
Model-Driven Software
Development

ffirs.fm Page i Tuesday, February 28, 2006 6:50 PM

ffirs.fm Page ii Tuesday, February 28, 2006 6:50 PM

Model-Driven Software
Development

Technology, Engineering, Management

Thomas Stahl

and

Markus Völter

with

Jorn Bettin, Arno Haase and Simon Helsen

Foreword by Krzysztof Czarnecki

Translated by Bettina von Stockfleth

ffirs.fm Page iii Tuesday, February 28, 2006 6:50 PM

Copyright © 2006 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright,
Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham
Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be
addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19
8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product
names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The
Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold
on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert
assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Library of Congress Cataloging-in-Publication Data

(to follow)

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13: 978-0-470-02570-3
ISBN-10: 0-470-02570-0

Typeset in insert
Printed and bound in Great Britain by insert Bell & Bain, Glasgow
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

ffirs.fm Page iv Tuesday, February 28, 2006 6:50 PM

v

 ftoc.fm Version 0.3 (final) February 28, 2006 6:04 pm

Contents

Part I Introduction 1

1 Introduction 3
1.1 The Subject of the Book 3

1.1.1 MDA 4
1.2 Target Audience 4

1.2.1 Software Architects 5
1.2.2 Software Developers 5
1.2.3 Managers and Project Leaders 5

1.3 The Goals of the Book 5
1.4 The Scope of the Book 6
1.5 The Structure of the Book and Reader Guidelines 6
1.6 The Accompanying Web site 8
1.7 About the Authors 8
1.8 About the Cover 8
1.9 Acknowledgments 9

2 MDSD – Basic Ideas and Terminology 11
2.1 The Challenge 11

2.1.1 Historical View 12
2.1.2 The Status Quo 12

2.2 The Goals of MDSD 13
2.3 The MDSD Approach 14
2.4 Basic Terminology 16

2.4.1 An Overview of MDA Concepts 18
2.5 Architecture-Centric MDSD 21

2.5.1 Motivation 21
2.5.2 Generative Software Architectures 22
2.5.3 Architecture-Centric Design 24
2.5.4 Development Process 26
2.5.5 The Properties of Architecture-Centric MDSD 27

ftoc.fm Page v Tuesday, February 28, 2006 6:04 PM

vi Contents

 ftoc.fm Version 0.3 (final) February 28, 2006 6:04 pm

3 Case Study: A Typical Web Application 29
3.1 Application Development 29

3.1.1 The Application Example 30
3.1.2 MDSD Tools 32
3.1.3 Example 1: Simple Changes to Models 33
3.1.4 Example 2: Model Changes and Protected Regions 35
3.1.5 Example 3: Working with Dynamic Models 37
3.1.6 Interaction Between Development and Architecture 39
3.1.7 Intermediate Result 39

3.2 Architecture Development 40
3.2.1 The UML Profile 40
3.2.2 Transformations 42
3.2.3 The Mode of Operation of the MDSD Generator 47
3.2.4 Bootstrapping 49
3.2.5 Adaptations of the Generative Software Architecture 49
3.2.6 The Boundary of Infrastructure Code 53
3.2.7 Structuring Metaprograms 53

3.3 Conclusion and Outlook 54

4 Concept Formation 55
4.1 Common MDSD Concepts and Terminology 55

4.1.1 Modeling 56
4.1.2 Platforms 59
4.1.3 Transformations 60
4.1.4 Software System Families 61

4.2 Model-Driven Architecture 63
4.3 Architecture-Centric MDSD 64
4.4 Generative Programming 65
4.5 Software Factories 68

4.5.1 The Software Factory Schema 68
4.5.2 The Software Factory Template 69
4.5.3 The Role of DSLs and their Relationship to MDSD 69

4.6 Model-Integrated Computing 70
4.7 Language-Oriented Programming 70
4.8 Domain-Specific Modeling 71

5 Classification 73
5.1 MDSD vs. CASE, 4GL and Wizards 73
5.2 MDSD vs. Roundtrip Engineering 74
5.3 MDSD and Patterns 75

5.3.1 Patterns and Transformations 75
5.3.2 Patterns and Profiles 76
5.3.3 Patterns Languages as a Source of DSLs 77

ftoc.fm Page vi Tuesday, February 28, 2006 6:04 PM

Contents vii

 ftoc.fm Version 0.3 (final) February 28, 2006 6:04 pm

5.4 MDSD and Domain-Driven Design 77
5.5 MDSD, Data-Driven Development and Interpreters 78
5.6 MDSD and Agile Software Development 78

5.6.1 The Agile Manifesto and MDSD 79
5.6.2 Agile Techniques 80

Part II Domain Architectures 83

6 Metamodeling 85
6.1 What Is Metamodeling? 85
6.2 Metalevels vs. Level of Abstraction 88
6.3 MOF and UML 88
6.4 Extending UML 89

6.4.1 Extension Based on the Metamodel 89
6.4.2 Extension With Stereotypes in UML 1.x 92
6.4.3 Extension With Profiles in UML 2 92

6.5 UML Profiles 93
6.6 Metamodeling and OCL 96
6.7 Metamodeling: Example 1 98
6.8 Metamodeling: Example 2 99
6.9 Tool-supported Model Validation 102
6.10 Metamodeling and Behavior 106
6.11 A More Complex Example 107

6.11.1 The Basics 108
6.11.2 Value Types 109
6.11.3 Physical Quantities 110

6.12 Pitfalls in Metamodeling 113
6.12.1 Interfaces 113
6.12.2 Dependencies 114
6.12.3 IDs 115
6.12.4 Primary Keys 116
6.12.5 Metalevels and Instanceof 116

7 MDSD-Capable Target Architectures 119
7.1 Software Architecture in the Context of MDSD 119
7.2 What Is a Sound Architecture? 120
7.3 How Do You Arrive at a Sound Architecture? 121

