, like the UnitType, a unit (so one can write 100 kmh).

Scoping LiteralWithUnits and UnitTypes reference a UnitDeclaration,
which are IModuleContents. According to the visibility rules, valid targets for
the reference are the UnitDeclarations in the same module, and the exported
ones in all imported modules. This rule applies to any reference to any module
contents, and is implemented generically in mbeddr. Here is the code for the
scope of the reference to the UnitDeclaration:

link {unit}
search scope:

(model, refNode, enclosingNode, operationContext)
->sequence<node<UnitDeclaration>> {

enclosingNode.ancestor<IVisibleNodeProvider>.
visibleContentsOfType(concept/UnitDeclaration/);

}

An interface IVisibleNodeProvider (implemented by Modules) is used to find
all instances of a given type. The implementation of visibleContentsOfType
simply searches through the contents of the current and imported modules
and collects instances of the specified concept. The result is used as the scope
for the reference.

198

Type System The use of equations and unification in type system rules has
been illustrated earlier. However, there is special support for binary operators
that makes overloading for new types easy: overloaded operations containers
essentially specify 3-tuples of (leftArgType, rightArgType, resultType), plus ap-
plicability conditions to match type patterns and decide on the resulting type.
Typing rules for new (combinations of) types can be added by specifying ad-
ditional 3-tuples. The following piece of code shows the overloaded rules for
C’s MultiExpression when applied to two UnitTypes:

operation concepts: MultiExpression
left operand type: new node<UnitType>()
right operand type: new node<UnitType>()

is applicable:
(op, leftOpType, rightOpType)->boolean {

node<> resultingValueType = operation type(op,
leftOpType.valueType , rightOpType.valueType);

resultingValueType != null;
}

operation type:
(op, leftOpType, rightOpType)->node<> {

node<> resultingValueType = operation type(op,
leftOpType.valueType, rightOpType.valueType);

UnitType.create(resultingValueType,
leftOpType.unit.toSIBase().add(

rightOpType.unit.toSIBase(),
1

)
);

}

This code overloads the MultiExpression for the case in which both the left
and right argument are UnitTypes. The is applicable section checks whether
there is a typing rule for the two value types (for example, int * float) by
trying to compute the resulting value type. If none is found, the types cannot
be multiplied. In the computation of the operation type a new UnitType is
created that uses the resultingValueType as the value type, then computes
the resulting unit by adding up the exponents of component SI units of the
two operand types.

While any two units can legally be used with * and / (as long as the result-
ing unit exponents are computed correctly), this is not true for + and -. There,
the two operand types must be the same in terms of their representation in
SI base units. This is expressed by using the following expression in the is
applicable section:

leftOpType.unit.isSameAs(rightOpType.unit)};

The typing rule for the LocalVariableDeclaration requires that the type of
the init expression must be the same or a subtype of the type of the variable.
To make this work correctly with units, a type hierarchy for UnitTypes is
required. This is done by defining the supertypes for each UnitType. These

Chapter 8. Implementing mbeddr Languages 199

Figure 8.5 This function shows the use of vectors and matrices. The extension
supports new types (vector<..> and matrix<..>) and literals. The literals ex-
ploit the projectional editor by using the familiar two-dimensional notation. Existing
operators are overloaded (e.g., for scalar multiplication *) and new operators are
defined (e.g., cross product x and transposition T).

supertypes are those UnitTypes whose unit is the same, and whose valueType
is a supertype of the current UnitType’s value type:

subtyping rule supertypeOf_UnitType for UnitType as ut {
nlist<> res = new nlist<>;
foreach st in immediateSupertypes(ut.valueType) {

res.add(UnitType.create(st, ut.unit.copy));
}
return res;

}

This typing rule computes the direct supertypes of a UnitType. It iterates over
all immediate supertypes of the current UnitType’s value type, wrapped into
a UnitType with the same unit as the type whose supertypes are calculated.

8.10 V E C T O R S A N D M AT R I C E S

Vectors and matrices are quite useful in many embedded or technical applica-
tions. As a consequence of their unique syntax, the projectional nature of the
MPS editor is a nice fit. This section looks at the interesting aspects of sup-
porting vectors and matrices, including the editor. Vectors and matrices are
an example of a Types and Literals extension. Figure 8.5 shows some example
code.

Structure Vectors are structurally just matrices with one column. Conse-
quently there is a MatrixLiteral but no vector literal: a MatrixLiteral owns
a collection of MatrixLiteralCol concepts, which in turn contain Expressions.

200

In terms of types and their operators, matrices and vectors must be treated
differently. The two are represented as MatrixType and VectorType which
both implement the IMatrixType interface:

interface concept IMatrixType
properties:

dimensionsRows: integer
children:

IType baseType 1

This interface specifies the number rows as well as the base type. These are
important because the number of rows as well as the base type are relevant
for typing: a vector<int8,3> is not compatible with a vector<int16,2>. The
vector<..> and matrix<..> types are defined as follows:

concept VectorType extends Type implements IMatrixType
concept properties:

alias = vector

concept MatrixType extends Type implements IMatrixType
properties:

dimensionsCols: integer
concept properties:

alias = matrix

Type System If MatrixType and VectorType are used in programs, their
type (in terms of the type system engine) is a clone of themselves; this is
achieved by the default typing rule for all concepts that inherit from Type:

rule typeof_Type for Type as t {
typeof(t) :==: t.copy;

}

Vectors are covariant regarding their base type: vector<T,i> is a subtype
of vector<Q,i> if T is a subtype of Q. To make this work, a subtyping rule
for VectorType is needed. Subtyping rules return the collection of super-
types for any particular type. The following code implements covariance
(immediateSupertypes is a built-in type system operator):

subtyping rule supertypesOfVectorType for VectorType as vt {
nlist<IMatrixType> vectorSuperTypes = new nlist<IMatrixType>;
foreach superType in immediateSupertypes(vt.baseType) {

node<VectorType> st = new node<VectorType>();
st.baseType = superType:Type;
st.dimensionsRows = vt.dimensionsRows; // same num of rows!
vectorSuperTypes.add(st);

}
return vectorSuperTypes;

}

A similar subtyping rule has to be defined for MatrixTypes. However, if the
matrix type has only one column, a corresponding VectorType must be among
the supertypes.

Chapter 8. Implementing mbeddr Languages 201

Figure 8.6 The definition of the editor for the MatrixLiteral. Note how the custom
cells are used to render the two brackets. Custom cells can draw arbitrary graph-
ics onto the editor’s canvas.

Next up is the typing of literals. Consider a matrix that uses values of type
uint8, int16 and double. The type of this matrix is a MatrixType where the
base type must be the least common supertype of the element types (in this
case a double). The following code computes the type for matrix literals:

rule typeof_MatrixLiteral for MatrixLiteral as ml {
var commonElementType;
foreach e in ml.cols.elements {

infer typeof(e) :<=: commonElementType;
}

node<MatrixType> mt = new node<MatrixType>();
mt.baseType = commonElementType;
mt.dimensionsCols = ml.cols.size;
mt.dimensionsRows = ml.cols.first.elements.size;
typeof(ml) :==: mt;

}

The first part computes the least common supertype of all the element types
of the vector; it uses the same approach as the decision table (Section 8.7). The
second part then constructs the corresponding MatrixType and assigns it to
the literal.

Editor The editor definition for the MatrixLiteral is shown in Figure 8.6.
It consists of two custom cells that draw the brackets (see below) and a hor-
izontal collection ([> .. <]) of the columns. A column has its own editor,
also discussed below. To make sure the columns have some space between
them, a trick is used: a white, vertical bar is used as the separator for the list
of columns:

list element:
separator |
separator constraint noflow
separator style <no parentClass> {

text-foreground-color: white
padding-left: 1 spaces
padding-right: 1 spaces

}

The editor for the MatrixLiteralCol is simply a vertical list of all the expres-
sions. Two style properties make sure that each expression is horizontally
centered, and that the whole vertical list is centered with regard to the line in
which the matrix lives:

202

horizontal-align: center
default-baseline: collection center

Let us now look at the two custom cells which handle the "big brackets" on
the left and right side of the matrix. When using the custom cell cell type,
an object that renders the cell has to be returned. The actual drawing of the
cell happens in the OpeningBracketCell class. Here is the basic outline of a
custom cell implementation:

public class OpeningBracketCell extends AbstractCellProvider {

// constructor, etc.

public EditorCell createEditorCell(EditorContext context) {
new EditorCell_Basic(context, this.myNode) {

public void paintContent(Graphics g, ParentSettings ps) {
g.setColor(Color.BLACK);
EditorCell_Collection parent = this.getParent();
int x = getX();
int y = parent.getY();
int height = parent.getHeight();
g.fillRect(x, y, 2, height);
g.fillRect(x, y, 4, 2);
g.fillRect(x, y + height - 2, 4, 2);

}

public void relayoutImpl() {
this.myWidth = 4;
this.myHeight = 10;

} } };}

This class is a subtype of AbstractCellProvider and implements the method
createEditorCell to return a suitable cell. Its paintContent is responsible
for actually drawing the visual representation.

There are a few things that can be done to improve the editing experience
for the user; for example, the following intention lets the user select Add New
Column from the intentions menu (Alt-Enter) to add a new column.

An intention definition consists of three parts. The description returns the
string that is shown in the intentions popup menu. An optional isApplicable
section determines under which conditions the intention is available in the
menu – this is omitted in the code below, because there is no specific con-
dition. Finally, the execute section performs the action associated with the
intention:

intention addNewMatrixCol for concept MatrixLiteralCol {
available in child nodes: true

description(editorContext, node)->string {
"Add New Column";

}

Chapter 8. Implementing mbeddr Languages 203

execute(editorContext, node)->void {
node<MatrixLiteralCol> cc = node.ancestor<MatrixLiteralCol, +>;
node<MatrixLiteralCol> nc = new node<MatrixLiteralCol>();
cc.elements.forEach({~it => nc.elements.add new(); });
cc.add next-sibling(nc);
editorContext.select(nc.elements.first);

}
}

The intention is available not just on a MatrixLiteralCol, but also on all of
its children in the tree. This means that when it is invoked, the node variable
may not actually be a MatrixLiteralCol, but one of its child expressions. The
first line in the execute body compensates for that by retrieving the current
ancestor MatrixLiteralCol. Next, a new MatrixLiteralCol is created, a new
(empty) expression is added to it for each expression in the current column,
and then the new column nc is added as a next sibling to the current one.
Finally, the focus is set into the first element of the new column.

Type System The existing operators must get new type system rules to be
able to deal with vectors and matrices. Below is the code that handles the case
in which a matrix is multiplied with a scalar value. Similar to the physical
units (Section 8.9), an overloaded operations container is used that applies
to the case where a MultiExpression has a MatrixType as the left argument
and a numeric type as the right argument. The resulting type is calculated as
follows:

(op, leftOperandType, rightOperandType)->node<> {
// determine the least common supertype between the
// basetype of the matrix and the primitive on the other
// side of the binary operator
set<node<>> nodes = new hashset<node<>>;
nodes.add(leftOperandType:IMatrixType.baseType);
nodes.add(rightOperandType);
set<node<>> leastCommonSupertypes =

typechecker.getSubtypingManager().
leastCommonSupertypes(nodes, false);

// create a matrix type or a vector type
// depending on what’s on the left side
node<IMatrixType> resultType =

leftOperandType:IMatrixType.
cloneForBaseType(leastCommonSupertypes.first:IType);

return resultType;
}

The typechecker is used to determine the least common supertype between
the base type of the matrix and the primitive on the other side of the binary
operator, since this will become the base type of the result type. A MatrixType
or a VectorType is created depending on whether the original non-primitive
type was a matrix or a vector; this is handled correctly by the polymorphically

204

Figure 8.7 The editor for the MatrixTransposeExpr is essentially a horizontal list
with the expression and the T next to each other. To get the superscript, the
cell layout property of the collection cell has to be set to superscript and the
script-kind:superscript style property to has to be added to the T.

overloaded cloneForBaseType method defined for IMatrixType. Similar rules
have to be written for the other cases (i.e. matrix/vector and matrix/vector or
primitive and matrix/vector). Also, the code has to be generalized for other
operators, not just multiplication.

Structure Additional operators, the cross product x and transposition T,
are required as well. The CrossProductExpression extends the abstract con-
cept BinaryArithmeticExpression, so it directly integrates with the existing
facilities regarding editor support and typing. Here is the definition:

concept CrossProductExpression extends BinaryArithmeticExpression
concept properties:

alias = x
priolevel = 2000
shortDescription = cross-product

The prioLevel determines the operator precedence (the higher the number,
the higher the precedence). The value 2000 is the same as the regular multi-
plication. shortDescription is what is shown in the code completion menu
behind the actual x symbol. The MatrixTransposeExpr is a unary expression;
it has an alias of T, a prioLevel of 4000 and a shortDescription of transpose.

Editor The editor for the cross product is trivial and inherited from the
BinaryArithmeticExpression: the editor simply projects the two arguments
with the alias between them. For the MatrixTransposeExpr, the editor is
shown in Figure 8.7. To be able to enter the T on the right side of an ex-
pression, a right transformation has to be written. Here is the code:

right transform actions makeTransposeExpr for Expression
condition: (operationContext, scope, model, sourceNode)->boolean {

sourceNode.type.isInstanceOf(MatrixType);
}
actions: add custom items (output concept: MatrixTransposeExpr)

matching text: T
transform: (operationContext, sourceNode, pattern)->node<> {

node<MatrixTransposeExpr> n = ew node<MatrixTransposeExpr>();
sourceNode.replace with(n);
n.expression = sourceNode;
PrioUtil.shuffleUnaryExpression(n);
n;

}

Chapter 8. Implementing mbeddr Languages 205

Figure 8.8 This reduction rule transforms instances of PlusExpression into a call
to a library function addWithRangeChecks, passing in the left and right argument
of the + using the two COPY_SRC macros. The condition ensures that the transfor-
mation is only executed if the containing Module has a safeAnnotation attached
to it. A transformation priority defined in the properties of the transformation makes
sure it runs before the C-to-text transformation.

This transformation handles the case in which a T is entered on the right side
of an Expression whose type is MatrixType. What is interesting is the call to
PrioUtil.shuffleUnaryExpression(n): this reshuffles the tree to take care of
precedence as expressed in the prioLevel property. It has to be called as part
of any left or right transformation that involves expressions.

8.11 R A N G E C H E C K I N G

The safemodules language defines an annotation to mark modules as safe
(annotations are discussed in the next subsection). If a module is so annotated,
the binary operators such as + or * are replaced with calls to functions that, in
addition to performing the addition or multiplication, perform a range check.
This is an example of an alternative transformation.

Transformation The transformation that replaces the binary operators with
function calls is triggered by the presence of this annotation on the Module
which contains the operator. Figure 8.8 shows the code; the @safeAnnotation
!= null checks for the presence of the annotation. As mentioned in Sec-
tion 8.5, MPS uses priorities to specify relative orderings of transformations.
Such a priority is used to express that this transformation runs before the final
transformation that maps the C tree to C text for compilation (this is done in
a property dialog and not shown).

8.12 R E Q U I R E M E N T S T R A C E S

As introduced in Section 7.4.5, annotations are concepts whose instances can
be added as children to a node N without this being specified in the definition
of N’s concept. While structurally the annotations are children of the anno-
tated node, the editor is defined the other way round: the annotation editor

206

Figure 8.9 The editor definition for the ReqTrace annotation (an example trace
annotation is shown in Figure 4.13). It consists of a vertical list [/ .. /] with
two lines. The first line contains the reference to the requirement. The second line
uses the attributed node construct to embed the editor of the program node to
which this annotation is attached. So the annotation is always rendered right on
top of whatever syntax the original node uses.

delegates to the editor of the annotated element. This allows the annotation
editor to add additional syntax around the annotated element. Optionally, it
is possible to explicitly restrict the concepts to which a particular annotation
can be attached. Annotations are used in several places: the safe annotation
discussed in the previous section, the requirements traces discussed in this
section, as well as the product line variability presence conditions discussed
in the next section. MPS itself uses annotations as macros in templates.

Structure The code below shows the structure of the TraceAnnotation.
Annotations extend the MPS-predefined concept NodeAnnotation. They can
have an arbitrary child structure (tracekind, refs), but they have to specify
the role (the name of the property that holds the annotated child under its
parent) as well as the annotated concept (the annotations can only be attached
to instances of this concept or subconcepts):

concept TraceAnnotation extends NodeAnnotation
children:

TraceKind tracekind 1
TraceTargetRef refs 0..n

concept properties:
role = trace

concept links:
annotated = BaseConcept

Editor As mentioned above, in the editor annotations look as if they sur-
rounded their parent node, even though they are in fact children. Figure 8.9
shows the definition of the editor of the requirements trace annotation (and
an example is shown in Figure 4.13): it puts the trace on the right side of the
annotated node.

Annotations are typically attached to a program node via an intention. As
shown in the discussion of vectors and matrices (Section 8.10) intentions are
an MPS editor mechanism that lets users select small program transforma-
tions from the Alt-Enter menu. The one below contributes an entry Add
Trace to this menu, which attaches a requirements trace to the selected ele-
ment:

Chapter 8. Implementing mbeddr Languages 207

intention addTrace for BaseConcept {
description(node)->string {

"Add Trace";
}
isApplicable(node)->boolean {

node.ancestor<Module> != null
}
execute(editorContext, node)->void {

node.@trace = new node<TraceAnnotation>();
}

}

The intention is typed to BaseConcept, since traces can be attached to arbi-
trary program elements as long as they are in a module. This is enforced
through the applicability condition. The execute section puts an instance of
TraceAnnotation into the @trace property of the target node.

8.13 I M P L E M E N T I N G VA R I A N T S

The transformation implementing product line variability is different from
the transformations discussed so far in that it is generic with regard to the
transformed languages; presence conditions can be attached to any arbitrary
program element. If the presence condition is false for the selected config-
uration during transformation, the respective program element is removed
from the program (see the affectedElement.delete in the code below). Since
this is a generic transformation, it is implemented as a transformation script.
In contrast to the template-based approach shown earlier (for example, see
Figure 8.3 for state machine triggers and Figure 8.8 for the replacement of +
with safer alternatives), a transformation script uses MPS’ node API directly
to transform the AST.

mapping script removePLEStuff
pre-process input: true
top-priority group: true

(model, genContext, operationContext)->void {
node<...> config = // retrieve the configuration that

// specifies which variant to generate
foreach pc in model.nodes<PresenceCondition> {

if (!(pc.condition.isSelectedInTrafoConfig(config))) {
node<> affectedElement = pc.parent;
affectedElement.delete;

} } }

The script works as follows. First, it finds the configuration element that
specifies which variant should be generated; this is retrieved from the build
configuration for the current project. It then finds all PresenceConditions in
a model and evaluates each of them relative to the selected variant configura-
tion. If a presence condition evaluates to false, the script removes the element
to which the presence condition is annotated – the parent of the presence con-
dition. Notice how the transformation is put into the top-priority group,

208

Figure 8.10 Left: An annotation is used to specify which members of the struct
may be read and written by which of the application layer/role. Right: If the wrong
layer writes to the member, an error is reported. An additional annotation is used
to specify the role of an implementation module.

which means it runs in the first phase of the transformation chain without
explicitly specifying priorities relative to other generators. This is important,
because it may not even be known which other transformations are executed
for the program, so it is not possible to explicitly declare dependencies relative
to them.

8.14 A R C H I T E C T U R E C O N S T R A I N T S

Imagine enforcing architectural constraints between layers in a system. For
example, only modules in the Driver layer are allowed to write certain mem-
bers of a struct, and the Application layer is allowed to read them. This is an
example of a restriction. The first step is the definition of a set of roles (shown
below), and then, based on these roles, the permissions for struct members
can be specified (see the left part of Figure 8.10). It is also possible to specify
which role a module plays; if it assigns to a member for which it has only
read permissions, an error is reported. The right part of Figure 8.10 shows an
example of a permission violation.

Access Specification:
role DriverLayer
role ApplicationLayer

Structure This extension adds additional metadata to existing language
concepts, using annotations to specify the permissions and the module role
specification for struct members and modules respectively. These annotations
are structurally similar to the requirements traces discussed in Section 8.12.

Editor The editor for AccessSpec annotation embeds the attributed node
(i.e. the Member it is attached to), and then, on the right side, renders the
permissions. An intention is used to be able to attach an AccessSpec to a
Member. The approach for the module role is similar.

Type System A checking rule for ImplementationModules is used to report
an error if a module writes to a member for which it does not have the permis-

Chapter 8. Implementing mbeddr Languages 209

sion. Specifically, it reports an error if a struct member is assigned to which
only has a read permission for the role declared by the writing module:

checking rule check_Access for ImplementationModule as immo {
if (immo.@moduleRole == null) return;
node<RoleSpec> moduleRole = immo.@moduleRole.role;
nlist<AssignmentExpr> aes = immo.descendants<AssignmentExpr>;
foreach ae in aes {

if (ae.left.isInstanceOf(AbstractDotExpression)) {
node<Member> member = ae.left:AbstractDotExpression.

member:MemberRef.member;
if (member.@accessSpec != null) {
node<Permission> permission =

member.@accessSpec.permissions.
findFirst({~it => it.role == moduleRole; });

if (permission.activity.is(<read>)) {
error "role " + moduleRole.name +

" cannot write this member" -> ae.left;
} } } } }

Obviously, there should be additional checks. For example, an error must be
reported when assigning to a member that has a permission specified from
within a module that has no role specification: the user has to decide the
role of the module, so that the system can verify whether the write access is
allowed.

8.15 O S C O N F I G U R AT I O N

This section discusses the development of new languages that are not directly
related to C. An example is operating system configuration, similar to that
shown in Figure 10.1 for Lejos/OSEK. This section illustrates a simplified
version of such a language. For now, the operating system configuration DSL
essentially defines a set of tasks:

OS Config:
task mainTask prio = 1
task eventHandler prio = 2
task emergencyHandler prio = 3

Structure A new language osconfig is created which contains a new con-
cept, OSConfig, which in turn contains operating system configuration items
(a collection of IOSConfigContents) rendered vertically in the editor. It should
be usable as a root node inside models, i.e. it is represented as a separate ed-
itor in MPS. This is why its instance can be root property is set to true:

concept OSConfig extends BaseConcept
instance can be root: true
children

IOSConfigContents contents 0..n

210

A concrete concept that represents the task definition can now implement
IOSConfigContents. It has a prio property of type integer, and the editor ar-
ranges the keyword task, its name and the priority in a horizontal collection.