7.3.1 Architectural Patterns and Styles 121
7.4 Building Blocks for Software Architecture 122

7.4.1 Frameworks 122
7.4.2 Middleware 123
7.4.3 Components 123

7.5 Architecture Reference Model 124

ftoc.fm Page vii Tuesday, February 28, 2006 6:04 PM

viii Contents

 ftoc.fm Version 0.3 (final) February 28, 2006 6:04 pm

7.6 Balancing the MDSD Platform 125
7.6.1 Examples 126
7.6.2 Integration of Frameworks 127

7.7 Architecture Conformance 127
7.8 MDSD and CBD 129

7.8.1 Three viewpoints 129
7.8.2 Viewpoint Dependencies 132
7.8.3 Aspect Models 132
7.8.4 Variations 134
7.8.5 Component Implementation 136

7.9 SOA, BPM and MDSD 137
7.9.1 SOA 137
7.9.2 BPM 139
7.9.3 SOA and BPM 140

8 Building Domain Architectures 143
8.1 DSL construction 143

8.1.1 Choose a suitable DSL 143
8.1.2 Configuration and Construction – Variants 144
8.1.3 Modeling Behavior 146
8.1.4 Concrete Syntax Matters! 148
8.1.5 Continuous Validation of the Metamodel 149

8.2 General Transformation Architecture 150
8.2.1 Which Parts of the Target Architecture Should

Be Generated? 150
8.2.2 Believe in Reincarnation 150
8.2.3 Exploit the Model 150
8.2.4 Generate Good-looking Code – Whenever Possible 152
8.2.5 Model-driven Integration 153
8.2.6 Separation of Generated and Non-generated Code 154
8.2.7 Modular Transformations 155
8.2.8 Cascaded Model-Driven Development 158

8.3 Technical Aspects of Building Transformations 159
8.3.1 Explicit Integration of Generated Code and Manual Parts 159
8.3.2 Dummy Code 164
8.3.3 Technical Subdomains 166
8.3.4 Proxy Elements 167
8.3.5 External Model Markings 168
8.3.6 Aspect Orientation and MDSD 169
8.3.7 Descriptive Meta Objects 170
8.3.8 Generated Reflection Layers 172

8.4 The Use of Interpreters 173
8.4.1 Interpreters 174

ftoc.fm Page viii Tuesday, February 28, 2006 6:04 PM

Contents ix

 ftoc.fm Version 0.3 (final) February 28, 2006 6:04 pm

8.4.2 MDSD Terminology Revisited 175
8.4.3 Non-functional Properties of Interpreters 176
8.4.4 Integrating Interpreters into a System 177
8.4.5 Interpreters and Testing 179

9 Code Generation Techniques 181
9.1 Code Generation – Why? 181

9.1.1 Performance 181
9.1.2 Code Volume 181
9.1.3 Analyzability 182
9.1.4 Early Error Detection 182
9.1.5 Platform Compatibility 182
9.1.6 Restrictions of the (Programming) Language 182
9.1.7 Aspects 182
9.1.8 Introspection 182

9.2 Categorization 183
9.2.1 Metaprogramming 183
9.2.2 Separation/Mixing of Program and Metaprogram 183
9.2.3 Implicit or Explicit Integration of Generated With

Non-generated Code 184
9.2.4 Relationships 184
9.2.5 Examples of the Blending of Program and Metaprogram 185

9.3 Generation Techniques 186
9.3.1 Templates and Filtering 187
9.3.2 Templates and Metamodel 188
9.3.3 Frame Processors 189
9.3.4 API-based Generators 192
9.3.5 In-line Generation 194
9.3.6 Code Attributes 196
9.3.7 Code Weaving 197
9.3.8 Combining Different Techniques 198
9.3.9 Commonalities and Differences between the

Different Approaches 199
9.3.10 Other Systems 201

10 Model Transformation Techniques 203
10.1 History 203
10.2 M2M language requirements 204
10.3 Overall Architecture 207
10.4 An Example Transformation 209

10.4.1 The Example in the QVT Relations language 212
10.4.2 The Example in the QVT Operational Mappings language 217

ftoc.fm Page ix Tuesday, February 28, 2006 6:04 PM

x Contents

 ftoc.fm Version 0.3 (final) February 28, 2006 6:04 pm

10.5 The OMG Standardization Process and Tool Availability 220
10.6 Assessment 221

11 MDSD Tools: Roles, Architecture, Selection Criteria,
and Pointers 223
11.1 The Role of Tools in the Development Process 223

11.1.1 Modeling 223
11.1.2 Model Validation and Code Generation 224
11.1.3 Build Tool 225
11.1.4 Recipe Frameworks 226
11.1.5 IDE Toolkit 227

11.2 Tool Architecture and Selection Criteria 227
11.2.1 Implement the Metamodel 227
11.2.2 Ignore the Concrete Syntax 227
11.2.3 Modular Transformations 229
11.2.4 Model Transformations are ‘First-Class Citizens’ 229

11.3 Pointers 230
11.3.1 The Eclipse World 230
11.3.2 Trends in UML tools 233
11.3.3 UML 2 Composite Structure Diagrams 233
11.3.4 Other kinds of Editors 235
11.3.5 Integrated Metamodeling IDEs 236

12 The MDA Standard 239
12.1 Goals 239
12.2 Core Concepts 239

12.2.1 UML 2.0 240
12.2.2 MOF – The Meta Object Facility 241
12.2.3 XMI 242
12.2.4 PIM/PSM/PDM 243
12.2.5 Multi-stage Transformations 244
12.2.6 Action Languages 244
12.2.7 Core Models 247
12.2.8 Controlling the PIM to PSM Transformation 248
12.2.9 Executable UML 250

Part III Processes and Engineering 251

13 MDSD Process Building Blocks and Best Practices 253
13.1 Introduction 253
13.2 Separation between Application and Domain Architecture

Development 253
13.2.1 The Basic Principle 253

ftoc.fm Page x Tuesday, February 28, 2006 6:04 PM

Contents xi

 ftoc.fm Version 0.3 (final) February 28, 2006 6:04 pm

13.2.2 Domain Architecture Development Thread 255
13.2.3 Application Development Thread 260

13.3 Two-Track Iterative Development 262
13.4 Target Architecture Development Process 263

13.4.1 Three Phases 264
13.4.2 Phase 1: Elaborate 265
13.4.3 Phase 2: Iterate 269
13.4.4 Phase 3: Automate 269

13.5 Product-Line Engineering 271
13.5.1 Software System Families and Product Lines 272
13.5.2 Integration into the MDSD Process 272
13.5.3 Methodology 272
13.5.4 Domain Modeling 277
13.5.5 Further Reading 277