Generator So far all languages developed in this chapter were extensions
of C. Consequently, the generator was a transformation back to C. In the case
of the operating system configuration there is no base language – text has
to be generated directly. Text generators are different from the generators
developed so far; those are actually model-to-model transformations, since
they map one MPS tree onto another. Text generators really just write text
into a buffer. Assuming the textual representation is similar to the syntax
used in MPS, the text generator for OSConfig looks as follows:

text gen component for concept OSConfig {
extension: (node)->string {

"osconfig";
}
encoding: utf-8

(node, context, buffer)->void {
append {OSConfig} \n ;
append \n ;
foreach c in node.contents {

append ${c} \n ;
}

}
}

A text gen component specifies the encoding and the file extension, as well
as the contents of the file. Notice that it does not specify the name of the
file – this is taken from the OSConfig node itself. However, the OSConfig
does not have a name. This problem can be solved by implementing the
INamedConcept interface. However, this requires the specification of a name
for each OSConfig, which does not make sense, since the name of the OSConfig
should automatically be the name of the model in which it resides. This can
be achieved by implementing a getter for the name in the constraints section:

concept constraints OSConfig {
property {name}

get:(node, scope)->string {
node.model.name;

}
set:<default>
is valid:<default>

}

A text generator for TaskDef must also be defined. This is not a root concept,
so no name, extension or encoding is specified. The text gen component is
expected to be called (transitively) from a root concept’s text gen and only
appends to the buffer:

Chapter 8. Implementing mbeddr Languages 211

text gen component for concept TaskDef {
(node, context, buffer)->void {

append {task} ${node.name} { } {(} ${node.prio + ""} {}} ;
}

}

Structure The language developed so far is completely independent of
mbeddr C. However, it should still be possible to refer to concepts defined in
that language from C code. In the current example, the C code should contain
a task implementation that corresponds to the task definitions in the operat-
ing system configuration. In classical C, one would have to define a function
that has the same name as the task and use a specific signature; maybe some
kind of special modifier is necessary. This is the kind of code that will need
to be generated ultimately; however, a better programming experience should
be provided to the mbeddr user. The example code below shows the new
keyword task, which represent a task implementation in a C program. The
name behind it (mainTask) is a reference to a task definition in an OSConfig.
Pressing Ctrl-Space will code-complete to all available task definitions.

module Tasks imports nothing {
task mainTask {

// code that implements the task’s behavior
}

}

A new language osconfig.cimpl acts as the adapter between mbeddr C and
the OS configuration (the osconfig language should be kept independent of
C, and C, of course, must remain independent of osconfig). osconfig.cimpl
extends mbeddr’s modules and statements language, and it also extends the
osconfig language introduced earlier. The language contains a new concept
TaskImpl that implements IModuleContent so it can be used inside modules.
It has a single reference to a TaskDef as well as a StatementList for the body.

Editor An alias is specified for the concept even though it is technically
a smart reference (it has exactly one reference). However, for the TaskImpl
the special editor behavior associated with smart references should not be
triggered. Instead, users should first create a TaskImpl node by typing task
in a module and then select the reference to the TaskDef.

Scoping No explicit scope for the task reference has to be defined, since the
default behavior that puts all the nodes in the current model into the scope is
exactly what is required in this case.

Generator This example assumes that the compiler for the OS (some kind
of fictional OSEK) expects a task implementation function to use a special
syntax: the example mainTask must be translated as follows:

task(mainTask) void Tasks_taskimpl_mainTask(void) {
// here is some code that implements the task

}

212

Figure 8.11 This reduction rule replaces a TaskImpl with a function that uses a
special prefix. As explained before, the <TF..TF> template fragment encloses the
code that should actually replace the input node; the rest is scaffolding. The $
macros replace the value of string properties, and the COPY_SRCL is used to replace
the node it is attached to with a list of nodes from the input model. Both kinds of
macros specify, via expressions, (not shown, they are edited in MPS’ inspector) the
values/nodes that replace the node they are attached to.

A generator with a reduction rule is used to create the function. It is shown
in Figure 8.11. The generator uses a property macro to adapt the name, as
well as a COPY_SRCL macro to copy in all the statements of the body. A special
modifier is added to the function via an intention. The [...] modifier accepts
arbitrary text between the brackets and then just outputs that text during text
generation. The taskPrefix dummy text is used in the template and then
annotated with the following macro expression:

"task(" + node.task.name + ")";

Structure Another iteration of this example extends the operating system
configuration DSL with a way to define memory layouts. Here is some exam-
ple code:

OS Config:
// tasks as before
memory layout {

region ram: 0..1024
region eprom: endOf(ram)..2048
region devices: endOf(eprom)..startOf(devices) + sizeOf(ram) * 2

}

The above code adds additional contents to the OSConfig node and also reuses
C expressions within the regions, using additional expressions to refer to the
start, end and size of other regions. These extensions to the osconfig lan-
guage reside in a new language osconfig.memory. This demonstrates how an
external DSL can make use of specific concepts from C without modifying the
original OS configuration DSL. The new language extends osconfig as well
as mbeddr’s expressions language.

The MemoryLayout implements IOSContents so it can be plugged into the
contents collection of an OSConfig. It also contains a collection of Regions.
Each Region has a name and an Expression for the start and the end of the
region. Since the language extends the C expression language, Expression
can be used here:

Chapter 8. Implementing mbeddr Languages 213

concept Region extends BaseConcept
implements INamedConcept

children:
Expression startsAt 1
Expression endsAt 1

concept properties:
alias = region

The startOf(..), endOf(..) and sizeOf(..) expressions are new expres-
sions contributed by this language. All three are essentially similar: they
extend Expression and have a single reference to a Region. They also have an
alias to prevent smart-reference editor behavior in the editor:

concept EndOfExpr extends Expression
references:

Region region 1
concept properties:

alias = endOf

Scoping The scope for the region reference ascends the tree to the parent
OSConfig object and the returns all child Regions.

Constraints The new expressions (startOf(..), endOf(..) and sizeOf(..))
may only be used below a MemoryLayout. A can be child constraint can be
used, as demonstrated earlier.

Type System The types of the startsAt and endsAt properties are defined
with the rule below. Both cases express that the type of the respective property
must be uint64 or any of its shorter subtypes.

rule typeof_Region for Region as r
infer typeof(r.startsAt) :<=: new node<UnsignedInt64tType>();
infer typeof(r.endsAt) :<=: new node<UnsignedInt64tType>();

}

The type for the EndOfExpr and the StartOfExpr is simple as well; it is simply
the type of the respective expression of the target region:

typeof(endOfExpr) :==: typeof(endOfExpr.region.startsAt);

For the SizeOfExpr it is a bit more interesting, since the type has to be the
common supertype of the start and the end:

rule typeof_SizeOfExpr for SizeOfExpr as soe {
infer typeof(soe) :>=: typeof(soe.region.startsAt);
infer typeof(soe) :>=: typeof(soe.region.endsAt);

}

The code above defines two typing equations for the same node (soe). Both
express a same-or-more-general-type relationship (:>=:) relative to the re-
spective property. The only way in which the type system engine can make
both of these rules true is by assigning the common supertype of the two
properties to typeof(soe) – which is exactly what is needed.

214

8.16 A D D I T I O N A L R E Q U I R E M E N T S D ATA

Section 4.8 has shown that business rules can be embedded directly into an-
notations (see Figure 4.16). This section provides an overview of how this is
implemented.

Structure Like other mbeddr languages, the requirements languages has
been designed to be extensible. In particular, the additional data slot con-
tains instances of IRequirementsData. By implementing this interface, other
concepts can plug into the requirements language. The RCalculation concept
(the concept of the business rules shown in Figure 4.16) implements this inter-
face. RCalculation in turn contains an Expression to calculate the value of the
calculation, and also contains parameters (RParam) and test cases (RTestCase).

Scoping To be able to reference the parameters from within the expression,
the language also contains an RParamRef expression that references an RParam.
It is scoped to only see the parameters in the current RCalculation:

link {param}
scope:

(model, referenceNode, enclosingNode) -> sequence<node<RParam>>{
node<RCalculation> c = enclosingNode.ancestor<RCalculation>;
return c.params;

}

Interpreter The test cases are essentially calls to the calculation rule that
supplies values for the parameters, plus an expected result value. An inter-
preter executes the test cases and checks whether the actual result equals the
expected value. The interpreter is hooked in as a checking rule:

checking rule check_executeTestCase for RTestCase as tc {
try {

TestCaseInterpreter ci = new TestCaseInterpreter(tc);
int actual = ci.calculate(tc.ancestor<RCalculation>.expr);
int exp = ci.calculate(tc.expected);
if (actual != exp) {

error "expected " + exp + ", but was " + actual -> tc;
}

} catch (InterpreterException ex) {
warning "interpreter error: " + ex.getMessage() -> tc;

}
}

The interpreter itself is a Java class that evaluates program nodes. The only
interesting aspect of this interpreter is that it is implemented using a special-
purpose language extension to MPS’ BaseLanguage2 that simplifies writing
interpreters. Figure 8.12 shows a part of the interpreter that uses this exten-
sion.

2 MPS’ language definition DSLs are built with MPS and can be extended with MPS’ own lan-
guage definition mechanisms.

Chapter 8. Implementing mbeddr Languages 215

Figure 8.12 The calculate method is the core of the expression interpreter. It
uses a dispatch expression, which is an extension to BaseLanguage specifically
developed for building interpreters. It takes a node n as an argument and then
dispatches over the entries based on the concept of n. In each of the cases, the it
expression refers to n, but it is already downcast to the case’s declared concept,
avoiding repeated explicit downcasting. The #(..) shortcut recursively invokes
the method in which it is used. Note that both it and # can only be used under a
dispatch, so they do not pollute BaseLanguage’s namespace.

8.17 N E W W O R D S I N P R O S E B L O C K S

Section 4.7 described how the generic prose text facility can be extended. For
example, in documentation comments for functions, it is possible to refer-
ence arguments of that function using the @arg(..) notation. This section
illustrates how this extension is built.

Structure The multiline prose editor widget works with instances of IWord,
and by implementing this interface, new language concepts can be "plugged
in" into the multiline editor. The word that references arguments is called
ArgRefWord:

concept ArgRefWord implements IWord
references:

Argument arg 1
concept properties:

alias = @arg

The concept references one Argument and uses the @arg alias key: typing
@arg in a comment, followed by Ctrl-Space, instantiates an ArgRefWord the
respective location in the text. The editor is simply a horizontal list of the @arg
keyword, a couple of symbols and the name of the referenced argument.

Constraints The constraint below ensures that an ArgRefWord can only be
used in a comment that resides directly below a function, i.e., it is a function
documentation comment:

216

concepts constraints ArgRefWord {
can be child of

(node, parent, operationContext)->boolean {
node<> comment = parent.ancestor<DocumentationComment>;
node<> owner = comment.parent;
owner.isInstanceOf(Function)

}

Scoping A scope for the arg reference must be defined, since not all
Arguments (anywhere in the model) are allowed; only those owned by the
function to which the documentation comment is attached are valid targets
for the reference:

link {arg}
scope:

(refNode, enclosingNode)->sequence<node<Argument>>) {
enclosingNode.ancestor<Function>.arguments;

}

Generator A generator has to be defined that is used when HTML or LATEX
output is generated. This IWord could be treated specially by a custom trans-
formation; however, for simple words that are just transformed to a string (as
is the case for ArgRefWord) it is sufficient to override a behavior method that
returns the string:

public string toTextString()
overrides IWord.toTextString {
"@arg(" + this.arg.name + ")";

}

Summary — This chapter demonstrated the versatility of language modularization
and composition in MPS to the benefit of mbeddr. It shows that meaningful extensions
can be built without invasively changing the base language C. However some mbeddr
features go beyond implementing a language. These include verifications, refactorings
and the debugger. These, and others, are illustrated in the next chapter.

Chapter 8. Implementing mbeddr Languages 217

218

9
Implementing the Non-Language Aspects of mbeddr

Abstract — At the core, Generic Tools, Specific Languages and mbeddr rely on
language extension to build domain-specific engineering tools. This is why language
engineering has been covered extensively in the previous chapters. However, to make
mbeddr useful, some extensions to the tool platform are required as well, all directly
related to and closely integrated with languages. These tool extensions are discussed in
this chapter. They include integrated verifications, debugging, IDE support, dataflow
analysis, the visualizations, and the legacy code importer.

9.1 V E R I F I C AT I O N

This section first introduces mbeddr’s approach to verification (also called
formal analysis) in general, and then subsections 9.1.1 through 9.1.4 look at
the various verifications supported by mbeddr. mbeddr implements an agile
approach for combining DSLs and language extensions with verification. The
methodology takes advantage of language engineering techniques provided
by MPS, and has the following main characteristics:

• It relies on language fragments that can be easily analyzed and that are
well-integrated with the rest of the code, and makes sure that analy-
sis results can be lifted back to the domain level. For example, state
machines can be model checked more easily than low-level implemen-
tations of state machine using, for example, switch statements.

• Users are made aware of whether a (part of a) program is currently an-
alyzable or not. Users are given the choice between writing code that is
analyzable or not. In the former case, they must use an analyzable, po-
tentially restricted subset of a language, whereas in the latter case users
can enjoy the full and more expressive language, but do not get ana-
lyzability. For example, a decision table can be marked as verifiable.
In this case the condition expressions are restricted to logical and linear
arithmetic expressions.

• The analyses are designed for users who are not experts in verification:
properties can be expressed easily and the results are lifted back to the
abstraction level of the DSL to make them easier to interpret. For ex-
ample, the properties which a state machine should be checked for are
specified using a set of high-level patterns, instead of using the LTL or
CTL property specification languages.

• The integrated verification tools are decoupled from the verification use
cases. This allows them to be used for a wide range of analyses of

219

conceptually different C extensions. For example, the SMT solving in-
frastructure is used for verifying decision tables and feature models.

In terms of implementation, this methodology entails the following steps.
They are implemented in some way for all verifications supported by mbeddr:

1. Choose the set of analyses that will be performed, and at the same
time decide on the language abstractions that are necessary to make
the analysis feasible and run in a reasonable time. This may include
restriction of existing languages, or the definition of additional abstrac-
tions.

2. Choose an analysis tool to perform the actual analysis. Implement the
input language of the analysis tool in MPS. Write a transformation that
transforms programs expressed in the language abstractions identified
above plus the properties to be verified to the specification language of
the analysis tool.

3. Integrate the tool into MPS so that it can be run directly from a menu
item, a button or something similar.

4. Finally, define a mapping from the analysis results provided by the
analysis tool to the original language abstractions the user wrote. In-
tegrate some kind of view that shows the results directly in MPS.

Incrementality mbeddr’s approach is incremental, both in defining the
analyses as well as in using them. First, the supported language subset can
be kept small, and enlarged over time, if the need arises, by allowing more
constructs. The trade-offs between the complexity of implementing the analy-
ses, their usefulness to application developers, and the size of the supported
language subset can be continuously evaluated. Second, application devel-
opers can decide whether to use a restricted language subset that is analyz-
able, or to use the full language and lose the analyzability. While the lan-
guage extensions are modular, they are nonetheless integrated into the IDE,
enabling smooth migration between the two choices, avoiding tool integration
headaches.

Soundness Defining the analyses in an agile way, based on domain-specific
extensions that inherently do not have formally defined semantics, can easily
lead to unsound analyses. It might not always be clear what exactly is veri-
fied: since the DSL program is translated to the analysis tool and to a target
language for implementation, keeping the two transformations consistent is
challenging. This is currently addressed by manual reviews and some auto-
mated tests. Also, mbeddr currently does not claim to be suitable for safety-
critical systems where formal analyses are mandatory. mbeddr considers the
analyses as an additional means of testing.

220

9.1.1 SMT Solving for Decision Tables

Decision tables [Janicki et al., 1997] exploit MPS’ projectional editor in order
to represent two-level nested if statements as a table. Decision tables are dis-
cussed in Section 4.5; Figure 4.4 shows an example. Decision tables evaluate
to different values for different combinations of input conditions. The ratio-
nale for tabular expressions is to let developers define the conditions more
easily and to allow reviewers to directly gain an overview of varied sets of in-
put conditions. Decision tables are translated into C essentially as an if/else
if for the column headers, and nested in each branch, an if/else if/else
for the row headers.

Verification Approach As explained in Section 4.5, there are two obvious
analyses for two-dimensional decision tables: completeness requires that ev-
ery behavior of the table is explicitly modeled and no case is omitted. This
requires listing all the possible combinations of the input conditions in the ta-
ble. Consistency checks whether there are input conditions that overlap, mean-
ing that several cases in the decision tables are applicable for one specific set
of input values (non-determinism). If the language used for expressing the
conditions is restricted to logical and linear arithmetic expressions, these two
analyses can be reduced to SMT problems. Given a table with n rows (ri) and
m columns (cj), its completeness can be verified by checking the satisfiability
of the following formula (if satisfiable, then the table is incomplete):

¬
n,m_

i,j=1
(ri ^ cj)

Similarly, the consistency of decision tables can be expressed by checking
whether the following conjunctions are satisfiable. If they are satisfiable, then
an inconsistency was found:

8i, k = 1..n j, l = 1..m :
i 6= k ^ j 6= l) ri ^ cj ^ rk ^ cl

Decision tables in mbeddr generally allow arbitrary conditions. These may
contain function calls, or they may not be in the subset of linear arithmetic,
which makes them non-analyzable with Yices, the SMT solver used by mbeddr.
If users wants a decision table to be verifiable, they must restrict the expres-
sions to an analyzable subset, i.e. logical and linear expressions. The IDE
reports an error for any decision table that is marked as verifiable and con-
tains expressions that are not in this subset. This always keeps users informed
as to whether their code is verifiable or not.

Implementation mbeddr implements a language for specifying logical and
arithmetic expressions; the language is essentially similar to the input lan-
guage of Yices. Below is a partial example of the solver code generated for
the decision table from Figure 4.4:

Chapter 9. Implementing the Non-Language Aspects of mbeddr 221

module decTab_1731059994647919839 {
(set-evidence! true)
(define-type Trackpoint (record id :: (subrange -128 127)

timestamp :: (subrange -128 127)
x :: (subrange -128 127)
y :: (subrange -128 127)
alt :: (subrange 0 65535)
speed :: (subrange -32768 32767)))

(define tp :: Trackpoint)
(assert+ !(or (select tp alt) <= 2000 &&

(select tp speed) < 150 &&
(select tp alt) <= 2000 &&
(select tp speed) >= 150 &&
(select tp alt) >= 2000 &&
(select tp speed) < 150 &&
(select tp alt) >= 2000 &&
(select tp speed) >= 150))

(check)
{

(retract 1)
(assert+ (select tp alt) <= 2000 &&

(select tp speed) < 150 &&
(select tp alt) <= 2000 &&
(select tp speed) >= 150

(check)
}

...
}

The solver input is written to a file, and Yices is executed as an external
process that reads the file and outputs the results into another file. This result
is shown to the user in MPS. In particular, as shown in Section 4.5, if the SMT
solver finds a problem, it generates an example of the table input values that
lead to the problem.

9.1.2 SAT Solving for Feature Models

Feature models are a well-known formalism for expressing product line vari-
ability at a conceptual level [Kang et al., 1990], i.e. independent of imple-
mentation artifacts (in the problem space as opposed to the solution space). A
feature is essentially a configuration option, and a feature model is a hierarchi-
cal collection of features, with constraints among them. Constraints include
mandatory (a feature must be in each product configuration), optional (it may
be in a product), or (one or more features from a set of related features must
be in a product) and xor (exactly one from a set of related features must be
in a product). In addition, there may be arbitrary cross-constraints between
any two features (such as requires-also and conflicts-with). A configura-
tion of a feature model is a valid selection of the features in a feature model.
A valid configuration must not violate any of the constraints expressed in its

222

Figure 9.1 Feature model analysis I: Left: example feature model expressed with
mbeddr’s feature model DSL Right: part of the encoding in Yices.

underlying feature model. Section 4.9 illustrates mbeddr’s support for feature
models.

Verification Approach There are two obvious analyses for feature mod-
els. The first checks feature models for consistency, i.e. whether the set of
constraints allows the definition of valid configurations at all. Conflicting
constraints may prevent this (A requires B together with B conflicts with
A). The second analysis checks a specific configuration for compliance with its
feature model. As described by Mendonca et al., both of these analyses are
easy to perform with the help of a SMT solver such as Yices [Mendonça et al.,
2009].

Implementation Technically, the implementation relies on the same inte-
gration of Yices as the previously described verification of decision tables. In
particular, the same language is used to express the input to the solver. The
generated input for the solver is of course different, to reflect the different
domain-level semantics of the SMT problem. Figure 9.1 shows an example of
a feature model and a part of its translation to Yices. Figure 9.2 shows the
result of running the analysis and its lifted representation. Each of the assert
ids from the unsat core given by Yices corresponds to a constraint from the
feature model. This allows mbeddr to present the user with a list of those
constraints that are violated.

Chapter 9. Implementing the Non-Language Aspects of mbeddr 223

Figure 9.2 Feature model analysis II: Left: Yices verification output. Right: Re-
sults lifted to the domain level.

9.1.3 Model-Checking State Machines

State machines were introduced in Section 4.6. They are top level concepts and
have in-events, out-events, states and transitions, as well as local variables. A
transition is triggered by an in-event, and it may also have guard conditions
that have to be true in order for the transition to fire if its triggering event
is received by the state machine. The guard can refer to state machine-local
variables as well as to in-event parameters. A state has entry and exit actions,
and transitions have transition actions. As part of actions, local variables can
be assigned and out-events can be fired. As a way of interacting with the
remaining C program, an out-event can be bound to a C function call.

Verification Approach Analyses based on symbolic model-checking are
most suitable for the state machine language. There are numerous works
(such as Clarke & Heinle [2000]) about model-checking different dialects of
state machines. mbeddr support two kinds of analyses: default analyses are
checked automatically for every state machine. They uncover typical bugs
such as unreachable states and transitions that are never fired (dead code),
sets of non-deterministic transitions, and over-/underflow detection for inte-
ger variables. User-defined analyses are defined specifically for a given state
machine. To address the expectations of non-expert users, mbeddr supports
specifications expressed with the well-known set of specification patterns1 de-
scribed by Dwyer et al. [1999]. Examples patterns include:

P is false After Q: Q = <expr> P = <expr>
always eventually reachable: <state>
S Responds to P Before R: P = <expr> S = <expr> R = <expr>
P is false After Q Until R: Q = <expr> P = <expr> R = <expr>
P is false Between Q and R: Q = <expr> P = <expr> R = <expr>

Implementation As in the previous verification examples, mbeddr imple-
ments the input language to the NuSMV model checker. A transformation
maps the high-level state machine to a representation in this input language2,
NuSMV is run, and the result is expressed in terms of the properties implied

1 http://patterns.projects.cis.ksu.edu
2 The input program is much too long to show in this thesis.

224

Figure 9.3 Model-checking a state machine: the left part shows the state machine,
and the top right parts shows successful and failed property verifications. If the
user selects a failed property, the top bottom part of shows an example execution
trace that leads to the failed property.

by the state machine or specified by the user. Figure 9.3 shows the state ma-
chine discussed in Section 4.6, as well as the result of a model checking run.

By marking a state machine as verifiable, a set of constraints is activated
that make sure that the state machine conforms to an analyzable language
subset. Examples of constraints include: (1) a maximum of one update of a
local variable inside a transition; (2) support for only range and Boolean types
in local variables and input events; (3) external functions may only be called
indirectly via out-event bindings (the code in external functions is not part
of the verification). As with the other verifications, users can now choose be-
tween using a highly expressive variant of state machines (and thereby losing
the analyzability of their code) or using a restricted subset that is verifiable.

9.1.4 Dataflow Analysis for Contract Checking

As shown in Section 4.4, interfaces and components are a backbone of mbeddr’s
version of C. Interfaces support the specification of behavior, and components
make use of the interfaces by providing or requiring ports that conform to in-
terfaces. Polymorphism is supported for interfaces, so different components
can provide the same interface, implementing it in different but semantically
compatible ways. To make this possible, an interface must specify its be-
havior with more than just signatures. To this end, interfaces support the
specification of pre- and post-conditions for operations, as well as protocol
state machines.

Chapter 9. Implementing the Non-Language Aspects of mbeddr 225

Verification Approach Section 4.4 showed how the pre- and post-conditions
as well as the protocol state machines on interfaces can be checked on imple-
menting components, both at runtime and statically. Figure 4.3 showed an
example of such a check. Both checks rely on the same (optionally generated)
code that procedurally checks the contracts (see code snippet below). While
the runtime check simply executed the if statement, the static analysis uses a
reachability analysis based on dataflow checking: the CBMC bounded model
checker for C is used to statically check whether the body of the if is ever
entered; if so, the contract check failed.

Implementation The implementation of this analysis is different than the
previous ones because no special input format is required. Only the contract
checks at the beginning and end of the functions generated from runnables
have to be generated. The body of the if is only executed if a condition
fails, and CBMC can verify statically whether reaching this code is possible
for a given program. To facilitate lifting the result, a mapping is maintained
between each label and the higher-level construct represented by the label.

void Components_InMemoryStorage_trackpointStore_store(
struct DataStructures_Trackpoint* tp,
void* ___instanceData) {

struct ___InMemoryStorage_data* ___ci =
(struct ___InMemoryStorage_data*)___instanceData;

if (!InMemoryStorage_trackpointStore_isEmpty(___ci)) {
pre_1731059994647814031__1731059994647814157:
// output runtime error message

}
if (!(tp != 0)) {

pre_1731059994647814055__1731059994647814157:
// output runtime error message

}
// implementation of the runnable
___ci->field_storedTP = tp;
if (!(!(InMemoryStorage_trackpointStore_isEmpty(___ci)))) {

post_1731059994647814038__6514529288614093826:
// output runtime error message

} }

Running the reachability analysis with CBMC on the generated C results in
a raw analysis result at the abstraction level of C. It specifies for each label
whether it can be reached or not. If it can be reached the result includes
an example execution trace through the C code. This raw result must be
interpreted with regard to the higher-level conditions connected to a label. In
addition, the trace must be related to the program that includes the higher-
level constructs. Lifting the counterexample involves several steps:

1. Elimination of the generation noise from the C code: Part of the gener-
ated C code represents low-level encodings of higher-level concepts. For
example, additional functions are generated that implement decision ta-
bles. In these cases, the corresponding part of the counterexample does

226

not make sense in terms of the higher-level construct; the part should
not be visible in the lifted result3.

2. Interpretation of the C-level parts of the counterexample: higher-level
constructs are encoded in C via generation with the help of variables or
function calls. These encodings need to be traced back. For example,
the components are initialized in a specific function, recognizable by its
name. If this function shows up in a C-level counterexample, it means
that the components were initialized.

3. Rebuilding original names. Since mbeddr supports namespaces, the
names of the C representation of higher-level program elements are
prepended with module names. The original names of the higher-level
abstractions must be recovered.

9.2 D E B U G G I N G

This section describes the mbeddr debugger. Like the mbeddr languages,
the debugger is extensible. This section starts with a discussion of the re-
quirements for mbeddr’s extensible debugger (Section 9.2.1), then provides a
simple example of how to specify the debugger for a language extension (Sec-
tion 9.2.2), discusses the debugger architecture (Section 9.2.3), shows more
examples of how this architecture solves challenges in extensible debuggers
(Section 9.2.4) and concludes with a discussion that evaluates whether the
approach addresses the requirements (Section 9.2.5).

9.2.1 Requirements for the Debugger

Debuggers for imperative languages4 support at least the following features:
breakpoints suspend execution on arbitrary statements; single-step execution
steps over statements, and into and out of functions or other callables; and
watches show values of variables, arguments or other aspects of the program
state. Stack frames visualize the call hierarchy of functions or other callables.

As shown in Figure 9.4, two levels are distinguished in the mbeddr debug-
ger: the tree representation of a program in MPS, and the generated text that
is used by the C compiler and the debugger backend. A program in the tree
representation can be separated into parts expressed in the base language (C
in this case) and parts expressed using extensions. The latter is referred to as
the extension-level or DSL-level. When debugging a program that contains ex-
tensions, breakpoints, stepping, watches and call stacks at the extension-level
differ from their counterparts at the base-level. The debugger, which techni-
cally runs at the base-level, has to perform the mapping from the base-level

3 As demonstrated in the next subsection, this problem is similar to the one encountered in
debugging. However, no common approach is implemented currently.

4 Debuggers for other behavioral paradigms may support very different ways of debugging, as
discussed by Voelter et al. [2013].

Chapter 9. Implementing the Non-Language Aspects of mbeddr 227

Figure 9.4 An extension-aware debugger maps the debug behavior from the base-
level to the extension-level (an extension may also be mapped onto other exten-
sions; this aspect is ignored in this section).

to the extension-level (Figure 9.4). In particular, an extensible debugger for
mbeddr that supports debugging on the base-level and extension-level must
address the following requirements:

• Modularity Language extensions in mbeddr are modular, so debugger
extensions must be modular as well. No changes to the base language
must be necessary to enable debugging for a language extension.

• Framework Genericity In addition, new language extensions must not re-
quire changes to the core debugger infrastructure (not just the base lan-
guage).

• Simple Debugger Definition Creating language extensions is an integral
part of using mbeddr. Hence, the development of a debugger for an
extension should be simple and not require too much knowledge about
the inner workings of the framework, or even the C debugger backend.

• Limited Overhead As a consequence of embedded software development,
the additional, debugger-specific code generated into the binary has to
be limited. Additional code increases the size of the binary, potentially
making debugging on a small target device infeasible.

• Debugger Backend Independence Embedded software projects use different
C debuggers, depending on the target device. This prevents modifying
the C debugger itself: changes would have to be re-implemented for
every C debugger used.

9.2.2 An Example Extension

The starting point is developing a simple foreach extension to mbeddr C. The
foreach statement can be used to conveniently iterate over C arrays. Users
have to specify the array as well as its size. Inside the foreach body, it acts
as a reference to the current iteration’s array element5:

5 Note that for the sake of the example, this example does not consider nested foreach state-
ments, so unique names for various (generated) variables are not a problem.

228

Figure 9.5 UML class diagram showing the structure of the ForeachLanguage.
Concepts from the C base language are in white boxes, new concepts are gray.

int8 sum = 0;
int8[] a = {1, 2, 3};
foreach (a sized 3) {

sum += it;
}

The code generated from this piece of extended C is shown in the next snip-
pet. The foreach statement is expanded into a regular for statement and an
additional variable __it:

int8 sum = 0;
int8[] a = {1, 2, 3};
for (int __c = 0; __c < 3; __c++) {

int8 __it = a[__c];
sum += __it;

}

Developing the Language Extension To make the foreach extension mod-
ular, it lives in a separate language named ForeachLanguage. The new lan-
guage extends C, since concepts defined in C will be reused. The structure
can be seen from Figure 9.5. The extensions defines an editor, a can be child
constraint to restrict the it expression to within foreach statements, type sys-
tem rules for the various expressions and a generator to plain C.

Developing the Debug Behavior The implementation of the debugger ex-
tension for foreach resides completely in the ForeachLanguage; this keeps the
debugger definition for the extension local to the extension language.

To set a breakpoint on a concept, it must implement the IBreakpointSupport
marker interface provided by the mbeddr debugger infrastructure. Statement
already implements this interface, so ForEachStatement implicitly implements
this interface as well.

Stepping behavior is implemented via ISteppable. The ForeachStatement
implements this interface indirectly via Statement, but the methods that de-
fine the step over and step into behavior have to be overridden. Assume the
debugger is suspended on a foreach and the user invokes step over. If the ar-
ray is empty or the iteration is finished, a step over ends up on the statement
that follows after the whole foreach statement. Otherwise the debugger ends

Chapter 9. Implementing the Non-Language Aspects of mbeddr 229

up on the first line of the foreach body (sum += it;). This is the first line of
the mbeddr program, not the first line of the generated base program (which
would be int8 __it = arr[__c];).

The debugger cannot guess which alternative will occur, since it would
need to know the state of the program, evaluating the expressions in the (gen-
erated) for. Instead the mbeddr debugger infrastructure sets breakpoints on
each of the possible next statements and then resumes execution until the pro-
gram hits one of them. The implementations of the ISteppable methods spec-
ify strategies for setting breakpoints on these possible next statements. The
contributeStepOverStrategies method collects strategies for the step over
case:

void contributeStepOverStrategies(list<IDebugStrategy> res) {
ancestor
statement list: this.body

}

The method is implemented using a DSL for debugger specification, which is
part of the mbeddr debugger framework. The DSL simplifies the implemen-
tation of debuggers significantly. It is an extension of MPS’ BaseLanguage.
The ancestor statement delegates to the foreach’s ancestor; this will lead to
a breakpoint on the subsequent statement. The second line results in a break-
point on the first statement of the body statement list.

Since the array and len expressions can be arbitrarily complex and may
contain invocations of callables (such as function calls), the step into behavior
has to be specified as well. This requires the debugger to inspect the expres-
sion trees in array and len and find any expression that can be stepped into.
Such expressions implement IStepIntoable. If it finds any, the debugger has
to step into each of them, in turn. Otherwise the debugger falls back to step
over. An additional method configures the expression trees which the debug-
ger must inspect:

void contributeStepIntoStrategies(list<IDebugStrategy> res) {
subtree: this.array
subtree: this.len

}

By default, the Watch window contains all C symbols (global and local vari-
ables, arguments) as supplied by the native C debugger. In the case of the
foreach, this means that it is not available, but __it and __c are. This is
exactly the wrong way around: the Watch window should show it, but not
__it and __c. To customize watches and resolve this problem, a concept has
to implement IWatchProvider. Here is the code for foreach, also expressed
in the debugger definition DSL:

void contributeWatchables(list<UnmappedVariable> unmapped,
list<IWatchable> mapped) {

hide "__c"
map "__it" to "it"

type: this.array.type:ArrayType.baseType

230

category: WatchableCategories.LOCAL_VARIABLES
context: this

}

The first line hides __c. The rest maps a base-level C variable to a watchable. It
finds a C variable named __it (inserted by the foreach generator) and creates
a watch variable named it. At the same time, it hides the base-level variable
__it. The type of it is the base type of the array over which the foreach
iterates. The it watchable is assigned to the local variables section and the
foreach node is associated with it. Double-clicking on the it in the Watch
window will highlight the foreach in the code.

Stepping into the foreach body does not affect the call stack, since the
concept represents no cal(for details, see the next subsection). No stack frame
related functionality is necessary.

9.2.3 Debugger Framework Architecture

The central idea of the debugger architecture is this: from the C code in MPS
and its extensions (tree level), C text is generated (text level). This text is the
basis for the debugging process by a native C debugger. Trace data is used to
find out how the generated text maps back to the tree level in MPS.

Execution Architecture The Mapper is at the core of the execution architec-
ture. It is driven by the Debugger UI (and through it, by the user) and controls
the C debugger via the Debug Wrapper. It uses the Program Structure and the
Trace Data. The Mapper also uses a language’s debug specification, discussed
below. Figure 9.6 shows the components and their interfaces.

The IDebugControl interface is used by the Debugger UI to control the
Mapper. For example, it provides a resume operation. IBreakpoints allows
the UI to set breakpoints on program nodes. IWatches lets the UI retrieve the

Figure 9.6 The Mapper is the central component of the debugger execution archi-
tecture. It is used by the Debugger UI and, in turn, uses the Debug Wrapper, the
Program Structure and the Trace Data.

Chapter 9. Implementing the Non-Language Aspects of mbeddr 231

data items for the Watch window. The Debug Wrapper essentially provides
the same interfaces, but on the level of C (prefixed with LL, for "low level").
In addition, ILLDebugControl lets the Mapper find out about the program lo-
cation of the C Debugger when it is suspended at a breakpoint. IASTAccess
lets the Mapper access program nodes. Finally, ITraceAccess lets the Mapper
find out the program node (tree level) that corresponds to a specific line in
the generated C source text (text level), and vice versa.

To illustrate the interactions of these components, the list below describes
a step over. After the request has been handed over from the UI to the Mapper
via IDebugControl, the Mapper performs the following steps:

1. Asks the current node’s concept for its step over strategies; these define
all possible locations where the debugger could end up after the step
over.

2. Queries TraceData for the corresponding lines in the generated C text
for those program locations.

3. Uses the debugger’s ILLBreakpoints to set breakpoints on those lines
in the C text.

4. Uses ILLDebugControl to resume program execution. It will stop at any
of the breakpoints just created.

5. Uses ILLDebugControl to get the C call stack.

6. Queries TraceData to find out, for each C stack frame, the corresponding
nodes in the tree-level program.

7. Collects all relevant IStackFrameContributors (see the next section).
The Mapper uses these to construct the tree-level call stack.

8. Gets the currently visible symbols and their values via ILLWatchables.

9. Queries the nodes for all WatchableProviders and use them to create a
set of watchables.

At this point, execution returns to the Debugger UI, which then gets the cur-
rent location and watchables from the Mapper, to highlight the statement on
which the debugger is suspended and populate the Watch window.

In mbeddr’s implementation, the Debugger UI, Program Repository and
Trace Data are provided by MPS. In particular, MPS builds a trace from
the program nodes (tree level) in MPS to the generated text-level source.
The Debug Wrapper is part of mbeddr and relies on the Eclipse CDT Debug
Bridge6, which provides a Java API to gdb7 and other C debuggers.

Debugger Specification The debugger specification resides in the respec-
tive language module. As shown in the foreach example, the specification

6 www.eclipse.org/cdt
7 www.gnu.org/software/gdb/documentation/

232

relies on a set of interfaces and a number of predefined strategies, as well as
the debugger specification DSL.

The interface IBreakpointSupport is used to mark language concepts on
which breakpoints can be set. C’s Statement implements this interface. Since
all statements – including foreach – inherit from Statement, breakpoints can
be set on all statements by default.

When the user sets a breakpoint on a program node, the mapper uses
ITraceAccess to find the corresponding line in the generated C text. A state-
ment defined by an extension may be expanded to several base-level state-
ments, so ITraceAccess actually returns a range of lines, and the breakpoint
is set on the first one.

Stack frames represent the nesting of invoked callables at runtime. A
callable is a language concept that contains statements and can be called from
multiple call sites. Stack frames for a language concept are created if it has
callable semantics. The only callables in C are functions, but in mbeddr, test
cases, state machine transitions and component methods are callables as well.
Callable semantics on the extension level do not necessarily imply a function
call on the base level. There are cases in which an extension-level callable is
not mapped to a function, and where a non-callable is mapped to a function.
Consequently, the C call stack may differ from the extension call stack shown
to the user. Concepts with callable semantics on the extension level or base
level implement IStackFrameContributor. The interface provides operations
that determine whether a stack frame has to be created in the debugger UI
and what the name of the stack frame should be.

Stepping behavior is configured via the following set of concept interfaces:
IStackFrameContributor, ISteppable, ISteppableContext, IStepIntoable as
well as IDebugStrategy. The left part of Figure 9.7 shows an overview. The
methods defined by these interfaces return strategies that determine where
the debugger may have to stop next if the user selects a stepping operation
(remember that the debugger framework sets breakpoints to implement step-
ping). New strategies can be added without changing the generic execution
aspect of the framework.

Strategies implement IDebugStrategy and are responsible for setting break-
points to implement a particular stepping behavior. Language extensions can
either implement their own strategies or use predefined ones. The prede-
fined ones include setting a breakpoint on a particular node, searching for
IStepIntoables in expression subtrees (step into), or delegating to the outer
stack frame (step out).

To support watches, language concepts implement IWatchProvider if they
directly contribute items into the Watch window. An IWatchProviderContext
contains zero or more watch providers. Typically these are concepts that own
statement lists, such as Functions or IfStatements. If the debugger is sus-
pended on any particular statement, the visible watches can be found by iter-
ating through all ancestor IWatchProviderContexts and asking them for their
IWatchProviders. The right part of Figure 9.7 shows the typical structure of
the concepts.

Chapter 9. Implementing the Non-Language Aspects of mbeddr 233

Figure 9.7 Left: The structure of language concepts implementing the stepping-
related interfaces. The boxes represent language concepts implementing the in-
terfaces discussed in the text. Those concepts define the containments, so this
figure represents a typical setup. Right: Typical structure of language concepts
implementing the watches-related interfaces.

An IWatchProvider implements the contributeWatchables operation. It has
access to the C variables available in the native C debugger. Based on those, it
creates a set of watchables. The method may hide a base-level C variable (be-
cause it is irrelevant to the extension-level), promote C variable to a watchable
or create additional watchables based on the values of C variables. The rep-
resentation of a watchable often depends on the variable’s type as expressed
in the extension program. This type may be different from the one in the C
program. For example, values of type Boolean are represented with true and
false, even though they are represented as ints in C. As the watchable is cre-
ated, the type that should be used in the Watch window is specified. Types
that should be used in this way must implement IMappableType. Its method
mapVariable is responsible for computing a type-appropriate representation
of a value.

9.2.4 More Examples

To illustrate mbeddr’s approach to extensible debuggers further, we have im-
plemented the debugging behavior for mbeddr C and most default extensions.
Some interesting cases are discussed below.

In many cases it is impossible to know statically which piece of code will be
executed when stepping into a callable. Consider polymorphic calls on inter-
faces. The mbeddr components extension provides interfaces with operations,
as well as components that provide and use these interfaces. The component
methods that implement interface operations are generated to base-level C
functions. The same interface can be implemented by different components,
each implementation ending up in a different C function. A client component
only specifies the interface it uses, not the component. Hence it is not known
statically which C function will be called if an operation is invoked on the
interface. However, it is known statically which components implement the
interface, so it is known which functions may be invoked. A strategy im-

234

plemented specifically for this case sets breakpoints on the first line of each
of these functions to make sure the debugger stops in the first line of any of
them if the user steps into an operation invocation. A similar challenge exists
in state machines: as an event is fired into a state machine, it is not known
which transition will be triggered. Consequently, breakpoints are set in all
transitions (translated to case branches in a switch statement) of the state
machine.

In many cases a single statement on the extension level is mapped to sev-
eral statements or whole blocks on the base level. Stepping over the single
extension-level statement must step over the whole block or list of statements
in terms of C. An example is the assert statement used in test cases. This is
mapped to an if statement. The debugger has to step over the complete if
statement, independent of whether the condition in the if evaluates to true
or false. Note that this behavior is automatic: the assert statement sets a
breakpoint on the base-level counterpart of the next tree-level statement. It is
irrelevant how many lines of C text further down this is.

Extensions may provide custom data types that are mapped to one or more
data types or structures in the generated C. The debugger has to reconstruct
the representation in terms of the extension from the base level data. For ex-
ample, the state of a component is represented by a struct that has a member
for each of the component fields. Component operations are mapped to C
functions. In addition to the formal arguments declared for the respective
operation, the generated C function also takes this struct as an argument.
However, to support the polymorphic invocations discussed earlier, the type
of this argument is void*. Inside the operation, the void* is cast down to
allow access to the component-specific members. The debugger performs the
same downcast to be able to show watchables for all component fields.

9.2.5 Discussion

To evaluate the suitability of the solution for mbeddr’s purposes, the follow-
ing list revisits the requirements described earlier.

• Modularity The approach discussed in this chapter requires no changes
to the base language or its debugger implementation to specify the de-
bugger for an extension. Also, independently developed extensions re-
tain their independence if they contain debugger specifications. In par-
ticular, MPS’ capability of incrementally including language extensions
in a program without defining a composite language first is preserved in the
face of debugger specifications.

• Framework Genericity The extension-dependent aspects of the debugger
behavior are extensible. In particular, stepping behavior is factored into
strategies, and new strategies can be implemented by a language ex-
tension. Also, the representation of watch values can be customized by
making the respective type implement IMappableType in a suitable way.

Chapter 9. Implementing the Non-Language Aspects of mbeddr 235

• Simple Debugger Definition This challenge is solved by the debugger def-
inition DSL. It supports the definition of stepping behavior and watches
in a declarative way, without concerning the user with implementation
details of the framework or the debugger backend.

• Limited Overhead The solution generates no debugger-specific code at all
(except the debug symbols added by compiling the C code with debug
options). Instead, the debugger relies on trace data to map the exten-
sion level to base level and ultimately to text. This is a trade-off: first, the
language workbench must be able to provide trace information. Second,
the generated C text cannot be modified by a text processor before it is
compiled and debugged, since this would invalidate the trace data (the
C preprocessor works, since it is handled correctly by the compiler and
debugger). The approach has another advantage: the existing transfor-
mations do not have to be changed to generate debugger-specific code.
This keeps the transformations independent of the debugger.

• Debugger Backend Independence The Eclipse CDT Debug Bridge is used
to wrap the particular C debugger, so any compatible debugger can be
used without changing the infrastructure. The approach requires no
changes to the native C debugger itself, but since breakpoints are used
for stepping, the debugger must be able to handle a reasonable num-
ber of breakpoints. Most C debuggers support this, so this is not a
serious limitation. The debugger also has to provide an API for setting
and deleting breakpoints, for querying the currently visible symbols and
their values, as well as for querying the code location at which the de-
bugger suspended execution.

9.3 I D E S U P P O RT

Section 4.10 described various aspects of IDE support provided by MPS and
mbeddr. This section discusses the implementation of two of them: customiz-
ing Find Usages and Refactorings.

9.3.1 Customized Find Usages

In many cases, there are different kinds of references to any given element. For
example, for an Interface in the mbeddr C components extension, references
to that interface can either be sub-interfaces (ISomething extends IAnother)
or components, which can either provide an interface or require an interface.
When finding references, the user may want to distinguish between these
different cases.

MPS provides Finders to support such functionality. The left part of Fig-
ure 9.8 shows the resulting Find Usages dialog for an Interface after two
custom finders are implemented in the language: one for components provid-
ing the interface, and one for components requiring the interface.

236

Figure 9.8 Left: The Find Usages dialog for Interfaces. The two additional Find-
ers in the left box are contributed by the language. Right: The result of Find
Usages: notice the two additional categories.

To implement custom Finders, MPS provides a DSL. The following code
shows the implementation for the finder of interface providers:

finder findProviders for concept Interface
description: Providers

find(node, scope)->void {
nlist<> refs = execute NodeUsages (node , <same scope>);
foreach r in refs.select(it|it.isInstanceOf(ProvidedPort))

add result r.parent ;
}

getCategory(node)->string {
"Providers";

}

A name is specified for the finder (findProviders) as well as the type to which
it applies (i.e., references to which it will find: Interface in the example).
Next is the implementation of the find method. Notice how in the first line of
the implementation an existing existing finder, Node Usages, is called, which
finds all references. These are then filtered by whether the referencing element
is a ProvidedPort, and if so, the parent of the port, i.e. the Component, is added
to the result. Finally, getCategory returns a string that is use to structure the
result. The right part of Figure 9.8 shows an example of such a result.