14 Testing 279
14.1 Test Types 279
14.2 Tests in Model-Driven Application Development 280

14.2.1 Unit Tests 281
14.2.2 Acceptance Tests 286
14.2.3 Load Tests 287
14.2.4 Non-functional Tests 288
14.2.5 Model Validation 288

14.3 Testing the Domain Architecture 290
14.3.1 Testing the Reference Implementation and the

MDSD Platform 290
14.3.2 Acceptance Test of the DSL 290
14.3.3 Test of the MDSD Transformations 290

15 Versioning 293
15.1 What Is Versioned? 293
15.2 Projects and Dependencies 293
15.3 The Structure of Application Projects 294
15.4 Version Management and Build Process for Mixed Files 295
15.5 Modeling in a Team and Versioning of Partial Models 297

15.5.1 Partitioning vs. Subdomains 297
15.5.2 Various Generative Software Architectures 298
15.5.3 Evolution of the DSL 298
15.5.4 Partitioning and Integration 300

16 Case Study: Embedded Component Infrastructures 305
16.1 Overview 305

16.1.1 Introduction and Motivation 306
16.1.2 Component Infrastructures 306

ftoc.fm Page xi Tuesday, February 28, 2006 6:04 PM

xii Contents

 ftoc.fm Version 0.3 (final) February 28, 2006 6:04 pm

16.1.3 Component Infrastructure Requirements for
Embedded Systems 307

16.1.4 The Basic Approach 307
16.2 Product-Line Engineering 307

16.2.1 Domain Scoping 308
16.2.2 Variability Analysis and Domain Structuring 309
16.2.3 Domain Design 312
16.2.4 Domain Implementation 315

16.3 Modeling 315
16.3.1 Definition of Interfaces 315
16.3.2 Definition of Components and Ports 316
16.3.3 Definition of a System 318
16.3.4 The Complete Model 320
16.3.5 Processing 320

16.4 Implementation of Components 321
16.5 Generator Adaptation 323

16.5.1 Parsing of the textual syntax 323
16.5.2 Parsing the System Definition XML 325
16.5.3 Parsing and Merging the Complete Model 326
16.5.4 Pseudo-declarative Metamodel Implementation 328

16.6 Code Generation 330
16.6.1 References 330
16.6.2 Polymorphism 333
16.6.3 Separation of Concerns in the Metamodel 335
16.6.4 Generation of Build Files 337
16.6.5 Use of AspectJ 338

17 Case Study: An Enterprise System 341
17.1 Overview 341
17.2 Phase 1: Elaboration 341

17.2.1 Technology-Independent Architecture 341
17.2.2 Programming Model 342
17.2.3 Technology Mapping 343
17.2.4 Mock Platform 344
17.2.5 Vertical Prototype 344

17.3 Phase 2: Iterate 344
17.4 Phase 3: Automate 345

17.4.1 Architecture Metamodel 345
17.4.2 Glue Code Generation 346
17.4.3 DSL-based Programming Model 346
17.4.4 Model-Based Architecture Validation 354

17.5 Discussion 355

ftoc.fm Page xii Tuesday, February 28, 2006 6:04 PM

Contents xiii

 ftoc.fm Version 0.3 (final) February 28, 2006 6:04 pm

Part IV Management 357

18 Decision Support 359
18.1 Business Potential 359
18.2 Automation and Reuse 361
18.3 Quality 365

18.3.1 Well-defined Architecture 365
18.3.2 Preserved Expert Knowledge 365
18.3.3 A Stringent Programming Model 365
18.3.4 Up-to-date and Usable Documentation 366
18.3.5 The Quality of Generated Code 366
18.3.6 Test Effort and Possible Sources of Errors 367

18.4 Reuse 367
18.5 Portability, Changeability 368
18.6 Investment and Possible Benefits 369

18.6.1 Architecture-centric MDSD 369
18.6.2 Functional/Professional MDSD Domains 373

18.7 Critical Questions 374
18.8 Conclusion 378
18.9 Recommended Reading 378

19 Organizational Aspects 379
19.1 Assignment of Roles 379

19.1.1 Domain Architecture Development 379
19.1.2 Application Development 382

19.2 Team Structure 383
19.2.1 Definition of Roles and Staffing Requirements 384
19.2.2 Cross-Cutting Teams 385
19.2.3 Tasks of the Architecture Group 385

19.3 Software Product Development Models 386
19.3.1 Terminology 387
19.3.2 In-house Development 387
19.3.3 Classical Outsourcing 388
19.3.4 Offshoring 389
19.3.5 Radical Offshoring 389
19.3.6 Controlled Offshoring 390
19.3.7 Component-wise Decision 391

20 Adoption Strategies for MDSD 393
20.1 Prerequisites 393
20.2 Getting Started – MDSD Piloting 393

20.2.1 Risk Analysis 394
20.2.2 Project Initialization 395

ftoc.fm Page xiii Tuesday, February 28, 2006 6:04 PM

xiv Contents

 ftoc.fm Version 0.3 (final) February 28, 2006 6:04 pm

20.3 MDSD Adaptation of Existing Systems 396
20.4 Classification of the Software Inventory 397
20.5 Build, Buy, or Open Source 398
20.6 The Design of a Supply Chain 399
20.7 Incremental Evolution of Domain Architectures 400
20.8 Risk Management 400

20.8.1 Risk: Tool-centeredness 400
20.8.2 Risk: A Development Tool Chain Counterproductive

to MDSD 401
20.8.3 Risk: An Overburdened Domain Architecture Team 401
20.8.4 Risk: Waterfall Process Model, Database-centered

Development 402
20.8.5 Risk: The Ivory Tower 402
20.8.6 Risk: No Separation of Application and Domain

Architecture 403

A Model Transformation Code 406
A.1 Complete QVT Relations alma2db Example 406
A.2 Complete QVT Operational Mappings alma2db Example 412

References 416

Index 629

ftoc.fm Page xiv Tuesday, February 28, 2006 6:04 PM

xv

 fforw.fm Version 0.3 (final) February 28, 2006 5:58 pm

Foreword

by Krzysztof Czarnecki

Modeling is a key tool in engineering. Engineers routinely create models when analyzing and
designing complex systems. Models are abstractions of a system and its environment. They
allow engineers to address their concerns about the system effectively, such as answering par-
ticular questions or devising required design changes. Every model is created for a purpose. A
particular model may be appropriate for answering a specific class of questions, where the
answers to those questions will be the same for the model as for the actual system, but it may
not be appropriate for answering another class of questions. Models are also cheaper to build
than the real system. For example, civil engineers create static and dynamic structural models
of bridges to check structural safety, since modeling is certainly cheaper and more effective
than building real bridges to see under what scenarios they will collapse.