9.3.2 Refactorings

A very typical refactoring for a procedural language such as C is to introduce
a new local variable. Consider the following code:

boolean isAtLimit(int8 v, lim) {
int8 val = measure(v * FACTOR);
val = calibrate(val, v * FACTOR);
return val >= lim;

}

Chapter 9. Implementing the Non-Language Aspects of mbeddr 237

The first two lines contain the expression v * FACTOR twice. A nicer version
of this code might look like this:

boolean isAtLimit(int8 v) {
int8 product = v * FACTOR;
int8 val = measure(product);
val = calibrate(val, product);
return val >= lim;

}

The Introduce Local Variable refactoring performs this change. MPS provides a
DSL for refactorings, based on which the implementation is about 20 lines of
code. The code below is the declaration of the refactoring itself:

refactoring introduceLocalVariable ("Introduce Local Variable")

keystroke: <ctrl+alt>+<V>
target: node<Expression>
allow multiple: false

isApplicableToNode(node)->boolean {
node.ancestor<Statement>.isNotNull;

}

The code above specifies the refactoring’s name (introduceLocalVariable),
the label used in the refactoring menu, the keystroke to execute it directly
(Ctrl-Alt-V) as well as the target, i.e. the language concept on which the
refactoring can be executed. In the example, Expressions should be refac-
tored, but only if these expressions are used in a Statement. An expression
cannot be refactored if it is used, for example, as the init expression for a
global constant. This is determined by checking whether the Expression has
a Statement among its ancestors. Next, a parameter is defined for the refac-
toring:

parameters:
varName chooser: type: string

title: Name of the new Variable

init(refactoringContext)->boolean {
return ask for varName;

}

The parameter varName represents the name of the newly introduced variable.
In the refactoring’s init block, the user is queried for this parameter. The
ask for expression returns false if the user selects Cancel in the dialog that
prompts the user for the name. The execution of the refactoring stops in this
case. Next is the implementation of the refactoring algorithm itself in the
refactor block:

node<Expression> targetExpr = refactoringContext.node;
node<Statement> targetStmt = targetExpr.ancestor<Statement>;
int index = targetStmt.index;

238

The algorithm first declares a local variable that represent the expression on
which the refactoring is invoked. It is obtained from the refactoringContext.
The code also defines a variable that captures the Statement under which this
expression is located. The index of this Statement is stored. Finally, the code
iterates over all siblings of the statement in which the expression lives:

nlist<Expression> matchingExpressions = new nlist<Expression>;
sequence<node<>> siblings =

targetStmt.siblings.union(new singleton<node<Statement>>(stmt));
foreach s in siblings {

if (s.index >= index) {
foreach e in s.descendants<Expression> {

if (MatchingUtil.matchNodes(targetExpr, e)) {
matchingExpressions.add(e);

} } } }

The loop above finds all expressions that are structurally similar to the one
for which the refactoring is executed (using MatchingUtil.matchNodes). The
matching expression is remembered if it occurs in a statement that is after the
one that contains the target expression. The next step is to actually introduce
the new local variable:

node<LocalVariableDeclaration> lvd =
new node<LocalVariableDeclaration>();

lvd.name = varName;
lvd.type = targetExpr.type.copy;
lvd.init = targetExpr.copy;
targetStmt.add prev-sibling(lvd);

This code creates a new LocalVariableDeclaration and sets the name to the
one obtained earlier from the user, its type is set to a copy of the type cal-
culated by the type system for the target expression, and the variable is ini-
tialized with a copy of the target expression itself. This new variable is then
added to the list of statements, just before the statement that contains the target
expression.

One more step is required: all occurrences of the target expression have
to be replaced with a reference to the newly introduced local variable. These
occurrences have earlier been collected in the matchingExpressions collection:

foreach e in matchingExpressions {
node<LocalVarRef> ref = new node<LocalVarRef>();
ref.var = lvd;
e.replace with(ref);

}

The actual replacement is performed with the replace with built-in function.
This is very convenient since it avoids manually finding out in which property
or collection the expression lives in order to replace it.

Chapter 9. Implementing the Non-Language Aspects of mbeddr 239

9.4 D ATA F L O W

Dataflow analysis can be used to detect dead code, null access, unnecessary
ifs (because it can be shown statically that the condition is always true or
false) or read-before-write errors. The foundation for dataflow analysis is the
dataflow graph. This is a data structure that describes the flow of data through
a program’s code. Consider the following example:

int i = 42;
j = i + 1;
someMethod(j);

The 42 is "flowing" from the init expression in the local variable declaration
into the variable i and then, after adding 1, into j, and then into someMethod.
dataflow analysis consists of two tasks: building a dataflow graph for a pro-
gram, then performing analyses on this dataflow graph to detect problems in
the program.

MPS comes with predefined data structures for dataflow graphs, a DSL
for defining how the graph is derived from language concepts (and hence,
programs) and a set of default analyses that can be integrated into a language.
This section looks at all these ingredients. MPS also comes with a framework
for developing custom analyses; however, this is beyond the scope of this
section.

Building a Dataflow Graph dataflow is specified in the Dataflow aspect of
language definitions, which contains dataflow builders (DFBs) for language
concepts. These are programs expressed in MPS’ dataflow DSL that build the
dataflow graph for instances of those concepts in programs. Here is the DFB
for LocalVariableDeclaration:

dataflow builder for LocalVariableDeclaration {
(node)->void {

if (node.init != null) {
code for node.init
write node = node.init

} else {
nop

} } }

If the LocalVariableDecaration has an init expression (it is optional), then
the DFB for the init expression has to be executed using the code for state-
ment. Next is an actual dataflow definition: the write node = node.init
specifies that write access is performed on the current node. The statement
also expresses that whatever value was in the init expression is now in the
node itself. If there is no init expression, the LocalVariableDeclaration
node still has to be marked as visited by the dataflow builder using the nop
statement. A subsequent analysis reports all program nodes that have not
been visited by a DFB as dead code.

The LocalVariableRef expression serves as an example of the read state-
ment, since it read-accesses the variable it references. Its dataflow is defined

240

Figure 9.9 An example of a dataflow for a simple C function. The dataflow
graph for a program element can be shown by selecting Language Debug -> Show
dataflow Graph from the element’s context menu. This will render the dataflow
graph graphically and constitutes a good debugging tool when building custom
dataflow graphs and analyses.

as read node.var, where var is the name of the reference that points to the
referenced variable.

An AssignmentStatement first executes the DFB for the rvalue and then
"flows" the rvalue into the lvalue – the purpose of an assignment:

dataflow builder for AssigmentStatement {
(node)->void {

code for node.rvalue
write node.lvalue = node.rvalue

} }

The dataflow definition for a StatementList simply marks the list as visited
and then execute the DFBs for each statement in the list. Figure 9.9 shows the
dataflow graph for the simple function below:

void trivialFunction() {
int8 i = 10;
i = i + 1;

}

Analyses MPS supports a number of dataflow analyses out of the box.
These analyses operate only on the dataflow graph, so the same analyses can
be used for any language, once the DFBs for that language map programs
to dataflow graphs. The following utility class uses the unreachable code
analysis:

public class DataflowUtil {

private Program prog;

public DataflowUtil(node<> root) {
// build a program object and store it
prog = DataFlow.buildProgram(root);

}

public void checkForUnreachableNodes() {
// grab all instructions that

Chapter 9. Implementing the Non-Language Aspects of mbeddr 241

// are unreachable (predefined functionality)
sequence<Instruction> all =

((sequence<Instruction>) prog.getUnreachableInstructions());

// remove those that may legally be unreachable
sequence<Instruction> filtered =

all.where({~instruction =>
!(Boolean.TRUE.equals(instruction.

getUserObject("mayBeUnreachable"))); });

// get the program nodes that correspond
// to the unreachable instructions
sequence<node<>> unreachableNodes = filtered.

select({~instr => ((node<>) instr.getSource()); });

// output errors for each of those unreachable nodes
foreach n in unreachableNodes {

error "unreachable code" -> n;
} } }

The class builds a Program object in the constructor. Programs are wrappers
around the dataflow graph and provide access to a set of predefined analyses
on the graph. One of them is used here in the checkForUnreachableNodes
method. This method extracts all unreachable nodes from the graph (see
comments in the code above) and reports errors for them. To actually run the
check, this method is called from a checking rule for C functions:

checking rule check_DataFlow forFunction as fct {
new DataflowUtil(fct.body).checkForUnreachableNodes();

}

9.5 V I S U A L I Z AT I O N S

mbeddr supports visualizations (i.e., read-only diagrams) of various language
constructs. Examples include the visualization of component dependencies
(Figure 4.2) or of state machines (Figure 4.6).

The visualization infrastructure consists of three ingredients. The first one
is PlantUML8, which is used to render SVG images from textual descriptions.
PlantUML itself is a Java application, so the renderer can be called directly
from within MPS. Internally it uses Graphviz9 for some of the diagrams, so
Graphviz must be installed on the user’s computer.

The second ingredient is a custom SVG viewer based on Batik, Apache’s
SVG toolkit10. The existing Batik SVG renderer component is embedded in an
MPS plugin, so the pictures can be displayed directly in MPS. SVG in general,
and Batik in particular, support the association of URLs with shapes; when

8 plantuml.sourceforge.net
9 http://graphviz.org/
10 http://xmlgraphics.apache.org/batik/

242

the user clicks on the shape, the URL is "activated". What activation means
is determined in Batik by a customizable handler. mbeddr’s handler selects
the node associated with the shape in the MPS editor. A custom URL scheme
encodes the node’s unique ID.

The third ingredient are language concepts that contribute visualizations.
Their task is simply to create the textual input for PlantUML based on the
structure of (part of) a program. Language concepts that contribute visualiza-
tions implement the IVisualizable interface. This contributes two behavior
methods for language concepts to implement:

concept behavior IVisualizable {
public virtual abstract string[] getCategories();
public virtual abstract VisGraph getVisualization(string cat);

}

A visualizable concept can contribute several different visualizations, called
categories. The getCategories method returns an array of strings that repre-
sent the currently available categories (the list may depend on the particular
program structure). getVisualization returns the actual visualization for a
given category. The VisGraph return type is essentially a wrapper around the
textual PlantUML input.

The interface is also connected to an action in MPS that contributes a Vi-
sualize menu item to the context menu of visualizable program nodes. When
selected, the SVG viewer opens, showing the image corresponding to the first
category. A drop-down box in the viewer lets the user select other categories.

An Example The transitive dependencies of modules can be visualized as
a box-and-line diagram. PlantUML’s class diagrams11 are (mis)used for this
purpose. The Module concept implements IVisualizable in the following
way:

public string[] getCategories() {
new string[]{"transitive dependencies"};

}

public VisGraph getVisualization(string category) {
if ("transitive dependencies".equals(category)) {

VisGraph g = new VisGraph();
set<node<Module>> visited = new hashset<node<Module>>;
renderDependentModules(this, g, visited);
return g;

} else return null;
}

Since the creation of the diagram specification is done using a recursive al-
gorithm (to handle the transitive dependencies), most of the code resides in
renderDependentModules. This is called initially with the current module, the
Visgraph that represents the result, and a set visited to detect cycles. The
implementation of renderDependentModules looks as follows:

11 http://plantuml.sourceforge.net/classes.html

Chapter 9. Implementing the Non-Language Aspects of mbeddr 243

private void renderDependentModules(node<Module> m, VisGraph g,
set<node<Module>> visited) {

if (visited.contains(m)) { return; }
visited.add(m);
g.add("component " + m.name + " <<module>>");
g.add("url of " + m.name + " is " + IVisualizable.makeURL(m));
foreach mi in m.imports.filter<ModuleImport> {

renderDependentModules(mi.module, g, visited);
g.add(m.name + ".>" + mi.module.name);

}
}

The method first returns in case a cycle is detected. Otherwise it adds a
component statement to the graph, using the name of the current module and
the «module» stereotype. The next line associates a URL with the shape; it
uses a utility method IVisualizable.makeURL that encodes the unique ID of
the module node. The method then iterates over all ModuleImports of the
current module. It calls renderDependentModules recursively on the imported
module, then adds a dotted line (.>) from the current module to the imported
one.

9.6 L E G A C Y C O D E I M P O RT E R

Importing textual code into MPS is simple in principle, assuming a parser
for the textual language exists. In this case, this parser can be called directly
from within MPS, and the resulting AST can be mapped to the instances
of corresponding language concepts in the MPS language definition. Such a
mapping transformation can be implemented in Java or any DSL developed in
MPS specifically for this purpose. MPS itself uses this approach for importing
exiting Java code.

As a consequence of the preprocessor, importing C code is harder; the prob-
lem is described in the context of refactoring C code by Garrido & Johnson
[2002]. There are two alternatives. The first alternative imports C code after
the preprocessor has run. The resulting C program can be parsed easily, and
the approach discussed above can be used. However, as a consequence, any
abstractions built with preprocessor directives such as constants or macros are
lost – the remaining code is much harder to read and may not really resemble
the original textual source. Also, running the preprocessor resolves all #ifdef
directives, removing any product line variability expressed this way. So, to
import C code in a meaningful way, #ifdef variability has to be lifted into
feature models and presence conditions based on mbeddr’s native support
for expressing product line variability. In addition, all other preprocessor ab-
stractions must be kept intact. Parsing C code while taking into account the
preprocessor in general and #ifdef variability in particular is a hard problem
that is, for example, discussed by Badros & Notkin [2000]. Providing IDE
support, such as type checking for variable code, is a related challenge that is
implemented as part of TypeChef [Kenner et al., 2010].

244

As part of mbeddr, we had tried to solve this problem ourselves, but we
underestimated the complexity of building a robust solution. The effort ul-
timately failed. We have since decided to rely on an established industry-
strength solution for this problem12. In particular, we are in the process of
integrating with Semantic Designs C frontend13, which is in turn based on the
work described by Baxter & Mehlich [2001]. This tool works with a C gram-
mar that includes preprocessor statements and outputs a completely resolved
and typed AST that includes preprocessor statements. Semantic Designs can
handle ca. 95% of preprocessor statements correctly; they are working on the
remaining 5%. In terms of integration into mbeddr, we have to write code that
transforms an XML representation of the C AST as produced by Semantic De-
signs’ tool into an mbeddr AST, factoring #ifdefs into presence conditions
and feature models. The integration of this tool is still in progress, so this
topic is not discussed any further in this thesis.

Summary — Generic Tools, Specific Languages emphasizes the idea of using lan-
guage engineering to build domain-specific tools instead of classical tool engineer-
ing. While this chapter shows that some tool extensions are necessary, most of them
are either directly related to languages (debuggers, dataflow, legacy code importer) or
are generic in the sense that they can be used for arbitrary languages (such as the
visualizations). To conclude the thesis, the next chapter evaluates Generic Tools,
Specific Languages from the language engineering perspective.

12 Solving this problem is not part of the contribution of mbeddr and this thesis, so we think this
is a reasonable approach.

13 http://semanticdesigns.com/Products/FrontEnds/CFrontEnd.html?Home=CTools

Chapter 9. Implementing the Non-Language Aspects of mbeddr 245

246

10
Validation II: The Language Engineer’s Perspective

Abstract — Generic Tools, Specific Languages exploits language engineering and
language workbenches over tool construction. To evaluate the feasibility of this ap-
proach, this chapter evaluates the process of building mbeddr based on language
engineering with MPS. In particular, it discusses domain-specific extensibility, mod-
ularity and projectional editing, MPS’ scalability, the effort to build mbeddr, as well
as MPS’ learning curve. The chapter concludes that Generic Tools, Specific Lan-
guages is a productive approach for developing domain-specific tools and that MPS
is a good fit for the purpose, despite a few limitations.

10.1 D O M A I N - S P E C I F I C E X T E N S I B I L I T Y

A cornerstone of Generic Tools, Specific Languages and mbeddr is the ability
to extend languages in meaningful ways, while retaining tight syntactic and
semantic integration with C and existing extensions. Of course, the mbeddr
default extensions, discussed in Chapter 4, are the most significant example:
they constitute domain-specific extensions of C. The evaluation in Chapter 5
shows that the resulting tool seems to be useful for embedded software de-
velopment.

The remainder of this section evaluates whether and how mbeddr and its
extensions can be extended as part of application development projects. Some
of the example systems introduced in Section 5.1 are used for the evaluation.

Smartmeter: The Smartmeter project was staffed partially by members
of the mbeddr team. Consequently, the threshold for building language
extensions was particularly low, and a number of extensions have been
built during the project. The target processor has special-purpose registers:
when a value is written to such a register, a hardware-implemented com-
putation is automatically triggered based on the value supplied by the
programmer. The result of the computation is then stored in the regis-
ter. Running code that works with these registers on the PC for testing
purposes leads to two problems: first, the header files that define the
addresses of the registers are not valid for the PC’s processor. Second,
there are no special-purpose registers on the PC, so no automatic com-
putations would be triggered. Smartmeter solves this problem with a
language extension that supports the definition of registers as first-class
entities and allows read and write access from C code (see code below).
The extension also supports specifying an expression that performs the
computation. When the code is translated for the real device, the real
registers are accessed based on the addresses defined in the processor
header files. In the emulated case used in testing, generated structs are

247

used to hold the register data; the expressions are inserted into the code
that updates the struct, simulating the hardware-based computation.

exported register8 ADC10CTL0 compute as val * 1000

void calculateAndStore(int8 value) {
int8 result = // some calculation with value
ADC10CTL0 = result; // stores result * 1000 in register

}

Many aspects of the Smartmeter system are driven by interrupts. To in-
tegrate the component-based architecture used in Smartmeter with inter-
rupts, it is necessary to be able to trigger component runnables via an
interrupt. To this end, Smartmeter has implemented a language exten-
sion that allows the declaration of interrupts. In addition, the extension
provides runnable triggers that express that a runnable is triggered by
an interrupt. The following example declares two interrupts, and the
component runnable interruptHandler is declared to be triggered by an
interrupt:

module Processor {
exported interrupt USCI_A1
exported interrupt RTC

}

exported component RTCImpl {
void interruptHandler() <- interrupt {

hw->pRTCPS1CTL &= ~RT1PSIFG;
}

}

Note that this code does not specify which interrupt triggers the runnable,
because this is done as part of component instantiation (not shown). In-
stantiation also checks that each interrupt-triggered runnable has at least
one interrupt assigned to it. In addition, for testing purposes on the PC,
there are language constructs that simulate the occurrence of an inter-
rupt: the test driver simulates the triggering of interrupts based on a
test-specified schedule and checks whether the system reacts correctly. J

ASIC Testing: In this system, mbeddr’s C extensions were not used. In-
stead, a new DSL was built that describes ASIC test cases. When building
this DSL, parts of the existing C language were reused, including expres-
sions and the primitive types, simplifying the development of the DSL.
An importer was built to read the test descriptions from the legacy Excel
format into instances of the DSL. As a consequence of the stricter specifi-
cation of the language, several inconsistencies were uncovered in existing
test cases. Finally, a generator was developed to generate C code that im-
plements the test cases in a way that can be executed by the target device.
Developing the generator was efficient because of the fact that C was
already available in MPS. Summing up, the developers report that, [..]

248

Figure 10.1 An example OIL file used to configure the Lejos OSEK operating sys-
tem. OIL files declare the memory model, events, tasks and other OS entities
necessary for a given application. Program code reference these declarations. An
OSEK-specific generator creates the specific implementation of the operating sys-
tem based on this configuration.

mbeddr and MPS are a very appropriate tooling for Model Driven Software De-
velopment when working in a C [..] environment. [C is] extensively supported
by the IDE, not only when writing solutions [..], but also when developing code
generators. Using mbeddr C in our code generator prevented us from having
any syntax errors in generated code – starting with the first iteration. The idea
of custom refactorings was very appealing to us. With mbeddr and MPS one can
manipulate a model very easily and [..] with full IDE support. Refactorings are
basically written in Java, any Java package can be accessed including file I/O and
access to the IDE user interface (e.g., file chooser, message boxes). J

Park-o-Matic: The Park-o-Matic system did not significantly extend the
mbeddr languages, but provided an additional generator. The Park-o-
Matic has to be deployed as an AUTOSAR component. This has two
consequences. First, the component’s external structure (names, inter-
faces, ports) must be described in an AUTOSAR-specific XML format,
to enable deployment tools to work with the component. This additional
generator has been integrated with the mbeddr component generator and
is run for all components marked as AUTOSAR. The second consequence is
that all invocations of operations on required ports that are marked as
AUTOSAR must go through the AUTOSAR-specific middleware, i.e., spe-
cial API functions have to be called from inside the component. The
generator was integrated with the existing components generator. Both
of these generator extensions have been built without changes to the ex-
isting generators, validating the extensibility in terms of generators. J

Chapter 10. Validation II: The Language Engineer’s Perspective 249

Lego Mindstorms: The Lego Mindstorms system was an early attempt
at validating the extensibility of mbeddr, and consequently, a number of
extensions were built. The OSEK operating system has to be configured
for each application with regards to the memory model, tasking, sched-
uling, and memory allocation. These configurations are expressed in OIL
(OSEK Implementation Language) files. To be able to define these OIL
files, we have implemented the OIL language in MPS. This is rather triv-
ial, since OIL files are essentially nested name-value pairs. An example
is shown in Figure 10.1. The language to express OIL files is not a C ex-
tension, it is a separate, stand-alone (external) DSL. In OSEK, OIL files
are text files with a predefined set of possible entries. In the mbeddr ex-
tension, the IDE knows about the possible contents and can provide code
completion and consistency checking.

A major reason why the OIL file declares tasks and events is that
the operating system instance generated from an OIL file then schedules
tasks and manages events for the programmer. However, it is of course
necessary to provide implementations of tasks that specify the behavior of
the task when it executes. A new top-level concept for C called task is
available to serve this purpose:

module ... {
task (SirenTask) {

if (siren.isOn()) {
siren.playOnce();

}
TerminateTask();

}
}

SirenTask in the code above is actually a reference to the task node de-
clared in the OIL file of the particular system. This ensures that only
implementations for tasks declared in the OIL file are possible. Con-
versely, the system reports a warning in the OIL file if there is no task
implementation for any particular task declaration in the OIL file.

The OSEK API provides various functions for managing events; the
code below uses a few of them:

task (Shoot) {
while (true) {

WaitEvent(ShootEvt);
ClearEvent(ShootEvt);
if (...) {

SetEvent(PoliceCarDriver, SignalHit);
}

}
TerminateTask();

}

In OSEK, the arguments passed into these API functions are simply in-
tegers. In mbeddr, we have built an extension, EventMaskType, which

250

directly acts as a reference to the events declared in the OIL file; pressing
Ctrl-Space shows the available events (ShootEvent and SignalHit are
examples in the code above). This has obvious advantages for program
consistency. The code below shows the declaration of these functions:

external module kernel resources header: "kernel.h"
header: <osek.h> {

void TerminateTask();
void ActivateTask(TaskType task_type);
void ChainTask(TaskType task_type);
void ShutdownOS(StatusType status);
StatusType SignalCounter(CounterType counter);
StatusType WaitEvent(EventMaskType event);
StatusType GetEvent(TaskType task, EventMaskType* event);
StatusType ClearEvent(EventMaskType event);
StatusType SetEvent(TaskType task, EventMaskType event);

}

Note how this external module "wraps" the header files that define the
API provided by OSEK. It redefines the functions using the more specific
TaskType and EventMaskType. The reason why this works is that these
types, when generated to C, are reduced to the same int types used by
the original API. This ensures that, while providing better IDE support
and error checking in the IDE, the generated code is still compatible with
the original API, without any overhead.

Lejos-OSEK comes with its own particular flavor of make files for build-
ing executables. Also, there are some peculiarities about how binaries are
configured. For this reason we have built a new platform (mbeddr’s ab-
straction of the build process) which specifies the OIL file to be used for
a given system and specifies the path to the build infrastructure provided
by Lejos-OSEK. Also, a new generator for BuildConfigurations is prov-
ided which translates BuildConfigurations into valid Lejos-OSEK make
files. J

Pacemaker: The core behavior of the pacemaker is specified as a state
machine. To verify this state machine and to prove correctness of the
code, two additional C extensions have been developed. One supports
the specification of nondeterministic environments for the state machine
(simulating the human heart), and another one allows the specification of
temporal properties (expressing the correctness conditions for the state
machine in the face of its nondeterministic environment).

This is an example of domain-specific extension of the existing veri-
fication. The verification of the state machine relies on the existing in-
tegration of CBMC. Since CBMC works on (instrumented) C code, new
verifications can be integrated into mbeddr with the following three in-
gredients. First, domain-specific language extensions are developed that
allow users to express the system, the verification conditions, and if nec-
essary, its environment. Second, these extensions are then generated to
CBMC-compatible C code (for example, calling specially-named pseudo

Chapter 10. Validation II: The Language Engineer’s Perspective 251

functions to obtain nondeterministic values). Third, the results have to
be lifted back and shown to the application developer in terms of the
domain-specific extensions. The pacemaker verification used this ap-
proach. J

Summing up, the various project-specific extensions clearly demonstrate the
feasibility of defining custom extensions to mbeddr. The effort required to
define these extensions was limited and they clearly improved readability
and IDE support for the language (some of the efforts are discussed in Sec-
tion 10.4).

10.2 M O D U L A R I T Y & P R O J E C T I O N A L E D I T I N G

Language modularity, extension and composition is central to mbeddr in two
ways. First it enables third parties to create C extensions without having to
agree about how to invasively change C. Second, modular language extension
also helps to scale the system from the perspective of the language engineer.
At this point, mbeddr consists of 51 separate languages with clear dependen-
cies on each other. Putting all the language concepts from these languages
into one single language would quickly become unmaintainable.

The integration of formal verification, a problem typically associated with
tool extension and integration, has been reduced mostly to a language inte-
gration problem. We implemented the NuSMV and Yices input languages
in MPS, reusing part of the C expression language. Then we implemented
a transformation from domain-specific abstractions to these input languages.
Only the execution of the verification tool, the lifting of the verification results
and their representation in the UI remained as tool integration problems. This
approach substantially reduced the effort for the integration.

While users can make use of the existing extensions that come with mbeddr
(see the next subsection), they are encouraged to build their own modular ex-
tensions specific to their system context, as discussed in the previous section.
Based on these extensions, preliminary conclusions can be drawn regarding
the feasibility of incremental, modular language extension.

Modularity Building an extension should not require changes to the base
language. This, in turn, requires that the base language is built with exten-
sion in mind to some degree, since only entities of a certain granularity can
be extended or overwritten. This is similar to object-oriented programming
where one cannot override lines 10 to 12 in a 20-line method. In addition to
being useful in their own right, the implementation of the default extensions
also served to verify that the C base language is extensible; the extensions for
Smartmeter demonstrate this further. The registers extension (Section 10.1)
requires new top-level module contents (the register definitions themselves),
new expressions (for reading and writing into the registers), and embedding
expressions into new contexts (the code that simulates the hardware compu-
tation when registers are written). All these have been built without changing

252

C. Similarly, the interrupt-based runnable triggers have been hooked into the
generic trigger facility that is part of the components language. The latter is an
example of where a base language (the components extension in this case) has
been built with extensibility in mind: an abstract concept AbstractTrigger
had been defined, which has been extended to support interrupts. Even the
units extension, which provides new types, new literals, overloaded typing
rules for operators and some adapted code generators. has been developed in
a modular way, without changing the C base language1.

Special care has to be taken in the definition of type system rules. Regu-
lar typing rules cannot be overridden in a sublanguage. Only the overloaded
operations container can be overloaded (as their name suggests) in a sublan-
guage. As a consequence it requires some thought when designing a language
to make the type system extensible in meaningful ways.

To orchestrate the generation of the final C code, language designers spec-
ify a partial ordering among generators using priorities. It is not easily pos-
sible to "override" an existing generator, but generators can run before or after
existing ones. Generator extension is not possible directly. This sometimes
requires placeholders (see Section 7.4.2), put in by earlier generators to be
reduced by later ones. Obviously this requires pre-planning on the part of
the developer of the generator that adds the placeholder (or later invasive
redesign).

Reuse Once a language is designed in a reasonable way (as discussed in the
previous item), the language (or parts of it) should be reusable in contexts that
had not been specifically anticipated in advance. Embedding state machines
into components (discussed in Section 8.3) is an example. The C expression
language is reused inside the guard conditions in a state machine’s transitions;
constraints prevent the use of those C expression that are not allowed inside
transitions (for example, references to global variables). Decision tables are
also used in components. The Smartmeter system contains more examples:
expressions have been embedded in the register definition for simulating the
hardware behavior, and types with measurement units have been used in de-
cision tables. Again, no change to the existing languages has been necessary.

Combination Ideally, independently developed extensions should not in-
teract in unexpected ways (extension composition, Section 7.4.7). We have
not seen such interactions so far, in the default extensions or in Smartmeter.
While there is no automatic way to detect such interactions or declare incom-
patibility between languages or extensions, the following steps can be taken
to minimize the risk of unexpected interactions. Names of generated C ele-
ments (variables, functions) should be qualified to make sure that no name
clashes occur. Also, an extension should avoid making specific assumptions
about or changing the environment in which it is used. For example, it is

1 During the implementation of the default extensions we found a few bugs in the C base lan-
guage that prevented modular extension. These were not conceptual problems, but real bugs.
They have been fixed, so C can now be extended meaningfully in a modular way.

Chapter 10. Validation II: The Language Engineer’s Perspective 253

a bad idea for a new Statement to change the return type of the containing
function during transformation, because two such badly designed statements
could not be used together in a single function; they may require different re-
turn types for that function. Finally, in traditional parser-based systems, there
may be syntactic interactions between independently developed extensions.
As discussed at length, this never happens in MPS.

In terms of concrete syntax, combination of independently developed lan-
guage extensions in one program can never lead to ambiguities from the per-
spective of the tool. Potential ambiguities are resolved by the user as he enters
the program (discussed at the end of Section 7.4.7) – once entered, a program
is always unambiguous. However, extension combination may lead to syn-
tactic ambiguities for the developer as he reads the code, because different lan-
guage concepts may use the same syntax. Since MPS 3.0 it has been possible to
define several editors for the same language concept, and override editors for
existing concept from a new language. This could allow the concrete syntax
ambiguity to be solved by changing the notation (or color or font) of existing
concepts if they are used together with a particular other language. Such a
new concrete syntax would be defined in the respective adapter language.

Projectional editing as implemented in MPS is a suitable foundation for
implementing Generic Tools, Specific Languages. As mentioned above, mbeddr
currently consists of 51 language modules integrated in terms of syntax, type
system, semantics and IDE. Modularization, reuse and combination largely
works in the way it was expected to work.

As discussed in Section 10.4 below, the effort of building such a system is
acceptable. Based on the literature research performed as part of this thesis,
and based on my industry experience, a modular language system of com-
parable size and complexity has not been built before with other tools; in
particular, not with parser-based systems. This leads to the conclusion that
projectional editing has advantages in this space.

Projectional editing also has advantages in terms of notational freedom.
mbeddr exploits this to the advantage of the end users in the following ways:

• Tables are used in several places, among them in decision tables (Sec-
tion 4.5) and in state machines (Section 4.6).

• Optional projection, the ability to optionally not show contents even
though they are in the program tree, is used for requirements traces
(Section 4.8) and product line variability (Section 4.9).

• Semi-structured content, where unstructured prose text is mixed with
program elements, is used in requirements (Section 4.8) as well as in
comments and the documentation language (Section 4.7).

Projectional editing is the enabler for these notations – they cannot be prov-
ided by parser-based systems. While we have not performed a systematic
usability study to uncover whether these notations lead to productivity ad-
vantages, the feedback we received from our users was positive. The user
survey already mentioned in Chapter 5 indicates (in Figure 10.2) that users

254

Figure 10.2 These diagrams show the degree to which users agree with the state-
ment that they benefit from modular languages (left) and flexible, non-textual nota-
tions (right). None of the users disagreed or disagreed strongly.

benefit from language modularity and the flexible notations afforded by pro-
jectional editing.

10.3 T O O L S C A L A B I L I T Y

The scalability of MPS as a language workbench can be measured in different
ways, including its ability to manage the complexity associated with large or
many languages, the learning curve, working in teams and in terms of sup-
ported language sizes and tool performance. This section looks at language
size and tool performance. The others are discussed below.

Typically, lines of code (LOC) are used to describe the size of a program.
In a projectional editor like MPS, a "line" is not necessarily meaningful. How-
ever, it is feasible to estimate the equivalent LOC number by counting the
occurrences of certain language definition ingredients and associating a LOC
factor with them. For example, the statements that are used in the imperative
parts of a language definition (for example, in scopes or type system rules)
have a LOC factor of 1.2, since many statements embed higher-order func-
tions and would span more than one line. 1.2 turned out to be a reasonable
average. Another example for a LOC factor is an intention: an intention de-
clares the concept it applies to, a label and an applicability condition. These
are one line each. It also contains a number of statements which are counted
separately, as statements. Hence, the LOC factor for intentions is 3. A sim-
ilar argument holds for constraints or reference scopes. As a final example,
consider editor cells. An editor definition contains a large number of cells,
and we found that on average, 4 occur per "line" of editor definition, leading
to a LOC factor of 0.25. The third column of the table in Table 10.1 shows
the factors for all kinds of ingredients involved in language definition. While
this approach is an approximation, we have made several manual checks and
found that it is accurate enough to get a feel for the size of various language
implementations.

Chapter 10. Validation II: The Language Engineer’s Perspective 255

Table 10.1 shows the result of the LOC count for the mbeddr core, i.e. C
itself plus unit test support, decision tables and build/make integration. Ac-
cording to the metric discussed above, the core comprises about 8,640 lines
of code. This includes all aspects of language definition (including syntax,
type system, to-text-generators) as well as the IDE (code completion, syntax
highlighting, quick fixes). Using the same metric, the components extension
(interfaces, components, pre- and post-conditions, support for mock compo-
nents and a generator back to plain C) is ca. 3,000 LOC. The state machines ex-
tension is ca. 1,000 LOC. These numbers are an indication that MPS supports
very concise definition of languages, an observation that is also confirmed
by the comparison of language implementation sizes by Erdweg et al. [2013].
While we have not implemented C with other language workbenches, some
of the authors have experience with other tools. For example, implementing
C and its IDE with Xtext would require significantly more code, since many
language aspects are not supported first class (for example, type systems), or
must be implemented using more verbose Java code that relies on Xtext APIs.

Element Count LOC Factor LOC Equivalent

Language concepts 260 3.00 780
Property declarations 47 1.00 47
Link declarations 156 1.00 156
Editor cells 841 0.25 210
Reference constraints 21 2.00 42
Property constraints 26 2.00 52
Behavior methods 299 1.00 299
Typesystem rules 148 1.00 148
Generation rules 57 10.00 570
Statements 4,919 1.20 5,903
Intentions 47 3.00 141
Text generators 103 2.00 206

Total approximate LOC: 8,640

Table 10.1 Number of instances of various language definition elements in the
mbeddr core; a factor is used to translate them into equivalent lines of code.

To be able to deal with a large set of evolving languages, it is crucial that
building and testing be automated. We use the Teamcity2 integration server
for this. This automatically builds MPS plugins from all mbeddr languages
and also automatically runs the tests. We have two kinds of test cases (details
of how these work in MPS can be found in Chapter 14 of Voelter et al. [2013]):

• Executable test cases test the execution semantics of the languages. This
is done by expressing test cases in the mbeddr language, then generating
C code that is then executed.

2 http://www.jetbrains.com/teamcity/

256

• Type system tests verify that constraints, scopes and type system rules
work correctly.

Both kinds of test cases have proved essential. It is impossible to keep a large
set of languages stable unless automated testing is used.

10.4 E F F O RT

The core C implementation was developed in ca. four person-months, divided
between three people, resulting in roughly 2,200 LOC per person month. Ex-
trapolated to a year, this would be 26,400 LOC per person. According to
McConnell3, in a project of up to 10,000 LOC, a developer can typically write
between 2,000 and 25,000 LOC per year, so the mbeddr implementation is
just slightly above the typical range. The state machines extension (including
the generator and the integration with the NuSMV model checker) and com-
ponents extension (including a generator to C with polymorphic and static
wiring options, testing support, pre- and post conditions and protocol state
machines) were both implemented in about a month. The unit testing exten-
sion and the support for decision tables were implemented in a few days.

The effort for incremental, project-specific extensions is also interesting.
The registers and interrupt extensions for the Smartmeter project were built
in 3 hours each (plus some bug fixing when they were first used). The custom
verifications for the Pacemaker were built and integrated in ca. 2 days. In the
context of a development project which, like Smartmeter, is planned to run
a few person-years, these efforts can easily be absorbed. Furthermore they
lead to benefits in terms of the improved safety and testability, as shown in
Section 5.

10.5 M P S L E A R N I N G C U RV E

MPS is a comprehensive environment for building and composing languages.
In addition to defining the structure, syntax and an IDE, it also supports
advanced features such as type systems, refactorings and debuggers. Con-
sequently, the learning curve for the language developer (not the application
developer) is significant. Our experience with several novice MPS language
developers is that it takes around four weeks of full-time training and practice
to become a decent MPS language developer, and months to become really
proficient. With improved documentation and some cleanup of MPS itself,
this effort may be reduced, but it is still a significant investment. Note that
these numbers apply to people who are already experienced software devel-
opers and already have at least a basic understanding of languages, modeling
or meta programming.

This effort may seem high, but it has to be put into perspective: once a
developer has mastered the learning curve, MPS scales well in the sense that

3 http://codinghorror.com/blog/2006/07/diseconomies-of-scale-and-lines-of-code.html

Chapter 10. Validation II: The Language Engineer’s Perspective 257

increasingly large and complex languages are not overly more complex to
build. This is in sharp contrast to our experiences with some other, parser-
based language workbenches, where, with increasing language complexity,
the accidental complexity of the language implementation increases signifi-
cantly. Also, it is well known that becoming proficient in a programming
language can take months to years. MPS is essentially a set of languages to
build languages – so it is not a surprise that the effort to learn the system is
of the same magnitude.

10.6 L I M I TAT I O N S O F M P S

Even though MPS, with its projectional editor is fit for purpose for Generic
Tools, Specific Languages and mbeddr, there are still a number of problems
MPS has to address in the future. These are discussed in this section.

Editor Usability MPS’ approaches to editor usability was discussed in Sec-
tion 6.2.1, and Section 5.3.2 reported on the experience of application devel-
opers with this editor. Generally, the editor works for users after getting used
to it for a few days. However, there are still a number of remaining issues,
including the following:

• The TAB order cannot be explicitly defined by the language engineer.
For notations other than text, such as tables or mathematical symbols,
this makes editing unnecessarily hard.

• There are still a number of cases, especially in the DSLs used for defining
languages, in which the cursor jumps to random places after editing
actions, requiring the user to manually go back to the current editing
location. This is annoying and confusing.

• References to symbols are not always automatically rebound if the ref-
erenced symbol’s identity is changed. A reference contains name infor-
mation about the target, so that, if the target’s ID changes, for example,
because the element is deleted and recreated, the reference can be re-
bound based on the name. However, this does not work in some cases,
requiring the user to press Ctrl-Space + Enter for all references broken
in this way.

• If different aspects of language definition override the text or back-
ground color of a program node in different ways, it is not clear which
one wins, and the color changes randomly.

All of these issues have been reported to the MPS team and will be solved in
the near future.

Cross-Model Generation MPS stores data in models. Each model is es-
sentially an XML file that contains program nodes. Models can import each
other, making (some) nodes from the imported model visible to the import-
ing model. Large systems, such as the Smartmeter, are spread out over many

258

models. This means that, when code is generated, the to-be-generated AST
may span several models – references cross the model boundary. As a conse-
quence of an architectural problem in the MPS generator, generating code
from ASTs that cross multiple models does not work. As a workaround,
mbeddr automatically imports all the program nodes from referenced models
into the model for which the code generator is invoked. While this works, it is
not efficient, and it leads to the regeneration of C files that have already been
generated from other model files. Rearchitecting the generator and fixing this
problem is scheduled for 2014.

Type System Tests The support for testing constraints, scopes and type
system rules is very nice in principle: developers write example programs
that contain errors, marking program nodes that are expected to have errors
with special annotations. However, executing such tests takes too long – in
the background, a new instance of MPS is started, so it takes ca. one minute
before the first test is even run. Also, the way failed assertions are reported to
the developer is flawed, and it is sometimes hard to work out which assertion
has actually failed.

Language Evolution Language evolution refers to the problem of what to
do with existing models when the underlying language changes. Section 6.2.2
explains how, by using a disciplined approach to language evolution as well
as MPS mechanisms such as quick fixes and migration scripts, this challenge
has been addressed in mbeddr. However, more direct support by MPS would
be useful: languages should be versioned, programs should declare to which
version of a language they comply, and migration of "old" programs should be
automated, as far as possible. This is currently not supported, but addressing
this problem is on the MPS roadmap.

A related problem occurs with language composition. Composing lan-
guages leads to coupling. In the case of referencing and extension the cou-
pling is direct, in the case of reuse and embedding the coupling is indi-
rect via the adapter language. As a consequence of a change of the refer-
enced/base/context/host language, the referencing/extending/reused/em-
bedded language may have to change as well. With the planned language
versioning support, this problem should be simplified; however, some process
discipline will always have to be established in which dependent languages
are migrated to new versions of a changed language they depend on.

Graphical Editors The ability to work with arbitrary notations under the
same architectural framework is a clear advantage of projectional editors. At
the time of writing, MPS supports textual notations, tables, semi-structured
prose as well as symbols – and all of these are used by mbeddr and have
been discussed throughout this thesis. Graphical editors are not yet available.
However, as of early 2014, a prototype framework for graphical editors in MPS
has become available, and support for box-and-line diagrams will become
available in 2014. State machines diagrams, as well as a graphical notation for
components and connectors, will be added to mbeddr in 2014 as well.

Chapter 10. Validation II: The Language Engineer’s Perspective 259

Summary — This chapter evaluates mbeddr from the perspective of language en-
gineering. By looking at extensibility, modularity, projectional editing, scalability,
effort spent and the learning curve for MPS, this chapter also implicitly evaluates the
Generic Tools, Specific Languages approach itself. The next chapter provides an
overall conclusion of the thesis.

260

11
Conclusion

Abstract — While not every possible aspect of mbeddr and Generic Tools, Specific
Languages has been researched as part of this thesis, mbeddr seems to be a useful tool,
and Generic Tools, Specific Languages in general seems to be a useful approach for
tool development. This is reinforced by the fact that mbeddr has been chosen by a
major vendor as the basis of the forthcoming controls engineering tool. I conclude
the thesis with a general outlook on the role of languages and language engineering
in software development and areas outside of embedded software in which Generic
Tools, Specific Languages is starting to get applied: requirements engineering and
business applications.

11.1 GENERIC TOOLS, SPECIFIC LANGUAGES REVISITED

In the introduction to this thesis, Generic Tools, Specific Languages was defined
in the following way:

Generic Tools, Specific Languages is an approach for developing tools and
applications in a way that supports easier and more meaningful adapta-
tion to specific domains. To achieve this goal, Generic Tools, Specific Lan-
guages generalizes programming language IDEs to domains traditionally
not addressed by languages and IDEs. At its core, Generic Tools, Spe-
cific Languages represents applications as documents/programs/models
expressed with suitable languages. Application functionality is prov-
ided through an IDE that is aware of the languages and their semantics.
The IDE provides editing support, and also directly integrates domain-
specific analyses and execution services. Applications and their lan-
guages can be adapted to increasingly specific domains using language
engineering; this includes developing incremental extensions to exist-
ing languages or creating additional, tightly integrated languages. Lan-
guage workbenches act as the foundation on which such applications
are built.

The core of this thesis is the demonstration and evaluation of Generic Tools,
Specific Languages for the example domain of embedded software development
based on the mbeddr tool. Part II of the thesis demonstrates mbeddr and
discusses the degree to which it is useful to application developers. Part
III explains how language engineering with the MPS language workbench
is used to implement mbeddr. The evaluation chapters (5 and 10) draw an
overall positive picture regarding the usefulness of mbeddr for application
developers, and regarding Generic Tools, Specific Languages as an approach to
building domain-specific development tools.

261

This positive picture is reinforced by the ACCEnT project. mbeddr has
been selected as the basis for the ACCEnT controls and embedded engi-
neering tool by Siemens PL (LMS). As part of ACCEnT, mbeddr is being
extended with dataflow blocks for controls development, data dictionaries
that describe names, types, units, values and constraints of important data
items, cross-cutting support for tying managed names to program elements,
constant groups for managing sets of constants in a PLE-aware way, refac-
toring support from plain C to dataflow blocks and integration of dataflow
models with mbeddr’s components, among other things. The extensions for
ACCEnT have been added to mbeddr without invasive changes to mbeddr
and its languages, with the exception of introducing a few abstract base con-
cepts in mbeddr to serve as hooks.

While ACCEnT will be a commercial tool that builds on mbeddr, mbeddr
itself remains an open source platform. It continues to be used in several
projects, the smart meter mentioned earlier being the biggest one. In early
2014 mbeddr has been contributed to the Eclipse foundation as part of the
technology project1.

11.2 O P E N I S S U E S A N D F U T U R E W O R K

Some aspects of Generic Tools, Specific Languages and mbeddr were not re-
searched in the context of this thesis and/or the LW-ES research project. This
section briefly looks at some of these.

Additional Abstractions There are several relatively obvious extensions of
C that have not been built, mainly because we didn’t have the resources. The
first one is more specific numeric types; float and double types are gener-
ally avoided in embedded software. Instead, a numeric type should be able
to specify its value range and its precision, and should be mapped to an
appropriately-sized integer type. The type system and the operators have
to be extended correspondingly. The second area is concurrency. Language
abstractions for shared memory and locking as well as for message passing
should be added. Languages for specifying tasks and their schedules would
be useful as well. This area is also amenable to verification. For example,
in a message passing system, verification could be used to show that the
sender does not access a message data structure after it has been sent. In
this case, copying of the data (to avoid shared access to the message) can be
avoided, combining message passing semantics with shared memory perfor-
mance. This approach is similar to what has been done in the Microsoft Sin-
gularity operating system [Hunt & Larus, 2007], but, in line with mbeddr’s
philosophy, the verification could be simplified by suitable language exten-
sions and/or restrictions.

Performance and Overhead Abstraction and subsequent automatic genera-
tion typically involves an overhead in terms of runtime performance, memory

1 http://www.eclipse.org/proposals/technology.mbeddr/

262

consumption or the size of the binary. Whether this is relevant depends on
the domain in which Generic Tools, Specific Languages is applied. It is certainly
relevant in the domain of embedded software. Section 5.2.1 discusses per-
formance and overhead for mbeddr. However, this discussion is based on
selective evidence from a few systems built with mbeddr; a systematic study
has not been performed. To make mbeddr viable for real-world use, prospec-
tive users have to clearly understand the consequences for performance and
overhead of the different extensions. In the future, we are planning to conduct
a more systematic study on this topic. In addition, there are ideas of integrat-
ing performance prediction and runtime monitoring facilities into mbeddr, to
at least make the trade-off transparent to users.