Models are not new in software development. Over the past few decades, the software indus-
try has seen numerous analysis and design methods, each with its own modeling approaches and
notations. More recently, we have witnessed the remarkable progress of Unified Modeling Lan-
guage (UML), which now has a larger market penetration than any single previous modeling
notation. Still, analysis and design models rarely enjoy the same status as code. The reality of
most software projects is that models are not kept up-to-date with the code, and therefore they
become obsolete and useless with time.

Model-Driven Software Development (MDSD) puts analysis and design models on par with
code. Better integration of such models and code should significantly increase the opportunity to
effect change through the models, rather than simply modifying the code directly. MDSD
encompasses many different techniques across the entire spectrum of software development
activities, including model-driven requirements engineering, model-driven design, code genera-
tion from models, model-driven testing, model-driven software evolution, and more.

The Model-Driven Architecture (MDA) initiative by the Object Management Group (OMG)
has also certainly contributed a great deal to the recent surge of interest in software modeling
and model-driven techniques. But the effects of that initiative have been both good and bad. On
the positive side, I’m glad that modeling has been moved into the center of interest and that
organizations are now trying to figure out how their current practices can be leveraged through
model-driven techniques. At the same time, the marketing hype around MDA has tended to cre-
ate some unrealistic expectations. Putting all this hype aside, I do think that MDSD has great
ideas to offer, many of which can be put to work in practical situations today. Realizing these

fforw.fm Page xv Tuesday, February 28, 2006 6:04 PM

xvi Foreword

 fforw.fm Version 0.3 (final) February 28, 2006 5:58 pm

potentials requires a solid understanding of current MDSD technology, its applicability, and its
limitations.

The authors of this book are at the forefront of MDSD research and practice. Markus and Jorn
have organized and participated in a series of MDSD workshops at several OOPSLA confer-
ences. Simon has participated in OMG’s standardization efforts on model transformation. All
the authors are pioneering this technology in practice in several domains, ranging from enter-
prise applications to embedded software in both small and large organizations, such as b+m, Sie-
mens, and BMW.

I’m very pleased to introduce this book to you. In my view, this is one of the rare books in the
model-driven space that talks not only about the vision, but also about what is possible today,
and how to do it. After a minimal but necessary dose of basic concepts and terminology, the
authors cover a wide range of MDSD technology topics such as metamodeling, component
architectures and composition, code generation, model transformation, MDA standards, and
MDSD tools. I particularly like the hands-on approach that the authors have taken. They illus-
trate available tools and techniques through concrete modeling examples and code snippets, and
they give numerous practical tips and ‘mind-the-gap’ hints. In addition to the technology topics,
the authors also present a comprehensive treatment of essential software engineering aspects
such as testing, versioning, process management, and adoption strategies, as they apply to
MDSD. The content is topped off with two case studies, that were inspired by realistic applica-
tions from the authors’ collective experiences.

The authors present a broad perspective of MDSD that goes beyond MDA to cover a range of
related approaches including software product lines, domain-specific languages, software facto-
ries, and aspect-oriented and generative programming. As in any young, dynamic, and still
evolving field, the abundance of competing ideas, concepts, and parallel terminologies in today’s
model-driven space can be bewildering. As a result, the authors had to do a lot of ‘sifting
through the mud’ to give us a clear and balanced picture of the entire model-driven field.In this
book, they have done just that, tremendously well.

I invite you to explore this new and exciting field, and this book is a great place to start!

Krzysztof Czarnecki
Waterloo, January 2006

fforw.fm Page xvi Tuesday, February 28, 2006 6:04 PM

1

 p01.fm Version 0.3 (final) February 28, 2006 6:07 pm

Part I
Introduction

p01.fm Page 1 Tuesday, February 28, 2006 6:07 PM

p01.fm Page 2 Tuesday, February 28, 2006 6:07 PM

3

 c01.fm Version 0.3 (final) February 28, 2006 10:31 am

1 Introduction

1.1 The Subject of the Book

This book is about Model-Driven Software Development, or ‘MDSD’. A less precise but com-
mon name for this discipline is Model Driven Development (MDD). Maybe you wonder why we
decided to write such a book. We believe that Model-Driven Software Development is quite
important, and will become even more so in the future. It is the natural continuation of program-
ming as we know it today.

The application of models to software development is a long-standing tradition, and has
become even more popular since the development of the Unified Modeling Language (UML).
Yet we are faced with ‘mere’ documentation, because the relationship between model and soft-
ware implementation is only intentional but not formal. We call this flavor of model usage
model-based when it is part of a development process. However, it poses two serious disad-
vantages: on one hand, software systems are not static and are liable to significant changes,
particularly during the first phases of their lifecycle. The documentation therefore needs to be
meticulously adapted, which can be a complex task – depending on how detailed it is – or it will
become inconsistent. On the other hand, such models only indirectly foster progress, since it is
the software developer’s interpretation that eventually leads to implemented code. These are the
reasons why – quite understandably – many programmers consider models to be an overhead and
see them as intermediate results at best.

Model-Driven Software Development has an entirely different approach: Models do not con-
stitute documentation, but are considered equal to code, as their implementation is automated.
A comparison with sophisticated engineering fields, such as mechanical engineering, vividly
illustrates this idea: imagine, for example, a computer-controlled mill that is fed CAD1 data
that enables it to transform a model into a physical workpiece automatically. Or consider an
automotive production line: your order for a car that includes custom features is turned into
reality. Here, the actual production process is mostly automated.