Maintenance The long-term maintainability of applications written with
mbeddr as well as the long-term evolution of mbeddr itself were not studied.
In general, decoupling the description of application behavior from the gen-
erated implementation through DSLs and generation has the advantage that
both of them can be changed independently: new language constructs can
be added (through extension or evolution), which generate to the same tar-
get platform. Similarly, by exchanging or evolving the generator, new target
platforms can be supported for the same language abstractions. However, in
practice, the two dimensions are often not completely independent; assump-
tions on the target platform may unconsciously find their way into the DSLs,
or performance considerations may limit the degree to which abstractions can
be used sensibly. In addition, the DSL(s) and IDE itself must be maintained,
and because of the fact that a good DSL incorporates knowledge about its
domain, language changes may be necessary as the domain changes. This re-
quires language engineering experience. An organization must keep language
engineering experience available, in addition to the expertise in the domain.
This can be a challenge in some organizations. Van Deursen and Klint dis-
cuss the question of maintenance of DSLs based on a DSL in the insurance
domain [Van Deursen & Klint, 1998]. They conclude that,

DSLs are no panacea for solving all software engineering problems, but
a DSL designed for a well-chosen domain and implemented with ade-
quate tools may drastically reduce the costs for building new applica-
tions as well as for maintaining existing ones.

However, the authors also warn that

[..] an application domain may not be sufficiently understood to warrant
the design of a DSL for it or adequate technology may not be available
to support the design and implementation of the DSL.

The first concern has to be evaluated for each domain separately, but the abil-
ity to incrementally extend languages may help: the DSL can initially define
abstractions only for those aspects of the domain that are understood, and
then grow over time as the understanding of the domain involves. The con-
cern about adequate technology has certainly been addressed to some extent

Chapter 11. Conclusion 263

in the fifteen years since the paper was written. MPS has proven to be a ca-
pable language engineering platform for the purposes of Generic Tools, Specific
Languages.

Usability and User Acceptance We clearly perceive initial prejudice, ir-
ritation and rejection towards projectional editing by many people who are
asked to use MPS. However, as illustrated by our preliminary experience with
our users’ acceptance of projectional editing and mbeddr discussed in Sec-
tion 5.3.2, the opinion becomes much more positive after a few days. We
also perceive a difference between different user groups. Developers who
currently use textual IDEs (such as embedded software developers) are much
more skeptical than users who currently use tools like Word or Excel (prospec-
tive users of business applications developed with MPS; see Section 11.3). To
better understand the challenges of projectional editing, we are currently con-
ducting a more systematic study (together with Janet Siegmund and Thorsten
Berger).

11.3 B E Y O N D E M B E D D E D S O F T WA R E

The history of programming is shaped by the abstractions available to devel-
opers when building systems. The better these abstractions reflect the domain
for which the developer writes code, the easier a developer’s job is, and the
more productive he becomes. The abstractions are the tools (in the sense of
hammer or wrench, not in the sense of IDE) we use to build our products: the
better the tool, the more sophisticated the product, and the more efficient its
development.

Abstractions come in various forms, from functions over classes to libraries
and frameworks. However, the cleanest way to make abstractions available
to developers is through a suitable language. A language is a set of abstrac-
tions and consistency constraints, plus nice syntax and IDE support. Well-
designed languages let us compose new abstractions from those supplied by
the language. Language engineering now lets us evolve the language itself
by defining extensions or by combining extensions with each other. And as a
community, we bootstrap ourselves by defining languages and IDEs that help
us build languages: the language workbenches.

As this thesis shows, projectional editors are a significant step forward for
language workbenches. They support essentially unconstrained language ex-
tension and composition (at least from a structural and syntactic perspective).
But more importantly, they support diverse syntactic forms in an integrated
way. In this thesis I have focused on text and tables. However, as I write this
conclusion in March of 2014, an early version of a fully integrated graphi-
cal editor is available in an MPS early access preview. We are in the process
of integrating it into mbeddr for instantiating and connecting components,
and into ACCEnT for data flow editing. In addition, the mbeddr and MPS
teams are working on mathematical notations. An early version is shown

264

in Figure 11.2, and much more elegant looking formulas are currently being
implemented.

MPS itself is planned to evolve in 2014 in significant ways. The graphical
editor and the mathematical notations will be added. A way to strip MPS
down to a much simpler UI to not confuse end users is being developed. And
a number of usability enhancements are scheduled for the editor.

Also, language engineering and language workbenches are an active re-
search area. I am particularly interested in seeing progress in the formalisms
and languages used for language definition. For example, Eelco Visser’s team
is working on declarative rules for name binding [Konat et al., 2013] and
for type system definition. The mbeddr and MPS teams are looking into
more closely integrating the specification of generators and debuggers and at
more grammar-like specification of the concrete syntax of language concepts
in order to automatically derive parsers for legacy code import (at least for
languages that do not have preprocessors).

In the long term, I see the importance of languages and language engi-
neering grow significantly because it will allow new groups stakeholders to
directly contribute to software development. Today, many important stake-
holders enter their knowledge into Word or Excel documents in a way that
is only semi-structured and is very hard to check for consistency and com-
pleteness. Developers have to understand these descriptions and then man-
ually encode them in programming language. Tools built according to the
Generic Tools, Specific Languages approach, can do much better, by using lan-
guage workbench technology to create structured, checkable languages that
retain much of the friendly syntax people know from today’s Office products.
Specifically, I see two domains in which this approach makes sense: require-
ments engineering and business applications. We currently work on both of
these, and I want to discuss them as the conclusion of the thesis.

Requirements Engineering As discussed in Section 4.8, mbeddr comes
with a language for requirements engineering. While this language is a part
of mbeddr, the requirements management solution is sufficiently different
from domain-specific extensions of C that it can be seen as a validation of
Generic Tools, Specific Languages in it own right – this time in the domain of
requirements engineering. For example, during the development of ACCEnT,
the mbeddr requirements language has been used by non-programmers to
collect the requirements for ACCEnT. The language was extended in various
ways:

• Various requirements properties such as state (new, accepted, tbd) and
priority were added.

• A way to associate work packages with requirements was defined. A
work package contains a target milestone, a responsible party and an
effort estimate, as well as a short description.

• The starting point for the requirements elaboration process was a set
of scenarios, essentially lists of activities users will perform with the

Chapter 11. Conclusion 265

Figure 11.1 An assessment that shows an overview of the efforts spent for work
packages associated with requirements. The number is the estimated effort for
the work package. The progress bar shows the degree of completion, and the
color highlights the effort spent relative to the estimated effort: green = finished
with estimated or less effort, blue = in progress, percentage of effort spent is less
than percentage finished, yellow = in progress, percentage of effort spent is more
than percentage finished, red = effort spent more than estimated. Note how the
projectional editor is used to render graphical progress bars in the editor of an
assessment.

tool. These scenarios were given to the mbeddr team as a text file. An
MPS language was developed to capture these scenarios. The language
also supported tracing to the requirements as a means of expressing the
fact that the requirements cover a particular scenario. Coverage analysis
helped us make sure that the requirements cover all scenarios.

• Various assessments were developed to gain an overview of the require-
ments. Examples include: which requirements are still in status tbd,
what is the total effort for a given party and milestone, which require-
ments have no work packages associated with them, which scenario
steps have no requirements associated with them.

• As the implementation of the system proceeds based on the require-
ments, actual effort is associated with the work packages. Assessments
provide an overview of the degree of completion and actual effort. See
Figure 11.1 for an example.

We received extremely positive feedback for this approach to requirements
engineering from our non-programmer users. They said several times that this
was the most productive tool for requirements engineering they ever worked
with. They suggested it be used in another project immediately.

The ability to integrate structured and formal parts into prose require-
ments also makes this tool a great basis for the kinds of highly structured re-
quirements found in safety-critical systems. Mathematical expressions can be
embedded directly, expression and calculations can be type checked and/or
tested with test cases directly in the IDE, and various tabular formalisms for

266

Figure 11.2 This is an example of something akin to a switch statement. Depend-
ing on the condition in the second column, the value calculated by the mathematical
expression in the third colum is assigned to the variable in the first column. Using
some graphical elements, placeholders (such as «condition» and «Rule») and
mathematical notations helped with the acceptance of the language by end users.

behavioral specifications2 can be directly integrated into requirements doc-
uments, and cross-linked from prose text with embeddable words. We will
explore this direction in the future.

Business Applications Generic Tools, Specific Languages is also applied in
the field of business applications. MPS is currently used to develop product
configuration systems in the financial domain, an area that has seen produc-
tive use of DSLs for a long time, as illustrated, for example, by the Risla
language discussed by Van Deursen & Klint [1998] or the Intentional’s Pen-
sion Workbench discussed earlier3. While I am not able to disclose more
information about the specific project, it makes use of some of the same fea-
tures as mbeddr, in particular varied but integrated notations and modular
extension. The system replaces a traditional form-oriented business applica-
tion, responding to the inherent "language-ness" of the domain. The following
characteristics of Generic Tools, Specific Languages and projectional editing seem
most important, based on our preliminary experience:

• The ability to use tabular notations that resemble Excel (to a degree) is
very useful to meet the expectations of current Excel users. In addi-
tion, mathematical notations are very useful for any number of business
calculations. Figure 11.2 illustrates the kind of calculations used in the
financial system.

• Business users want to play with, test and debug their systems. Simi-
lar to test-driven development, business rules are accompanied by unit
tests. Ideally these are run directly in the IDE using an interpreter for

2 https://cs.uwaterloo.ca/~jmatlee/talks/parnas01.pdf
3 http://www.infoq.com/presentations/DSL-Magnus-Christerson-Henk-Kolk

Chapter 11. Conclusion 267

Figure 11.3 Left, Top: An expression used in insurance rules using an mbeddr-
inspired decision table. Left, Bottom: Two test cases; the first argument is prd,
the second one is prs. Right: The same expression in debug mode, where inter-
mediate result of every subexpression (computed by an interpreter for a given test
case) are annotated over or to the left of the expression.

the business rule language. An integrated debugger is useful as well.
Figure 11.3 shows an example debugger for a purely functional expres-
sion language that exploits projectional editing by showing the values
of all intermediate expressions inline.

• Business users, such as actuaries in the financial domain, do not con-
sider themselves programmers and they do not want to be given "pro-
gramming tools". So it is important to make the tools look friendly.
Figure 11.2 illustrates how projectional editors can blur the boundary
between languages and what the users know from their existing appli-
cations.

• It turned out to be important that users are never presented with an
empty editor in which they can then use code completion to "write pro-
grams". It is much better if the editor has some fixed scaffolding, into
which users can enter data, a little bit like forms. Projectional editors
can render such scaffolding as read-only editor contents.

• For some (novice) users it is useful to make the available editor actions
explicit. To achieve this, an alternative projection can be defined that
contains buttons for the most important actions. Once users get used to
code completion and intentions, they can switch the editor mode to not
show buttons, resulting in a much more compact notation.

• The ability to mix formal/structured aspects with prose is also useful.
Many business applications integrate a lot of prose for documentation,
and the ability to make prose first class, mixed with other languages is
very useful.

268

Bibliography

Amelunxen, C., Klar, F., Königs, A., Rötschke, T., & Schürr, A. (2008).
Metamodel-based Tool Integration with Moflon. In Proceedings of the 30th
International Conference on Software Engineering, ICSE ’08, (pp. 807–810)., New
York, NY, USA. ACM. (Cited on pages 14 and 23.)

Andalam, S., Roop, P., Girault, A., & Traulsen, C. (2009). PRET-C: A new lan-
guage for programming precision timed architectures. In Proocedings of the
Workshop on Reconciling Performace with Predictability (RePP), Embedded Sys-
tems Week. (Cited on page 45.)

Arcaini, P., Gargantini, A., & Riccobene, E. (2010). Automatic Review of
Abstract State Machines by Meta Property Verification. In Proceedings of the
Second NASA Formal Methods Symposium. NASA. (Cited on page 50.)

Arnoldus, J., Bijpost, J., & van den Brand, M. (2007). Repleo: a syntax-safe
template engine. In GPCE. (Cited on page 182.)

Axelsson, E., Claessen, K., Devai, G., Horvath, Z., Keijzer, K., Lyckegard, B.,
Persson, A., Sheeran, M., Svenningsson, J., & Vajda, A. (2010). Feldspar: A
domain specific language for digital signal processing algorithms. In MEM-
OCODE 2010. (Cited on page 45.)

Bachrach, J. & Playford, K. (2001). The Java syntactic extender (JSE). In OOP-
SLA ’01: Proceedings of the 16th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications. (Cited on page 182.)

Badros, G. J. & Notkin, D. (2000). A framework for preprocessor-aware C
source code analyses. Software Practice and Experience, 30(8), 907–924. (Cited
on page 244.)

Ball, T., Cook, B., Levin, V., & Rajamani, S. K. (2004). SLAM and Static Driver
Verifier: Technology Transfer of Formal Methods inside Microsoft. In IFM’04.
(Cited on page 50.)

Batory, D., Johnson, C., MacDonald, B., & von Heeder, D. (2002). Achieving
extensibility through product-lines and domain-specific languages: a case
study. ACM Trans. Softw. Eng. Methodol., 11(2), 191–214. (Cited on page 54.)

Batory, D. S. (2005). Feature Models, Grammars, and Propositional Formu-
las. In Obbink, J. H. & Pohl, K. (Eds.), Software Product Lines, 9th International
Conference, SPLC 2005, Rennes, France, September 26-29, 2005, Proceedings, vol-
ume 3714 of Lecture Notes in Computer Science. Springer. (Cited on page 106.)

Baxter, I. D. & Mehlich, M. (2001). Preprocessor conditional removal by
simple partial evaluation. In Reverse Engineering, 2001. Proceedings. Eighth
Working Conference on, (pp. 281–290). IEEE. (Cited on page 245.)

269

Ben-Asher, Y., Feitelson, D. G., & Rudolph, L. (1996). ParC - An Extension of
C for Shared Memory Parallel Processing. Software: Practice and Experience,
26(5). (Cited on page 45.)

Beuche, D., Papajewski, H., & Schroeder-Preikschat, W. (2004). Variability
management with feature models. Science of Computer Programming, 53(3).
(Cited on pages 30 and 101.)

Beuche, D. & Weiland, J. (2009). Managing Flexibility: Modeling Binding-
Times in Simulink. In R. Paige, A. Hartman, & A. Rensink (Eds.), Model
Driven Architecture - Foundations and Applications, volume 5562 of Lecture
Notes in Computer Science (pp. 289–300). Springer Berlin Heidelberg. (Cited
on page 40.)

Beyer, D., Henzinger, T., Jhala, R., & Majumdar, R. (2004). An eclipse plug-in
for model checking. In IWPC’04. (Cited on page 50.)

Binder, R. (2000). Testing Object-oriented Software Testing: Models, Patterns, and
Tools. Addison-Wesley Professional. (Cited on pages 61 and 73.)

Blanc, X., Gervais, M.-P., & Sriplakich, P. (2005). Model Bus: Towards the
Interoperability of Modelling Tools. In U. Aßmann, M. Aksit, & A. Rensink
(Eds.), Model Driven Architecture, volume 3599 of Lecture Notes in Computer
Science (pp. 17–32). Springer Berlin Heidelberg. (Cited on page 15.)

Bock, C. (2004). UML 2 composition model. Journal of Object Technology, 3(10),
47–73. (Cited on page 66.)

Booch, G., Rumbaugh, J., & Jacobson, I. (1998). The Unified Modeling Lan-
guage (UML). World Wide Web: http://www. rational. com/uml/(UML Resource
Center), 94. (Cited on page 80.)

Börger, E., Cavarra, A., & Riccobene, E. (2000). Modeling the Dynamics
of UML State Machines. In Y. Gurevich, P. Kutter, M. Odersky, & L. Thiele
(Eds.), Abstract State Machines - Theory and Applications, volume 1912 of Lecture
Notes in Computer Science (pp. 223–241). Springer Berlin Heidelberg. (Cited
on page 79.)

Boussinot, F. (1991). Reactive C: An Extension of C to Program Reactive
Systems. Software: Practice and Experience, 21(4). (Cited on page 45.)

Bravenboer, M., Dolstra, E., & Visser, E. (2010). Preventing injection attacks
with syntax embeddings. Science of Computer Programming, 75(7), 473–495.
(Cited on pages 156 and 181.)

Bravenboer, M., Kalleberg, K. T., Vermaas, R., & Visser, E. (2008). A language
and toolset for program transformation. Science of Computer Programming,
72(1-2). (Cited on pages 145 and 184.)

270

Bravenboer, M., Vermaas, R., Vinju, J. J., & Visser, E. (2005). Generalized
Type-Based Disambiguation of Meta Programs with Concrete Object Syntax.
In Glueck, R. & Lowry, M. R. (Eds.), Generative Programming and Component
Engineering, 4th International Conference, GPCE 2005, volume 3676 of Lecture
Notes in Computer Science, (pp. 157–172)., Tallinn, Estonia. Springer. (Cited on
page 164.)

Bravenboer, M. & Visser, E. (2004). Concrete syntax for objects: domain-
specific language embedding and assimilation without restrictions. In Pro-
ceedings of the 19th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2004, Vancouver,
BC, Canada. ACM. (Cited on page 181.)

Bravenboer, M. & Visser, E. (2007). Designing Syntax Embeddings and As-
similations for Language Libraries. In MoDELS 2007, volume 5002 of LNCS.
Springer. (Cited on page 182.)

Brown, A. W. (1993). Control integration through message-passing in a soft-
ware development environment. Software Engineering Journal, 8(3), 121–131.
(Cited on page 15.)

Brown, A. W. (1996). Component-Based Software Engineering: Selected Papers
from the Software Engineering Institute (1st ed.). Los Alamitos, CA, USA: IEEE
Computer Society Press. (Cited on page 66.)

Brown, A. W. & Penedo, M. H. (1992). An Annotated Bibliography on Inte-
gration in Software Engineering Environments. SIGSOFT Softw. Eng. Notes,
17(3), 47–55. (Cited on page 14.)

Broy, M. (2006). Challenges in automotive software engineering. In Proceed-
ings of the 28th international conference on Software engineering, ICSE ’06, (pp.
33–42)., New York, NY, USA. ACM. (Cited on pages 28 and 29.)

Broy, M., Feilkas, M., Herrmannsdoerfer, M., Merenda, S., & Ratiu, D.
(2010). Seamless Model-Based Development: From Isolated Tools to In-
tegrated Model Engineering Environments. Proceedings of the IEEE, 98(4).
(Cited on page 11.)

Broy, M., Kirstan, S., Krcmar, H., & Schätz, B. (2011). What is the Benefit of
a Model-Based Design of Embedded Software Systems in the Car Industry?
In Emerging Technologies for the Evolution and Maintenance of Software Models.
ICI. (Cited on page 44.)

Bruckhaus, T., Madhavii, N., Janssen, I., & Henshaw, J. (1996). The impact
of tools on software productivity. Software, IEEE, 13(5), 29–38. (Cited on
page 11.)

Burch, J., Clarke, E., McMillan, K., Dill, D., & Hwang, L. (1992). Symbolic
model checking: 102̂0 States and beyond. Information and Computation, 98(2),
142 – 170. (Cited on page 19.)

Bibliography 271

Burmester, S., Giese, H., Niere, J., Tichy, M., Wadsack, J. P., Wagner, R.,
Wendehals, L., & Zündorf, A. (2004). Tool integration at the meta-model
level: the Fujaba approach. International Journal on Software Tools for Technology
Transfer, 6(3), 203–218. (Cited on pages 14 and 23.)

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996a).
A Systems of Patterns: Pattern-Oriented Software Architecture. (Cited on
page 117.)

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996b).
Pattern-Oriented Software Architecture: A System of Patterns. Wiley. (Cited on
page 171.)

Calder, M., Kolberg, M., Magill, E. H., & Reiff-Marganiec, S. (2003). Feature
interaction: a critical review and considered forecast. Computer Networks,
41(1), 115–141. (Cited on page 41.)

Clarke, E. (1997). Model checking. In Foundations of Software Technology
and Theoretical Computer Science, volume 1346 of LNCS (pp. 54–56). Springer.
(Cited on page 85.)

Clarke, E., Kroening, D., & Lerda, F. (2004). A Tool for Checking ANSI-C
Programs. In K. Jensen & A. Podelski (Eds.), Tools and Algorithms for the
Construction and Analysis of Systems, volume 2988 of Lecture Notes in Computer
Science (pp. 168–176). Springer Berlin Heidelberg. (Cited on pages 19 and 74.)

Clarke, E. M., Emerson, E. A., & Sistla, A. P. (1986). Automatic verification
of finite-state concurrent systems using temporal logic specifications. ACM
Trans. Program. Lang. Syst., 8(2), 244–263. (Cited on page 85.)

Clarke, E. M. & Heinle, W. (2000). Modular Translation of Statecharts to SMV.
Technical report, Carnegie Mellon University. (Cited on pages 50 and 224.)

Cleland-Huang, J., Settimi, R., Romanova, E., Berenbach, B., & Clark, S.
(2007). Best practices for automated traceability. Computer, 40(6), 27–35.
(Cited on page 54.)

Clements, P. C. (1995). From Subroutines to Subsystems: Component-Based
Software Development. (Cited on page 66.)

Combemale, B., Gonnord, L., & Rusu, V. (2011). A Generic Tool for Tracing
Executions Back to a DSML’s Operational Semantics. In ECMFA’11. (Cited
on page 50.)

Corbett, J. C., Dwyer, M. B., Hatcliff, J., Laubach, S., Păsăreanu, C. S., Robby,
& Zheng, H. (2000). Bandera: extracting finite-state models from Java source
code. In Proceedings of the International Conference of Software Engineering
(ICSE). (Cited on page 49.)

272

Cox, R., Bergan, T., Clements, A. T., Kaashoek, M. F., & Kohler, E. (2008).
Xoc, an extension-oriented compiler for systems programming. In ASPLOS
2008. (Cited on page 45.)

Czarnecki, K. & Antkiewicz, M. (2005). Mapping Features to Models: A Tem-
plate Approach Based on Superimposed Variants. In R. Glueck & M. Lowry
(Eds.), Generative Programming and Component Engineering, volume 3676 of
Lecture Notes in Computer Science (pp. 422–437). Springer Berlin Heidelberg.
(Cited on pages 37 and 54.)

Czarnecki, K. & Pietroszek, K. (2006). Verifying feature-based model tem-
plates against well-formedness OCL constraints. In Proceedings of the 5th
international conference on Generative programming and component engineering,
GPCE ’06, (pp. 211–220)., New York, NY, USA. ACM. (Cited on page 54.)

Czarnecki, K. & Wasowski, A. (2007). Feature Diagrams and Logics: There
and Back Again. In Software Product Lines, 11th International Conference, SPLC
2007, Kyoto, Japan, September 10-14, 2007, Proceedings. IEEE Computer Society.
(Cited on page 106.)