These examples demonstrate that the domain is essential for models, just as for automated
production processes. Neither the customer-oriented ‘modeling language’ for car manufacture –
in this case, an order form – nor the manufacturer’s production line are able to build prefabricated
houses, for example.

1 CAD = Computer Aided Design

c01.fm Page 3 Tuesday, February 28, 2006 10:31 AM

4 Introduction

 c01.fm Version 0.3 (final) February 28, 2006 10:31 am

MDSD therefore aims to find domain-specific abstractions and make them accessible
through formal modeling. This procedure creates a great potential for automation of software
production, which in turn leads to increased productivity. Moreover, both the quality and main-
tainability of software systems increase. Models can also be understood by domain experts. This
evolutionary step is comparable to the introduction of the first high-level languages in the era of
Assembler programming. The adjective ‘driven’ in ‘Model-Driven Software Development’ – in
contrast to ‘based’ – emphasizes that this paradigm assigns models a central and active role:
they are at least as important as source code.

To successfully apply the ‘domain-specific model’ concept, three requirements must be met:

• Domain-specific languages are required to allow the actual formulating of models.
• Languages that can express the necessary model-to-code transformations are needed.
• Compilers, generators or transformers are required that can run the transformations to

generate code executable on available platforms.

In the context of MDSD, graphical models are often used, but this is neither mandatory nor
always suitable. Textual models are an equally feasible option. Typically, these models are
translated into programming language source code to enable their subsequent compilation and
execution.

1.1.1 MDA

If you are familiar with the Object Management Group’s (OMG) Model Driven Architecture
(MDA), you might think that this sounds a lot like MDA. This is correct to a certain extent. In
principle, MDA has a similar approach, but its details differ, partly due to different motivations.
MDA tends to be more restrictive, focusing on UML-based modeling languages. In general,
MDSD does not have these restrictions. The primary goal of MDA is interoperability between
tools and the long-term standardization of models for popular application domains. In contrast,
MDSD aims at the provision of modules for software development processes that are applicable
in practice, and which can be used in the context of model-driven approaches, independently of
the selected tool or the OMG–MDA standard’s maturity.

At present (2005) the MDA standardization process is still in its fledgling stages, which
means that, on one hand, some aspects of the original MDA vision must be omitted, while others
need be interpreted pragmatically to get practicable results. On the other hand, a practical meth-
odological support for MDA is not necessarily the OMG’s main focus. This is in part also
reflected by MDA’s goals.

In this book we take a closer look at the relationship between MDA and MDSD. For now, it is
safe to state that MDA is a standardization initiative of the OMG focusing on MDSD.

1.2 Target Audience

Specific concepts, terminology and basic ideas must be understood by all those involved in an
MDSD project, otherwise it cannot be completed successfully. The introductory chapters of this
book are therefore mainly dedicated to these aspects.

c01.fm Page 4 Tuesday, February 28, 2006 10:31 AM

1.3 The Goals of the Book 5

 c01.fm Version 0.3 (final) February 28, 2006 10:31 am

1.2.1 Software Architects

Three aspects concerning MDSD are relevant for the software architect:

• First, the approach requires a clear and concise definition of an application’s architectural
concepts.

• Furthermore, MDSD often takes place not only as part of developing an entire applica-
tion, but in the context of creating entire product lines and software system families.
These possess very specific architectural requirements of their own that the architects
must address.

• In addition, a totally new development approach must be introduced to the project. This is
due to the separation of models and modeling languages, of programs and generators, of
respective tools and specific process-related aspects.

All these issues will be discussed in this book.

1.2.2 Software Developers

When dealing with a software development paradigm, it almost goes without saying that the role
of the software developer is pivotal. To some extent, MDSD implies more precise and clearer
views of aspects such as the meaning of models, the separation of domain-specific and technical
code, the relationship between design and implementation, round-trip problems, architecture and
generation, framework development, versioning and tests. When applied correctly, MDSD will
make the software developer’s work much easier, help to avoid redundant code, and enhance
software quality through the use of formalized structures.

1.2.3 Managers and Project Leaders

Economic considerations such as the cost-value ratio or the break-even point underlie the decision
to use Model-Driven Software Development. There is no ‘free lunch’: model-driven software
comes with a price too. There are many project contexts for which a model-driven approach can
be recommended, but there are some circumstances under which we would advise against it.
Even though the focus of this book is technical, we will take into account organizational and
economic aspects that are relevant from the project’s or company’s viewpoint.

A model-driven approach also impacts project organization and team structure as well as the
software development process. We will address this as well.

1.3 The Goals of the Book

The goal of the book is to convince you, the reader, that MDSD is a practicable method today,
and that it is superior to conventional development methods in many cases. We want to encour-
age you to apply it sooner rather than later, since MDSD is neither merely a vision nor dry theory.
To this end, we want to equip you with everything you need. If you already practice MDSD, this
book might offer you some advice or provide further insight into specific topics or fields.

c01.fm Page 5 Tuesday, February 28, 2006 10:31 AM

6 Introduction

 c01.fm Version 0.3 (final) February 28, 2006 10:31 am

More specifically, we pursue a number of ‘subgoals’ – independent of the book’s structure –
that we want to elaborate briefly here.

First, we introduce the theoretical framework for MDSD, its basic concepts and terminology.
We also touch on related topics and approaches, such as OMG’s Model Driven Architecture
(MDA). We also want to provide hands-on help for specific MDSD-relevant issues. Among
these are metamodeling (with UML and MOF2), code generation, versioning, testing, as well
as recommendations for choosing the right tools. Organizational and process-related issues are
also very important to us. Additionally, we want to argue for MDSD from an economical
standpoint.

Although it is impossible to work without at least some theoretical basis, the book first and
foremost aims to provide practical support, as well as taking a more detailed look at some of the
relevant theoretical issues mentioned above. Best practice, as well as the dissemination of con-
crete experiences are important to us, as well as, in part, personal opinions. A number of case
studies from various domains supplement the more detailed parts of the book.

We also wish to answer prevailing questions and address current discussions, so an outlook on
trends and visions in the MDSD context completes the book.