Damm, W., Achatz, R., Beetz, K., Daembkes, H., Grimm, K., Liggesmeyer,
P., et al. (2010). Nationale Roadmap Embedded Systems. In Cyber-Physical
Systems (pp. 67–136). Springer. (Cited on page 27.)

David H. Lorenz, Boaz Rosenan (2011). Cedalion: A Language for Language
Oriented Programming. In Proceedings of OOPSLA/SPLASH 2011. (Cited on
page 186.)

Dearle, A., Kirby, G. N. C., & McCarthy, A. (2010). A Middleware Frame-
work for Constraint-Based Deployment and Autonomic Management of Dis-
tributed Applications. CoRR, abs/1006.4733. (Cited on page 29.)

Dhungana, D., Rabiser, R., Grünbacher, P., Lehner, K., & Federspiel, C. (2007).
DOPLER: An Adaptable Tool Suite for Product Line Engineering. In Software
Product Lines, 11th International Conference, SPLC 2007, Kyoto, Japan, September
10-14, 2007, Proceedings. Second Volume (Workshops). Kindai Kagaku Sha Co.
Ltd., Tokyo, Japan. (Cited on page 101.)

Dhurjati, D., Kowshik, S., Adve, V., & Lattner, C. (2003). Memory Safety
Without Runtime Checks or Garbage Collection. SIGPLAN Not., 38(7), 69–
80. (Cited on page 29.)

Douglass, B. P. (2010). Design Patterns for Embedded Systems in C: An Embedded
Software Engineering Toolkit. Elsevier. (Cited on page 27.)

Dunkels, A., Schmidt, O., Voigt, T., & Ali, M. (2006). Protothreads: simplify-
ing event-driven programming of memory-constrained embedded systems.
In Proceedings of the 4th international conference on Embedded networked sensor
systems, SenSys ’06, New York, NY, USA. ACM. (Cited on page 47.)

Bibliography 273

Dwyer, M., Avrunin, G., & Corbett, J. (1999). Patterns in property specifica-
tions for finite-state verification. In Proceedings of the International Conference
of Software Engineering (ICSE). (Cited on pages 50, 85, and 224.)

Dziobek, C., Loew, J., Przystas, W., & Weiland, J. (2008). Functional variants
handling in Simulink models. In MathWorks Virtual Automotive Conference,
Stuttgart. (Cited on page 15.)

Ebert, C. & Jones, C. (2009). Embedded Software: Facts, Figures, and Future.
Computer, 42(4). (Cited on page 42.)

Efftinge, S., Eysholdt, M., Köhnlein, J., Zarnekow, S., von Massow, R., Has-
selbring, W., & Hanus, M. (2012). Xbase: implementing domain-specific
languages for Java. In Proceedings of the 11th International Conference on Gener-
ative Programming and Component Engineering, (pp. 112–121). ACM. (Cited on
page 185.)

El-khoury, J., Redell, O., & Torngren, M. (2005). A tool integration platform
for multi-disciplinary development. In Software Engineering and Advanced
Applications, 2005. 31st EUROMICRO Conference on, (pp. 442–449). (Cited on
page 14.)

Eles, C. & Lawford, M. (2011). A tabular expression toolbox for Mat-
lab/Simulink. In Proceedings of the Third international conference on NASA
Formal methods. (Cited on page 50.)

Engler, D. & Ashcraft, K. (2003). RacerX: effective, static detection of race
conditions and deadlocks. In Proceedings of the nineteenth ACM symposium on
Operating systems principles, SOSP ’03, (pp. 237–252)., New York, NY, USA.
ACM. (Cited on page 29.)

Erdweg, S., Giarrusso, P. G., & Rendel, T. (2012). Language Composition
Untangled. In Proceedings of LDTA. to appear. (Cited on page 180.)

Erdweg, S., Kats, L. C. L., Kastner, C., Ostermann, K., & Visser, E. (2011).
Growing a Language Environment with Editor Libraries. In Proceedings of
the 10th ACM international conference on Generative programming and component
engineering (GPCE 2011), New York, NY, USA. ACM. (Cited on page 184.)

Erdweg, S., Rendel, T., Kästner, C., & Ostermann, K. (2011). SugarJ: library-
based syntactic language extensibility. In OOPSLA 2011, OOPSLA ’11, New
York, NY, USA. ACM. (Cited on page 184.)

Erdweg, S., van der Storm, T., Völter, M., Boersma, M., Bosman, R., Cook,
W. R., Gerritsen, A., Hulshout, A., Kelly, S., Loh, A., et al. (2013). The state
of the art in language workbenches. In Software Language Engineering (pp.
197–217). Springer. (Cited on page 256.)

Ernst, M. D., Badros, G. J., & Notkin, D. (2002). An Empirical Analysis of C
Preprocessor Use. IEEE Trans. Softw. Eng., 28. (Cited on page 58.)

274

Favaro, J., de Koning, H.-P., Schreiner, R., & Olive, X. (2012). Next Genera-
tion Requirements Engineering. In Proc. 22nd Annual INCOSE International
Symposium (Rome, Italy, July 2012). (Cited on page 53.)

Fehnker, A., Huuck, R., Jayet, P., Lussenburg, M., & Rauch, F. (2007). Goanna:
a static model checker. In FMICS’06/PDMC’06. (Cited on page 50.)

Ferguson, R., Parrington, N., Dunne, P., Hardy, C., Archibald, J., & Thomp-
son, J. (2000). MetaMOOSE - an object-oriented framework for the construc-
tion of CASE tools. Information and Software Technology, 42(2). (Cited on
page 186.)

Flatt, M., Barzilay, E., & Findler, R. B. (2009). Scribble: closing the book
on ad hoc documentation tools. In Proceedings of the 14th ACM SIGPLAN
international conference on Functional programming, ICFP ’09, (pp. 109–120).,
New York, NY, USA. ACM. (Cited on page 52.)

Fowler, M. (2004). Inversion of control containers and the dependency injec-
tion pattern. (Cited on page 67.)

Fowler, M. (2005). Language Workbenches: The Killer-App for Domain Spe-
cific Languages? (Cited on pages 6 and 139.)

Fowler, M. & Beck, K. (1999). Refactoring: improving the design of existing code.
Addison-Wesley Professional. (Cited on page 107.)

Fuentes-Fernández, L. & Vallecillo-Moreno, A. (2004). An introduction to
UML profiles. UML and Model Engineering, 2. (Cited on page 25.)

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: ele-
ments of reusable object-oriented software. Addison-Wesley Professional. (Cited
on pages 149, 167, and 191.)

Garrido, A. & Johnson, R. (2002). Challenges of refactoring C programs. In
Proceedings of the international workshop on Principles of software evolution, (pp.
6–14). ACM. (Cited on page 244.)

Goddard, P. (1993). Validating the safety of embedded real-time control sys-
tems using FMEA. In Reliability and Maintainability Symposium, 1993. Proceed-
ings., Annual, (pp. 227–230). (Cited on page 30.)

Goddard, P. (2000). Software FMEA techniques. In Reliability and Main-
tainability Symposium, 2000. Proceedings. Annual, (pp. 118–123). (Cited on
page 30.)

Gokhale, A. S., Balasubramanian, K., Krishna, A. S., Balasubramanian, J.,
Edwards, G., Deng, G., Turkay, E., Parsons, J., & Schmidt, D. C. (2008). Model
driven middleware: A new paradigm for developing distributed real-time
and embedded systems. Science of Computer Programming, 73(1). (Cited on
page 45.)

Bibliography 275

Graaf, B., Lormans, M., & Toetenel, H. (2003). Embedded Software Engineer-
ing: The State of the Practice. IEEE Softw., 20(6). (Cited on page 45.)

Grünbacher, P., Rabiser, R., Dhungana, D., & Lehofer, M. (2009). Model-
Based Customization and Deployment of Eclipse-Based Tools: Industrial Ex-
periences. In Proceedings of the 2009 IEEE/ACM International Conference on
Automated Software Engineering, ASE ’09, Washington, DC, USA. IEEE Com-
puter Society. (Cited on page 186.)

Grundy, J. & Hosking, J. (2007). Supporting Generic Sketching-Based Input of
Diagrams in a Domain-Specific Visual Language Meta-Tool. In Proceedings of
the 29th international conference on Software Engineering, ICSE ’07, Washington,
DC, USA. IEEE Computer Society. (Cited on page 186.)

Hammond, K. & Michaelson, G. (2003). Hume: a domain-specific language
for real-time embedded systems. In GPCE 03, GPCE ’03. (Cited on page 45.)

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Sci-
ence of computer programming, 8(3), 231–274. (Cited on page 79.)

Harel, D. & Rumpe, B. (2004). Meaningful Modeling: What’s the Semantics
of "Semantics"? IEEE Computer, Volume 37(10), 64–72. (Cited on page 158.)

Hayes, J. H., Dekhtyar, A., & Osborne, J. (2003). Improving requirements
tracing via information retrieval. In Requirements Engineering Conference, 2003.
Proceedings. 11th IEEE International, (pp. 138–147). IEEE. (Cited on page 54.)

Hedin, G. & Magnusson, E. (2003). JastAdd–an aspect-oriented compiler con-
struction system. Science of Computer Programming, 47(1). (Cited on page 183.)

Heitmeyer, C. (2006). Developing Safety-Critical Systems: the Role of Formal
Methods and Tools. In Australian Computer Society, Inc. (Cited on page 11.)

Hemel, Z. & Visser, E. (2011). Declaratively Programming the Mobile Web
with Mobl. In Proc. of the 2011 ACM Int. Conference on Object oriented program-
ming systems languages and applications, OOPSLA 2011, (pp. 695–712). ACM.
(Cited on page 186.)

Humble, J. & Molesky, J. (2011). Why Enterprises Must Adopt Devops to
Enable Continuous Delivery. Cutter IT Journal, 24(8), 6. (Cited on page 12.)

Hunt, G. C. & Larus, J. R. (2007). Singularity: Rethinking the Software Stack.
SIGOPS Oper. Syst. Rev., 41(2), 37–49. (Cited on page 262.)

Ivanicic, F., Shlyakhter, I., Gupta, A., & Ganai, M. K. (2005). Model Checking
C Programs Using F-SOFT. In ICCD’05. (Cited on page 29.)

Jackson, E. K. & Sztipanovits, J. (2006). Correct-ed through Construction: A
Model-based Approach to Embedded Systems Reality. In Proceedings of In-
ternational Conference on Engineering of Computer Based Systems (ECBS). (Cited
on page 49.)

276

Janicki, R., Parnas, D. L., & Zucker, J. (1997). Tabular representations in rela-
tional documents. Springer-Verlag New York, Inc. (Cited on page 221.)

Jarke, M. (1998). Requirements tracing. Commun. ACM, 41(12), 32–36. (Cited
on pages 20 and 37.)

Jim, T., Morrisett, J. G., Grossman, D., Hicks, M. W., Cheney, J., & Wang, Y.
(2002). Cyclone: A Safe Dialect of C. In USENIX 2002. USENIX Association.
(Cited on page 42.)

Jr., G. L. S. (1999). Growing a Language. Higher-Order and Symbolic Computa-
tion, 12(3). (Cited on page 182.)

Kang, K., Cohen, S., Hess, J., Nowak, W., & Peterson., S. (1990). Feature-
oriented domain analysis (FODA) feasibility study. Technical report, SEI.
(Cited on page 222.)

Karthik, S. & Jayakumar, H. G. (2005). Static Analysis: C Code Error Check-
ing for Reliable and Secure Programming. In International Enformatika Con-
ference ’05. (Cited on page 47.)

Kästner, C. (2007). CIDE: Decomposing Legacy Applications into Features. In
Software Product Lines, 11th International Conference, SPLC 2007, Kyoto, Japan,
September 10-14, 2007, Proceedings. Second Volume (Workshops). Kindai Kagaku
Sha Co. Ltd., Tokyo, Japan. (Cited on page 105.)

Kästner, C. (2010). Virtual separation of concerns. PhD thesis, PhD thesis,
University of Magdeburg. (Cited on page 54.)

Kats, L. C. L. & Visser, E. (2010). IDEs. In Proceedings of the 25th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2010, October 17-21, 2010, Reno/Tahoe, Nevada, USA,
(pp. 444–463). ACM. (best student paper award). (Cited on page 184.)

Kats, L. C. L., Visser, E., & Wachsmuth, G. (2010). Pure and declarative syntax
definition: paradise lost and regained. In Proceedings of the 25th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2010, Reno/Tahoe, Nevada. ACM. (Cited on pages 155
and 181.)

Kenner, A., Kästner, C., Haase, S., & Leich, T. (2010). TypeChef: toward
type checking# ifdef variability in C. In Proceedings of the 2nd International
Workshop on Feature-Oriented Software Development, (pp. 25–32). ACM. (Cited
on page 244.)

Khare, R., Guntersdorfer, M., Oreizy, P., Medvidovic, N., & Taylor, R. (2001).
xADL: enabling architecture-centric tool integration with XML. In System
Sciences, 2001. Proceedings of the 34th Annual Hawaii International Conference
on, (pp. 9 pp.–). (Cited on page 14.)

Bibliography 277

Kliemannel, F., Mann, S., & Rock, G. (2010). A custom approach for vari-
ability management in automotive applications. In Proc. 4th Int. Workshop on
Variability Modeling of Software-intensive Systems (VAMOS 2010), volume 37,
(pp. 155–158). (Cited on page 40.)

Klint, P. (1993). A Meta-Environment for Generating Programming Environ-
ments. ACM Transactions on Software Engineering Methodology, 2(2). (Cited on
page 184.)

Klint, P., van der Storm, T., & Vinju, J. J. (2009). RASCAL: A Domain Specific
Language for Source Code Analysis and Manipulation. In Ninth IEEE Inter-
national Working Conference on Source Code Analysis and Manipulation, SCAM
2009, Edmonton, Alberta, Canada, September 20-21, 2009. IEEE Computer Soci-
ety. (Cited on page 184.)

Knuth, D. E. (1984). Literate Programming. The Computer Journal, 27(2), 97–
111. (Cited on page 52.)

Konat, G., Kats, L., Wachsmuth, G., & Visser, E. (2013). Declarative Name
Binding and Scope Rules. In K. Czarnecki & G. Hedin (Eds.), Software Lan-
guage Engineering, volume 7745 of Lecture Notes in Computer Science (pp. 311–
331). Springer Berlin Heidelberg. (Cited on page 265.)

Königs, A. & Schürr, A. (2006). Tool Integration with Triple Graph Gram-
mars - A Survey. Electronic Notes in Theoretical Computer Science, 148(1), 113
– 150. Proceedings of the School of SegraVis Research Training Network
on Foundations of Visual Modelling Techniques (FoVMT 2004). (Cited on
page 14.)

Kopetz, H. (2011). Real-time systems: design principles for distributed embedded
applications. Springer. (Cited on page 27.)

Krahn, H., Rumpe, B., & V"olkel, S. (2010). MontiCore: a framework for
compositional development of domain specific languages. STTT, 12(5), 353–
372. (Cited on page 182.)

Kramler, G., Kappel, G., Reiter, T., Kapsammer, E., Retschitzegger, W., &
Schwinger, W. (2006). Towards a Semantic Infrastructure Supporting Model-
based Tool Integration. In Proceedings of the 2006 International Workshop on
Global Integrated Model Management, GaMMa ’06, (pp. 43–46)., New York, NY,
USA. ACM. (Cited on page 14.)

Kuhn, A., Murphy, G., & Thompson, C. (2012). An Exploratory Study of
Forces and Frictions Affecting Large-Scale Model-Driven Development. In
R. France, J. Kazmeier, R. Breu, & C. Atkinson (Eds.), Model Driven Engineer-
ing Languages and Systems, volume 7590 of Lecture Notes in Computer Science
(pp. 352–367). Springer Berlin Heidelberg. (Cited on pages 28, 30, 53, 63,
and 133.)

278

Lee, E. (2000). What’s ahead for embedded software? Computer, 33(9), 18–26.
(Cited on pages 28 and 29.)

Lee, E. (2008). Cyber Physical Systems: Design Challenges. In Object Ori-
ented Real-Time Distributed Computing (ISORC), 2008 11th IEEE International
Symposium on, (pp. 363–369). (Cited on page 28.)

Lee, W. S., Grosh, D., Tillman, F., & Lie, C. (1985). Fault Tree Analysis,
Methods, and Applications 2013; A Review. Reliability, IEEE Transactions on,
R-34(3), 194–203. (Cited on page 30.)

Levy, M. & Conte, T. M. (2009). Embedded Multicore Processors and Sys-
tems. Micro, IEEE, 29(3), 7–9. (Cited on page 29.)

Liggesmeyer, P. & Trapp, M. (2009). Trends in Embedded Software Engineer-
ing. IEEE Softw., 26. (Cited on pages 28, 29, 44, and 45.)

Liskov, B. & Wing, J. M. (1994). A Behavioral Notion of Subtyping. ACM
Transactions on Programming Languages and Systems, 16(6), 1811–1841. (Cited
on page 157.)

Loer, K. & Harrison, M. (2002). Towards Usable and Relevant Model Check-
ing Techniques for the Analysis of Dependable Interactive Systems. In In
Proceedings of the International Conference on Automatic Software Engineering
(ASE). (Cited on page 49.)

Loughran, N., Sanchez, P., Garcia, A., & Fuentes, L. (2008). Language Sup-
port for Managing Variability in Architectural Models. In C. Pautasso &
E. Tanter (Eds.), Software Composition, volume 4954 of Lecture Notes in Com-
puter Science (pp. 36–51). Springer Berlin Heidelberg. (Cited on page 54.)

Mali, Y. & Wyk, E. V. (2011). Building Extensible Specifications and Imple-
mentations of Promela with AbleP. In Model Checking Software - 18th Interna-
tional SPIN Workshop, Proceedings, volume 6823 of Lecture Notes in Computer
Science. Springer. (Cited on page 182.)

Medina-Mora, R. & Feiler, P. H. (1981). An Incremental Programming Envi-
ronment. IEEE Trans. Software Eng., 7(5). (Cited on page 183.)

Mendonça, M., Wasowski, A., & Czarnecki, K. (2009). SAT-based analysis
of feature models is easy. In Muthig, D. & McGregor, J. D. (Eds.), Software
Product Lines, 13th International Conference, SPLC 2009, San Francisco, Califor-
nia, USA, August 24-28, 2009, Proceedings, volume 446 of ACM International
Conference Proceeding Series. ACM. (Cited on pages 50, 106, and 223.)

Mernik, M., Heering, J., & Sloane, A. M. (2005). When and how to develop
domain-specific languages. ACM Comput. Surv., 37(4), 316–344. (Cited on
pages 54 and 179.)

Bibliography 279

Mernik, M., Lenic, M., Avdicausevic, E., & Zumer, V. (2002). LISA: An Inter-
active Environment for Programming Language Development. In Compiler
Construction, 11th International Conference, CC 2002, Part of ETAPS 2002, Pro-
ceedings, volume 2304 of Lecture Notes in Computer Science. Springer. (Cited
on pages 183 and 185.)

Mernik, M. & Zumer, V. (2005). Incremental programming language devel-
opment. Computer Languages, Systems & Structures, 31(1). (Cited on page 185.)

Meyer, B. (1992). Applying ’design by contract’. Computer, 25(10), 40–51.
(Cited on page 36.)

Meyer, B. (1998). Design by Contract: The Eiffel Method. In TOOLS 1998:
26th Int. Conference on Technology of Object-Oriented Languages and Systems,
(pp. 446). IEEE CS. (Cited on page 66.)

Mine, A. (2011). Static Analysis of Run-Time Errors in Embedded Critical
Parallel C Programs. In ESOP 2011, volume 6602 of LNCS. Springer. (Cited
on page 47.)

MISRA (2004). Guidelines for the Use of the C Language in Critical Systems.
(Cited on pages 28 and 42.)

Naumann, D. A. & Barnett, M. (2004). Towards Imperative Modules: Reason-
ing about Invariants and Sharing of Mutable State. In 19th IEEE Symposium
on Logic in Computer Science. IEEE CS. (Cited on page 47.)

Notkin, D. (1985). The GANDALF project. Journal of Systems and Software,
5(2). (Cited on page 183.)

Nystrom, N., Clarkson, M. R., & Myers, A. C. (2003). Polyglot: An Extensible
Compiler Framework for Java. In Compiler Construction, 12th International
Conference, CC 2003, Part of ETAPS 2003, Proceedings, volume 2622 of Lecture
Notes in Computer Science. Springer. (Cited on page 182.)

Palopoli, L., Ancilotti, P., & Buttazzo, G. C. (1999). A C Language Exten-
sion for Programming Real-Time Applications. In 6th International Workshop
on Real-Time Computing and Applications (RTCSA 99). IEEE CS. (Cited on
page 45.)

Parr, T. J. & Quong, R. W. (1995). ANTLR: A Predicated-LL(k) Parser Gener-
ator. Software: Practice and Experience, 25(7). (Cited on pages 181 and 185.)

Pavletic, D., Raza, A. S., Voelter, M., Kolb, B., & Kehrer, T. (2013). Extensible
Debuggers for Extensible Languages. In GI/ACM WS on Software Reengineer-
ing, 2013. (Cited on page 10.)

Porter, S. W. (1988). Design of a Syntax Directed Editor for PSDL (Proto-
type Systems Design Language). Master’s thesis, Naval Postgraduate School,
Monterey, CA, USA. (Cited on page 183.)

280

Puccetti, A. (2010). Static Analysis of the XEN Kernel using Frama-C. J. UCS,
16(4). (Cited on page 47.)

Ratiu, D., Voelter, M., Kolb, B., & Schaetz, B. (2013). Using Language Engi-
neering to Lift Languages and Analyses at the Domain Level. In Proceedings
the 5th NASA Formal Methods Symposium (NFM’13). (Cited on page 9.)

Ratiu, D., Voelter, M., Molotnikov, Z., & Schaetz, B. (2012). Implement-
ing Modular Domain Specific Languages and Analyses. In Proceedings the
9th Workshop on Model-Driven Engineering, Verification, and Validation (Mod-
evva’12). (Cited on page 9.)

Ratiu, D., Voelter, M., Schaetz, B., & Kolb, B. (2012). Language Engineer-
ing as Enabler for Incrementally Defined Formal Analyses. In Proceedings
of the Workshop on Formal Methods in Software Engineering: Rigorous and Agile
Approaches (FORMSERA’2012). (Cited on page 9.)

Renggli, L., Girba, T., & Nierstrasz, O. (2010). Embedding Languages With-
out Breaking Tools. In ECOOP’10. (Cited on page 185.)

Reps, T. W. & Teitelbaum, T. (1984). The Synthesizer Generator. In First
ACM SIGSOFT/SIGPLAN software engineering symposium on Practical software
development environments. ACM. (Cited on pages 183 and 184.)

Roos-Frantz, F. (2009). A Preliminary Comparison of Formal Properties on
Orthogonal Variability Model and Feature Models. In Benavides, D., Met-
zger, A., & Eisenecker, U. W. (Eds.), Third International Workshop on Variabil-
ity Modelling of Software-Intensive Systems, Seville, Spain, January 28-30, 2009.
Proceedings, volume 29 of ICB Research Report. Universitat Duisburg-Essen.
(Cited on page 101.)

S. Andalam, P. S. Roop, A. G. (2010). Predictable multithreading of em-
bedded applications using PRET-C. In Proc. of ACM-IEEE Int. Conference on
Formal Methods and Models for Codesign (MEMOCODE),. (Cited on page 47.)