1.4 The Scope of the Book

This is not an MDA book. We describe the basic concepts and terminology of the OMG MDA
standard as well the underlying vision, and we also offer a synopsis of the current state of
standardization (see Chapter 12). However, the book represents our own views and experiences.
Secondary literature about MDA can be found in sources such as [Fra02], as well as in the
OMG specification itself.

Our book does not intend to define a cohesive, heavyweight MDSD development process.
Instead, we report on best practices that lend themselves to being used in agile processes, as
described by Crystal [Coc01], and in the context of product line development for the construc-
tion of customized development processes (see Section 16.2).

1.5 The Structure of the Book and Reader Guidelines

This book describes the model-driven approaches which the authors have successfully applied in
practice for many years. We look at the subject-matter from a technological as well as from an
engineering and management perspective, as you will see from the book’s structure.

• Part 1 – Introduction. This part contains the introduction you are reading, plus an expla-
nation of the most important basic ideas behind MDSD, and the basic terminology
derived from the Model Driven Architecture. We then proceed to address the architecture-
centric flavor of MDSD, which is ideally suited for a practice-oriented introduction. We
convey the concrete techniques based on a comprehensive case study from the e-business/
Web application field, followed by a more comprehensive MDSD concept formation

2 MOF = Meta Object Facility, an OMG standard

c01.fm Page 6 Tuesday, February 28, 2006 10:31 AM

1.5 The Structure of the Book and Reader Guidelines 7

 c01.fm Version 0.3 (final) February 28, 2006 10:31 am

building on the points made. This chapter is extremely important, particularly because the
rest of the book is based on the terminology defined here. This is also where you can find
the conceptual, artifact-related definition of MDSD. The first part of the book is com-
pleted by a classification of and distinction between related topics such as agile software
development.

• Part II – Domain Architectures. Domain architecture is the core concept of MDSD.
Among other aspects, it contains the domain’s modeling language and the generation rules
that are supposed to map the models to a concrete platform. This part of the book conveys
best practices for the construction of such domain architectures. The chapter on metamod-
eling forms its basis, followed by a detailed examination of the special role of the target
architecture in the MDSD context. The three following chapters take a more detailed look
at building transformations, including a description of code-generation techniques and
QVT-based model-to-model transformations (QVT is the OMG’s standard for model-to-
model transformations). A short comparison with interpreter-based approaches is also
included. For building domain architectures, generic tools are best used, so the chapter on
tool architecture and selection provides some background for this. Finally, we take a
deeper look at the MDA standard in the last chapter of Part II.

• Part III – Processes and Engineering. In the third part of the book we deal with process-
related aspects of MDSD and engineering issues that assume specific characteristics
through MDSD. Here at last it should become clear that MDSD is not just a technology.
We present a number of best practices that can be combined into a practical and pragmatic
development process, look at architecture development, and take a glimpse into product-
line engineering. Following that, we tackle testing and versioning issues. We finally look
at two case studies, one from the embedded domain, the other from the world of enterprise
systems.

• Part IV – Management. The last part of the book is aimed primarily at IT managers and
project leaders. It can largely be read independently from the rest of the book. We take a
closer look at economic and organizational aspects and discuss adoption strategies. The
first chapter of this part includes a FAQ3 section of MDSD-related questions.

We have taken the utmost care in structuring this book so that its didactic effect is optimal when
read sequentially in spite of its cyclic dependencies. However, since we address a divergent
audience, some readers might initially wish to read the book selectively. In this context, please
note that readers whose interest is primarily technical and who already possess some MDA
knowledge can start directly with the case study in Part I, continue with Chapter 4, then
immerse themselves in the technical issues addressed in Parts II or III before moving on to the
rest of the book.

If you want to know what the economic advantages of MDSD are before learning about
MDSD in more detail, please read Chapter 18 first. To gain a better understanding of it, we
recommend that you also read Chapter 2.

3 FAQ: Frequently asked questions

c01.fm Page 7 Tuesday, February 28, 2006 10:31 AM

8 Introduction

 c01.fm Version 0.3 (final) February 28, 2006 10:31 am

1.6 The Accompanying Web Site

Some topics dealt with in this book are undergoing rapid evolution, while others could only be
touched upon due to space limitations. The book’s accompanying Web site can be found at
http://www.mdsd-buch.org. You can find up-to-date information there, as well as interesting
links that we update on a regular basis.

1.7 About the Authors

Thomas Stahl works as chief software architect at b+m Informatik AG, where he is responsible
for project-centric architecture management, including reusable software assets. He creates soft-
ware architectures and frameworks and accompanies their use in both large and small projects.
He also works as a consultant. His main focus is currently the field of Model-Driven Software
Development, in which he has significant and practical long term experience. The creation of a
good MDSD-generator framework was a pioneering effort. It is a popular Open Source project
(http://www.openArchitectureWare.org) and is supported by a very active developer community.
Besides his project-related work in several domains, Thomas writes articles for IT magazines
and speaks at software conferences. He spends his spare time, among other things, as an active
musician. He can be reached at t.stahl@bmiag.de

Markus Völter works as an independent consultant in software technology and engineering.
His work focuses on software architecture and Model-Driven Software Development, as well as
on middleware. Markus has extensive experience with these topics in many sectors, including
the automotive industry, science, health care, telecommunications, and banking, as well as Web-
based systems and telematics. He has worked and consulted for many leading enterprises,
mostly but not exclusively in Germany, in projects ranging from three to 150 developers. Markus
is also a regular speaker at international software conferences, as well as an active member of the
international patterns community.

In addition to this book and its German predecessor, Markus has also co-authored two patterns
books, Server Component Patterns and Remoting Patterns, both published in Wiley’s Software
Design Pattern series. He has also contributed to a German book on software architecture. As
with Tom Stahl, Markus is also a contributor to the openArchitectureWare framework. When not
working, Markus spends his time in his sailplane. He can be reached via http://www.voelter.de
or at voelter@acm.org.