Samek, M. (2002). Practical statecharts in C/C++: Quantum programming for
embedded systems. CMP. (Cited on page 79.)

Schmidt, D. C. (2006). Guest Editor’s Introduction: Model-Driven Engineer-
ing. Computer, 39(2), 25–31. (Cited on page 13.)

Simon, D. E. (1999). An Embedded Software Primer: Text, volume 1. Addison-
Wesley. (Cited on page 27.)

Simonyi, C., Christerson, M., & Clifford, S. (2006). Intentional Software. In
OOPSLA 2006. ACM. (Cited on pages 24, 141, and 183.)

Stahl, T. T. & Voelter, M. (2006). Model-driven software development. John Wiley
& Sons Chichester. (Cited on page 11.)

Bibliography 281

Sztipanovits, J. & Karsai, G. (2001). Embedded Software: Challenges and
Opportunities. In T. Henzinger & C. Kirsch (Eds.), Embedded Software, vol-
ume 2211 of Lecture Notes in Computer Science (pp. 403–415). Springer Berlin
Heidelberg. (Cited on page 28.)

Tatsubori, M., Chiba, S., Itano, K., & Killijian, M.-O. (1999). OpenJava: A
Class-Based Macro System for Java. In 1st Workshop on Reflection and Software
Engineering, OOPSLA ’99, volume 1826 of LNCS. (Cited on page 182.)

Thaker, S., Batory, D., Kitchin, D., & Cook, W. (2007). Safe composition of
product lines. In Proceedings of the 6th international conference on Generative
programming and component engineering, GPCE ’07, (pp. 95–104)., New York,
NY, USA. ACM. (Cited on page 54.)

Thomas, D. & Hunt, A. (2002). Mock objects. Software, IEEE, 19(3), 22–24.
(Cited on page 73.)

Thomas, I. & Nejmeh, B. (1992). Definitions of tool integration for environ-
ments. Software, IEEE, 9(2), 29–35. (Cited on page 14.)

Tolvanen, J.-P. & Kelly, S. (2005). Defining Domain-Specific Modeling Lan-
guages to Automate Product Derivation: Collected Experiences. In H. Ob-
bink & K. Pohl (Eds.), Software Product Lines, volume 3714 of Lecture Notes
in Computer Science (pp. 198–209). Springer Berlin Heidelberg. (Cited on
page 54.)

Tolvanen, J.-P. & Kelly, S. (2009). MetaEdit+: defining and using inte-
grated domain-specific modeling languages. In Proceedings of the 24th ACM
SIGPLAN conference companion on Object oriented programming systems lan-
guages and applications, OOPSLA ’09, New York, NY, USA. ACM. (Cited
on page 186.)

Tomassetti, F. & Ratiu, D. (2013). Extracting variability from C and lifting
it to mbeddr. In 1st International Workshop on Reverse Variability Engineering
(REVE 2013), (pp.9̃). (Cited on page 109.)

Tratt, L. (2005). Model transformations and tool integration. Software &
Systems Modeling, 4(2), 112–122. (Cited on page 14.)

Van Deursen, A. & Klint, P. (1998). Little languages: Little maintenance?
Journal of software maintenance, 10(2), 75–92. (Cited on pages 263 and 267.)

Visser, E. (1997). Syntax Definition for Language Prototyping. PhD thesis, Uni-
versity of Amsterdam. (Cited on page 181.)

Visser, E. (2007). A Case Study in Domain-Specific Language Engineering. In
GTTSE 2007, volume 5235 of Lecture Notes in Computer Science, (pp. 291–373).
(Cited on page 186.)

282

Voelter, M. (2010). Embedded Software Development with Projectional Lan-
guage Workbenches. In Model Driven Engineering Languages and Systems, 13th
International Conference, MODELS 2010, Oslo, Norway, October 3-8, 2010. Pro-
ceedings, Lecture Notes in Computer Science. Springer. (Cited on page 8.)

Voelter, M. (2011). Language and IDE Development, Modularization and
Composition with MPS. In GTTSE 2011, LNCS. Springer. (Cited on page 9.)

Voelter, M. (2013). Integrating Prose as First-Class Citizens with Models and
Code. In 7th International Workshop on Multi-Paradigm Modeling MPM 2013,
(pp.1̃7). (Cited on page 10.)

Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.,
Visser, E., & Wachsmuth, G. (2013). DSL Engineering – Designing, Implement-
ing and Using Domain-Specific Languages. CreateSpace Publishing Platform.
(Cited on pages 10, 227, and 256.)

Voelter, M., Ratiu, D., Kolb, B., & Schaetz, B. (2013). mbeddr: instantiating a
language workbench in the embedded software domain. Automated Software
Engineering, 20(3), 1–52. (Cited on page 9.)

Voelter, M., Ratiu, D., Schaetz, B., & Kolb, B. (2012). mbeddr: an Extensi-
ble C-based Programming Language and IDE for Embedded Systems. In
Proceedings of SPLASH Wavefront 2012. (Cited on page 9.)

Voelter, M., Ratiu, D., & Tomassetti, F. (2013). Requirements as first-class
citizens: Integrating requirements closely with implementation artifacts. In
ACESMB@MoDELS. (Cited on page 10.)

Voelter, M. & Visser, E. (2011). Product Line Engineering using Domain-
Specific Languages. In de Almeida, E. S. & Kishi, T. (Eds.), Software Product
Line Conference (SPLC), 2011 15th International, (pp. 70–79). CPS. (Cited on
pages 9 and 101.)

von Hanxleden, R. (2009). SyncCharts in C - A Proposal for Light-Weight,
Deterministic Concurrency. In Proceedings of the International Conference on
Embedded Sofware (EMSOFT’09). (Cited on page 47.)

Wasserman, A. (1990). Tool integration in software engineering environ-
ments. In F. Long (Ed.), Software Engineering Environments, volume 467 of
Lecture Notes in Computer Science (pp. 137–149). Springer Berlin Heidelberg.
(Cited on page 14.)

Watkins, R. & Neal, M. (1994). Why and how of requirements tracing. Soft-
ware, IEEE, 11(4), 104–106. (Cited on pages 20 and 53.)

White, J., Benavides, D., Schmidt, D. C., Trinidad, P., Dougherty, B., & Ruiz-
Cortes, A. (2010). Automated diagnosis of feature model configurations.
Journal of Systems and Software, 83(7), 1094–1107. (Cited on page 106.)

Bibliography 283

Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H., & Heldal, R. (2013).
Industrial Adoption of Model-Driven Engineering: Are the Tools Really the
Problem? In Proceedings of the 16th International Conference on Model Driven
Engineering Languages and Systems (MODELS) 2013. ACM. (Cited on pages 13,
31, and 32.)

Winkler, S. & Pilgrim, J. (2010). A survey of traceability in requirements
engineering and model-driven development. Software and Systems Modeling,
9, 529–565. (Cited on pages 53 and 93.)

Woodward, M. V. & Mosterman, P. J. (2007). Challenges for embedded soft-
ware development. In Circuits and Systems, 2007. MWSCAS 2007. 50th Mid-
west Symposium on, (pp. 630–633). IEEE. (Cited on page 28.)

Wyk, E. V., Bodin, D., Gao, J., & Krishnan, L. (2008). Silver: an Extensi-
ble Attribute Grammar System. ENTCS, 203(2). (Cited on pages 181, 183,
and 184.)

Wyk, E. V., de Moor, O., Backhouse, K., & Kwiatkowski, P. (2002). For-
warding in Attribute Grammars for Modular Language Design. In Compiler
Construction, 11th International Conference, CC 2002, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2002, Proceed-
ings, volume 2304 of Lecture Notes in Computer Science. Springer. (Cited on
page 184.)

Wyk, E. V., Krishnan, L., Bodin, D., & Schwerdfeger, A. (2007). Attribute
Grammar-Based Language Extensions for Java. In ECOOP 2007 - 21st Euro-
pean Conference on Object-Oriented Programming, Proceedings, volume 4609 of
Lecture Notes in Computer Science. Springer. (Cited on page 182.)

Yang, Z. & Jiang, M. (2007). Using Eclipse as a Tool-Integration Platform for
Software Development. Software, IEEE, 24(2), 87–89. (Cited on page 15.)

Yannakakis, M. (2000). Hierarchical State Machines. In J. Leeuwen, O. Watan-
abe, M. Hagiya, P. Mosses, & T. Ito (Eds.), Theoretical Computer Science: Ex-
ploring New Frontiers of Theoretical Informatics, volume 1872 of Lecture Notes
in Computer Science (pp. 315–330). Springer Berlin Heidelberg. (Cited on
page 79.)

Yoshimura, K., Forster, T., Muthig, D., & Pech, D. (2008). Model-Based
Design of Product Line Components in the Automotive Domain. In Soft-
ware Product Line Conference, 2008. SPLC ’08. 12th International, (pp. 170–179).
(Cited on page 40.)

Zalila, F., Crégut, X., & Pantel, M. (2012). Leveraging formal verification
tools for DSML users: a process modeling case study. In ISoLA’12. (Cited on
page 50.)

284

Samenvatting

Huidige software engineering tools zijn moeilijk aan te passen aan speci-
fieke domeinen. Een belangrijke reden hiervoor is dat platforms zoals Eclipse
makkelijke uitbreiding van de tool (views, editors, knoppen, menu’s) onders-
teunen, maar ze ondersteunen uitbreiding van de data formaten of talen die
ten grondslag liggen aan een tool niet zo gemakkelijk. Dit proefschrift in-
troduceert en evalueert de Generic Tools, Specific Languages(Algemene Tools,
Specifieke Talen) aanpak voor het ontwikkelen van tools en applicaties op
een manier die makkelijkere en betekenisvollere aanpassing aan specifieke
domeinen ondersteunt. Om dit te bereiken, generaliseert Generic Tools, Specific
Languagesprogrammeertaal-IDE’s voor domeinen die doorgaans niet gead-
resseerd worden door talen en IDE’s. In essentie representeert Generic Tools,
Specific Languagesapplicatiedata als documenten/programma’s/modellen die
uitgedrukt worden in geschikte talen. Applicatiefunctionaliteit wordt voorzien
door een IDE die zich bewust is van de talen en hun bijbehorende semantiek.
De IDE voorziet in ondersteuning voor bewerking en integreert ook domein-
specifieke analyses en executieservices. Applicaties en hun talen kunnen
worden aangepast aan toenemend specifieke domeinen, gebruik makend van
language engineering; dit omvat ook het ontwikkelen van incrementele uit-
breidingen van bestaande talen of het maken van aanvullende, sterk geïnte-
greerde talen. Language workbenches zijn de basis waarop zulke applicaties
gebouwd worden.

mbeddr Als onderdeel van dit proefschrift is de aanpak toegepast op de
ontwikkeling van embedded software. Dit heeft geresulteerd in een tool
die mbeddr genoemd wordt. mbeddr voorziet in een verzameling van uit-
breidingen op C - zoals interfaces en componenten, state machines of natu-
urkundige eenheden - plus een aantal andere talen die relevant zijn voor em-
bedded software engineering. De verschillende uitbreidingen kunnen in het-
zelfde programma gebruikt en onderling gemengd worden. Gebruikers kun-
nen ook hun eigen uitbreidingen bouwen. De beschikbaarheid van een first-
class taalconstructie voor belangrijke abstracties in embedded software maakt
programma’s beter analyseerbaar. Om hiervan te profiteren, bevat mbeddr
ook formele analyses voor sommige uitbreidingen, zoals modelverificatie van
state machines, waarmee determinisme, volledigheid van beslissingstabellen
en interface contracten kunnen worden geverifieerd. Ten slotte ondersteunt
mbeddr procesbelangen zoals documentatie, requirements en product line
variability, allen gebaseerd op language engineering.

Embedded software ontwikkeling is een goed domein om Generic Tools,
Specific Languageste demonstreren. Een significant deel van embedded soft-
ware wordt in C ontwikkeld, omdat deze taal goed is voor low-level belangen
en gecompileerd kan worden naar kleine en efficiënte executables. Echter,
bepaalde flexibiliteit van C wordt gezien als gevaarlijk in de context van

285

safety-critical systemen. Verder is het moeilijk om abstracties op een hoger
niveau te bouwen en overmatig gebruik van de C preprocessor kan leiden
tot niet-onderhoudbare en moeilijk te analyseren software. mbeddr poogt
deze kwesties op te lossen. Door meerdere domeinspecifieke uitbreidingen
op C te ondersteunen, kunnen verschillende aspecten van een systeem geïm-
plementeerd worden met verschillende, toereikende abstracties, allen op se-
mantiek niveau geïntegreerd door ingebed te zijn in (en gegenereerd te wor-
den naar) C. De uitbreidingen zijn ook geïntegreerd in termen van de tool,
omdat alle talen en taal-uitbreidingen in dezelfde IDE worden gehost. Dit
voorkomt de tool-integratie problemen die doorgaans voorkomen in ad-hoc
toolchains die tegenwoordig vaak in embedded software ontwikkeling wor-
den gebruikt.

Language Workbenches Language workbenches zijn tools die op maat
gemaakt zijn voor language engineering. Ze ondersteunen ook de ontwikkel-
ing van rijke IDE’s voor de ontworpen talen, met features zoals syntax color-
ing, code completion, go-to definition en find-references, maar ook zoeken in
modellen, refactoring, debugging of visualisatie. Veel language workbenches
ondersteunen taalmodularisatie en -compositie. Deze technieken onderste-
unen de combinatie van taalmodules in nieuwe composiettalen, zonder de
originele talen invasief te veranderen. Language workbenches zijn de gener-
ieke tool in Generic Tools, Specific Languages. MPS is een open source language
workbench die ontwikkeld is door JetBrains. MPS gebruikt een projectional
editor. Projectional editing is een aanpak van taal- en IDE-implementatie in
welke gebruikers-interacties met code rechtstreeks leiden tot veranderingen in
de syntaxboom van het programma. Er komt geen parsing aan te pas. Dit
betekent dat een ruim bereik van tekstuele, tabelvormige, symbolische en
grafische notaties gebruikt kan worden binnen hetzelfde programma. Het
vereenvoudigt ook de uitdagingen rondom taalcompositie en -extensie, om-
dat compositionaliteitsbeperkingen van grammatica’s geheel worden verme-
den. mbeddr, en algemener, het Generic Tools, Specific Languagesparadigma,
profiteren van deze karakteristieken om te voorzien in rijke notaties en flex-
ibele, combineerbare talen voor de applicatieontwikkelaar. In contrast met
eerdere projectional editors, heeft MPS gepresteerd om editor bruikbaarheid
te verbeteren naar een niveau waarop de tool productief gebruikt kan worden.

Evaluatie De evaluatie van Generic Tools, Specific Languagesstoelt op twee
pilaren. De eerste pilaar evalueert mbeddr als een embedded software devel-
opment tool; Generic Tools, Specific Languagesis alleen bruikbaar wanneer het
leidt tot productieve tools. De tweede pilaar is een evaluatie van het proces
van het ontwikkelen van mbeddr in de MPS language workbench.

mbeddr is gebruikt voor het implementeren van meerdere systemen, van
relatief kleine voorbeelden tot non-triviale commerciële applicaties. Enkel
het gebruik van de bestaande extensies (interfaces, componenten, state ma-
chines, eenheden) leidt tot betere code kwaliteit en hogere productiviteit van
ontwikkelaars. Als een gevolg van betere modulariteit en betere abstrac-
ties, wordt in het bijzonder testen, wat een uitdaging kan zijn voor embed-

286

ded software, significant vereenvoudigd. Bovendien kan testen ondersteund
worden door het gebruik van geïntegreerde formele analyses, welke de be-
trouwbaarheid van de code verhogen. Het gebruik van geïntegreerde require-
ments tracing en documentatie faciliteiten helpt om de evolueerbaarheid van
de ontwikkelde systemen te verbeteren wanneer requirements veranderen of
nieuwe ontwikkelaars worden toegevoegd. Het feit dat alle gebouwde syste-
men tot nu toe uitgevoerd konden worden op hun beoogde target apparaten,
toont aan dat de overhead die door mbeddr wordt gemaakt niet buitensporig
kan zijn. Ten slotte, mbeddr schaalt naar programma’s van redelijke omvang;
systemen in de ordegrootte van 100.000 SLOC kunnen geïmplementeerd wor-
den zonder performanceproblemen tegen te komen.

De inspanning voor het bouwen van de mbeddr talen was billijk en het
resultaat was een productieve omgeving voor het ontwikkelen van embed-
ded software. Ook al is de leercurve voor MPS (en vergelijkbare tools) hoog,
wanneer een ontwikkelaar de tool eenmaal beheerst, heeft hij/zij toegang
tot een krachtige verzameling van ontwikkelcapaciteiten. Het idee van mod-
ulaire en incrementele taaluitbreiding werkt: mbeddr’s standaard extensies
zijn gebouwd als onafhankelijke, modulaire extensies van de C basistaal,
maar toch kunnen ze binnen hetzelfde programma samen gebruikt worden.
Meerdere aanvullende extensies zijn gebouwd als onderdeel van de appli-
catieprojecten die met mbeddr ontwikkeld zijn; het absorberen van de nodige
inspanning in toegepaste/industriële projecten was haalbaar. Het is gebleken
dat projectional editing de goede keuze is. Projectional editing draagt bij aan
praktisch onbeperkte taaluitbreiding en non-textuele notaties zoals tabellen
of wiskundige symbolen dragen bij aan de leesbaarheid van mbeddr code.
Applicatieontwikkelaars melden dat de editor, na een paar dagen van veran-
dering van hun bewerkingsgewoontes, goed werkt; sommigen melden zelfs
dat ze het verkiezen boven normale tekst editors.

Conclusies De resultaten tonen aan dat Generic Tools, Specific Languageswerkt
voor non-triviale applicaties. Projectional editing - en vooral MPS - hebben
bewezen dat ze een geschikte basis zijn voor deze aanpak. Dit wordt ook
ondersteund door het feit dat mbeddr door Siemens PL (LMS) is gekozen
als basis voor een nieuwe commerciële embedded software engineering tool.
Ten slotte: de Generic Tools, Specific Languagesaanpak is over embedded soft-
ware heen generaliseerbaar. Het mbeddr team gebruikt momenteel de aanpak
in het financiële domein, waar een verzameling van samenhangende DSL’s
wordt ontwikkeld om verzekeringsproducten te ontwerpen en te configur-
eren.

Samenvatting 287

288

Curriculum Vitae

Markus Völter works as an independent researcher, consultant and coach. His
focus is on software architecture, model-driven software development and
domain specific languages as well as on product line engineering. Markus
regularly writes (articles, patterns, books) and speaks (trainings, conferences)
on those subjects. Contact him via voelter@acm.org and http://voelter.de.

14 february 1974
Born in Heidenheim a. d. Brenz, Germany

1993
Abitur
Werkgymnasium Heidenheim

1999
Diplom Ingenieur Physikalische Techik (FH)
Fachhochschule Ravensburg-Weingarten

2000 – 2002
Consultant MATHEMA Software GmbH

2002 – present
independent consultant, architect & coach,
voelter ingenieurbüro für softwaretechnologie
(currently working mostly for itemis AG, Stuttgart)

2010 – 2014
Ph. D. in Computer Science
Delft University of Technology
Department of Software Technology

289

Markus Voelter was born in Hei-
denheim, Germany, on February
14, 1974. After he finished his
Abitur in 1993, he started a
Diplom-Ingenieur in Technical
Physics at FH Ravensburg-Wein-
garten, which he finished in 99.
asas a developer, architect and consultant for

domain-specific languages, model-driven dev-
elopment, software architecture and product
line engineering. From 2010 to 2014 he was a
Ph.D. candidate with the Software Engineering
Research Group at the faculty of Electrical En-
gineering, Mathematics and Computer Science
at Delft University of Technology, under pro-
motors Eelco Visser and Arie van Deursen.

Delft
University of
Technology

	Generic Tools, Specific Languages
	Acknowledgments
	Contents
	I Generic Tools, Specific Languages
	Introduction
	Overview and Contribution
	My Personal Contribution
	Publications
	A Note on Style

	Generic Tools, Specific Languages
	The Role of Tools
	Command-Line vs. GUI Tools
	Domain-Specific Tools
	Problems with Today's Extensibility
	Example 1: Physical Units:
	Example 2: State Machines
	Example 3: Requirements Tracing
	Kinds of Extensions
	Combining Extensions
	Another Example: Requirements Engineering

	Generic Tools, Specific Languages
	Research Questions

	Application to Embedded Software Development
	Embedded Software
	Challenges in Embedded Software
	The mbeddr Solution Approach
	The State of the Art
	Mainstream Approaches
	DSLs in Embedded Software
	Alternative Ways for Building Abstractions in C
	Formal Analyses
	Process Aspects

	II Using mbeddr for Embedded Software Engineering
	An Overview of mbeddr's Features
	mbeddr's Version of C
	Testing and Reporting
	Physical Units
	Components
	Decision Tables
	State Machines
	Documentation
	Requirements
	Product Line Variability
	Miscellaneous

	Validation I: An Application Developer's Perspective
	Example Systems and their Use of mbeddr
	Addressing the Challenges
	Abstraction without Runtime Cost
	C Considered Unsafe
	Program Annotations
	Static Checks and Verification
	Process Support

	Other Concerns
	Scalability
	Usability
	Learnability
	Infrastructure Integration
	Interoperability with Textual Code

	Relationship to Kuhn's Survey

	III Implementing mbeddr with Language Engineering
	Language Workbenches and MPS
	Overview
	Projectional Editing
	Editor Usability
	Language Evolution
	Infrastructure Integration
	Tool Lock-In

	Multi-Stage Transformation
	MPS Language Aspects
	Implementing a DSL with MPS

	Language Composition and MPS
	Introduction
	Terminology
	Classification of Composition Approaches
	Language Composition with MPS
	Language Referencing
	Language Extension
	Language Reuse
	Language Embedding
	Language Annotations
	Language Restriction
	Extension Composition

	Related Work

	Implementing mbeddr Languages
	Introduction
	Test Cases and Assert/Fail Statements
	Embedding State Machines in Components
	Transforming State Machine Triggers
	Transforming a Mock Component
	Safeheap Statement
	Decision Table Expressions
	Post-Conditions for Interface Operations
	Physical Units
	Vectors and Matrices
	Range Checking
	Requirements Traces
	Implementing Variants
	Architecture Constraints
	OS Configuration
	Additional Requirements Data
	New Words in Prose Blocks

	Implementing the Non-Language Aspects of mbeddr
	Verification
	SMT Solving for Decision Tables
	SAT Solving for Feature Models
	Model-Checking State Machines
	Dataflow Analysis for Contract Checking

	Debugging
	Requirements for the Debugger
	An Example Extension
	Debugger Framework Architecture
	More Examples
	Discussion

	IDE Support
	Customized Find Usages
	Refactorings

	Dataflow
	Visualizations
	Legacy Code Importer

	Validation II: The Language Engineer's Perspective
	Domain-Specific Extensibility
	Modularity & Projectional Editing
	Tool Scalability
	Effort
	MPS Learning Curve
	Limitations of MPS

	Conclusion
	Generic Tools, Specific Languages Revisited
	Open Issues and Future Work
	Beyond Embedded Software

	Bibliography
	Samenvatting
	Curriculum Vitae