1.8 About the Cover

When we discussed the cover we thought that we wanted something that resembled the concept
of ‘model-driven’ in some way. So, showing ‘something’, as well as a ‘model of something’ was
the idea. We thought about buildings or machines. Then we thought about using an aircraft,
since Markus’ hobby is flying. After a couple of draft covers we agreed on the final one. This
shows an Alexander-Schleicher ASW 27 – one of the highest-performance racing-class gliders
– as well as a technical drawing of the same plane. The picture shows Markus’ own plane with
the German registration D-6642. If you are interested in more information about this aeroplane,
you might want to visit the manufacturer’s site at http://www.alexander-schleicher.de. A huge

c01.fm Page 8 Tuesday, February 28, 2006 10:31 AM

1.9 Acknowledgments 9

 c01.fm Version 0.3 (final) February 28, 2006 10:31 am

collection of photos of this and other such aircraft can be found at http://www.voelter.de/flying/
pictures.html and http://www.schogglad.de. Have fun.

1.9 Acknowledgments

Writing a book like this is more challenging than you might think. Without the support of a large
number of people its completion would have been even more of a challenge, which is why want
to thank the following people.

First of all, there are our contributing authors, Jorn Bettin, Arno Haase, and Simon Helsen.
Jorn contributed mainly to the book’s section about management, helped us with terminology
issues, and provided valuable input regarding the structuring of this work. Simon provided us
with a unique insight into QVT and the processes and institutions behind it. We could not have
written the QVT chapter without this vital input. Arno added to the book by looking into how
interpreters fit into the MDSD world. Of course we also want to thank Krzysztof Czarnecki for
writing a great foreword.

We wish to thank Bernd Oesterreich for discussions as well as for the material that found its
way into the first case study in the book. We also thank Peter Roßbach for the interesting discus-
sion about MDSD, particularly from the test perspective.

We – and especially Simon – also want to thank Sreedhar Reddy and Mariano Belaunde for
their feedback on the QVT chapter. Gabor Karsai and Akos Ledeczi provided support in the con-
text of MIC and GME – thanks for that! Thanks also to Juha-Pekka Tolvanen for providing us
with screenshots for MetaEdit+.

Furthermore, we very much wish to thank our reviewers for fruitful discussions and useful
feedback regarding many details, and also for input regarding the structuring of this book. The
reviewers were, in alphabetical order, Frank Derichsweiler, Wolfgang Görigk, Michael
Kircher, Michael Kunz, Wolfgang Neuhaus, Jürgen Rühle, Martin Schepe, Klaus-Dieter
Schmatz, Eberhard Wolff, and Ghica van Emde Boas.

A very big thanks goes to our copy-editor Steve Rickaby of WordMongers. As with Markus’
previous books, he has done a wonderful job of polishing the manuscript with regards to lan-
guage, as well as other (small and not-so-small) issues.

We also want to thank Rene Schoenfeldt, who was our editor for the original German edition
of the book. He is a great to work with. The same is true for the people at Wiley for this English
edition: specifically we want to thank our editor Sally Tickner.

Thomas wishes to expresses his gratitude to Markus for the extensive amount of work and
time he has spent on the updates that went into the English edition. He also most profoundly
wants to thank his wife Anja and his children, who gave him the support he needed and greatly
helped him with their considerateness.

c01.fm Page 9 Tuesday, February 28, 2006 10:31 AM

 c01.fm Version 0.3 (final) February 28, 2006 10:31 am

c01.fm Page 10 Tuesday, February 28, 2006 10:31 AM

11

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

2 MDSD – Basic Ideas and Terminology

This chapter introduces the most important basic concepts of Model-Driven Software Develop-
ment, as well as the motivation for them. We prefer the abbreviation MDSD for Model-Driven
Software Development over the less-precise variant ‘MDD’ (Model Driven Development). The
first abbreviation has become more popular in the software modeling community over the past
two years.

The Object Management Group’s Model Driven Architecture (MDA) is both a flavor and a
standardization initiative for this approach. Our focus here is its practicability in software
projects. In many respects our concepts and experiences are congruent with those of OMG’s
MDA vision, but in other respects they differ. We point out the latter and discuss them. Apart
from this, the MDA terminology, due to its standardization and pervasiveness, is extremely use-
ful for providing an introduction to this topic, and this is exactly how you should approach the
second part of this chapter: MDA provides the basic terminology for MDSD. The chapter’s third
part introduces the concepts that have been missing until then and which are required to under-
stand the case study.

2.1 The Challenge

In the twenty-first century software is all around us. The software industry has become one of
the largest on the planet, and many of today’s most successful businesses are software produc-
tion companies or offer services in the software field.

Software is today a relevant part of the machinery of all technology-based and many serv-
ice-based businesses. High software development costs have significant economic impact,
and bad software design, which impairs the productivity of users, can have even more serious
consequences.

Many manufacturers of business software are so involved in dealing with the constantly-
changing implementation technologies that productivity effort and risk management fall behind.
Neither off-shoring, nor the newest generation of infrastructure software such as integrated
development environments (IDEs), EAI1 or BPM2 tools and middleware, are much use here. In
most cases, productivity problems are the result either of insufficient consistency or openness in

1 EAI = Enterprise Application Integration
2 BPM = Business Process Management

c02.fm Page 11 Tuesday, February 28, 2006 2:51 PM

12 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

the application architecture, or of inadequate management or dependencies between various
software components and unsuitable software development processes.

2.1.1 Historical View

The nineteen-nineties were mainly influenced by two software development paradigms. At the
beginning of the nineties, these were Computer Aided Software Engineering (CASE) and
fourth-generation languages (4GLs). In the second half of that decade, Object-Orientation
entered the mainstream.

CASE methods and the corresponding tools were expensive, and proprietary approaches col-
lided with a growing awareness of open standards. Many companies had bad experiences with
some manufacturers, so eventually not only the tools but also the model-based software develop-
ment approach were dumped. Object-orientation did not keep all of its promises, but it did
become the foundation of component technologies, and object-oriented languages successfully
replaced the previous generation of programming languages.

With the departure of 4GLs and CASE, OO modeling tools became the center of tool manu-
facturers’ attention, resulting in the Unified Modeling Language (UML) notation standard and
in tools based on a ‘round-trip’ philosophy. This enables smooth switching between UML mod-
els and the corresponding implementation code. Superficially, UML tools impress with their
ability to keep models and code synchronized. However, on closer inspection one finds that
such tools do not immediately increase productivity, but are at best an efficient method for gen-
erating good-looking documentation3. They can also help in understanding large amounts of
existing code.

2.1.2 The Status Quo

The boundaries between modern UML tools and Integrated Development Environments (IDEs)
are disappearing. For example, some UML tools have ‘comfortable’ code editors and integrated
compilers, while traditional IDEs are equipped with UML modeling components. Software
development tools, meanwhile, provide increasingly smart wizards that support users in the
application of design patterns, the creation of user interfaces, and the generation of code skele-
tons for use with popular frameworks.

Although this approach constitutes an improvement compared to older UML tools that were
only able to generate empty class skeletons, they strongly resemble CASE tools, as they are sim-
ilarly inflexible. If, for example, a design pattern changes, today’s UML tools are unable to trans-
fer the effects automatically and iteratively to the source code of an application system without
losing the abstraction.

Eventually, the weaknesses of mainstream IDEs and UML tools led to the formation of the
OMG’s MDA initiative. Appropriate tools allow users to define precisely how UML models are
to be mapped to combinations of company-specific implementation technology. Unfortunately,
in this context some traditional CASE tool manufacturers have spotted a second opportunity to
offer their tools in a new package, as commercial MDA products. The tools cannot however be

3 They offer a different graphic view of the code, but no real abstraction.

c02.fm Page 12 Tuesday, February 28, 2006 2:51 PM

2.2 The Goals of MDSD 13

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

customized to meet individual requirements or customer needs, as they still adhere to the ‘one
size fits all’ dogma. Most tools listed on the OMG’s Web pages, however, actually deserve the
label ‘MDA tool’. In parallel with the progress in the field of software development tools, a sig-
nificant evolution has also taken place in the field of software development methods, which has
hardly been addressed yet in MDA.

The speedy propagation of agile approaches demonstrates an increasing resistance to tradi-
tional software development methods, which usually require a large amount of manually-created
prose text documents. Today it is openly acknowledged that traditional methods required the
production of such documentation, but in practice this cannot be reconciled with the market’s
demand for lower software development costs. Admittedly, agile methods such as Extreme Pro-
gramming (XP) [Bec00] alone do not offer sufficient guidance for the creation of high quality
software, and they do not scale to more complex projects. The odd misbelief that they can com-
pensate for a development team’s lack of analytical abilities or software design experience is par-
ticularly problematic.

2.2 The Goals of MDSD

Before we proceed to discuss the concepts and terminology of MDSD, we want to make a few
comments on the goals of MDSD. However, we can only touch on how these can be achieved
here.

• MDSD lets you increase your development speed. This is achieved through automation:
runnable code can be generated from formal models using one or more transformation
steps.

• The use of automated transformations and formally-defined modeling languages lets you
enhance software quality, particularly since a software architecture – once it has been
defined – will recur uniformly in an implementation.

• Cross-cutting4 implementation aspects can be changed in one place, for example in the
transformation rules. The same is true for fixing bugs in generated code. This Separation
of Concerns [Lad03] promises, among other things, better maintainability of software sys-
tems through redundancy avoidance and manageability of technological changes.

• Once they have been defined, architectures, modeling languages and transformations can
be used in the sense of a software production line for the manufacture of diverse software
systems. This leads to a higher level of reusability and makes expert knowledge widely
available in software form.

• Another significant potential is the improved manageability of complexity through
abstraction. The modeling languages enable ‘programming’ or configuration on a more
abstract level. For this purpose, the models must ideally be described using a problem-
oriented modeling language.

• MDSD offers a productive environment in the technology, engineering, and management
fields through its use of process building blocks and best practices. It thus contributes to
meeting the goals described here.

4 Aspects that cannot be easily located in a single module.

c02.fm Page 13 Tuesday, February 28, 2006 2:51 PM

14 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

• Finally, based on the OMG’s focus and history, the organization’s primary motivations for
MDA are interoperability (manufacturer-independence through standardization) and port-
ability (platform-independence) of software systems. These goals that can be met only if a
standardization – such as the OMG’s MDA effort – is achieved. The same motivation has
already led to the definition of CORBA5. To achieve these goals, the OMG aims at sepa-
rating the specification of a specific functionality from its implementation on a specific
platform. The MDA serves the purpose of providing guidelines and standards that should
lead to a corresponding structuring of system specifications in the form of models.

Most of the goals presented here are not new. On the contrary, they represent something like the
IT industry’s ‘Holy Grail’: no-one is inclined to believe in beneficial promises anymore, and
rightly so. But if you take a look at the history of IT or computer science, you can see that an
ongoing evolution is taking place. High-level languages, object-orientation and component sys-
tems were milestones on the road toward meeting these goals – and MDSD is another. This par-
adigm takes us a small – or even a big – step closer to these goals.

2.3 The MDSD Approach

Each software has its inherent construction paradigms, expressed in the source code – an inner
structure. How sound and how pronounced this structure consequently is directly influences
development speed, quality, performance, maintainability, interoperability, and portability of the
software. Those are extremely important key economic factors.

The problem is that it is difficult to recognize the actual construction paradigms on a pro-
gramming language level, because their abstraction level is much lower. To put it differently, the
much-treasured inner structure is present in a cloudy, distributed, and of course also a strongly
individualized form. It is no longer directly represented in the system itself. Its quality varies,
depending on the skills and interpretation of the developers.

The idea of modeling is not exactly new, and is used mostly for sophisticated development
processes to document a software’s inner structure. Developers then try to counteract the inevita-
ble consistency problems with time-consuming reviews. In practice, these reviews and also the
models are among the first victims when time presses – from a pragmatic point of view, even
rightly so. Another approach is ‘round-trip’ or reverse engineering, which most UML tools offer,
which is merely source code visualization in UML syntax: that is, the abstraction level of these
models is the same as for the source code itself6. Visually it may be clearer, but the essential
problem remains the same.

Model-Driven Software Development offers a significantly more effective approach: Models
are abstract and formal at the same time. Abstractness does not stand for vagueness here, but for
compactness and a reduction to the essence. MDSD models have the exact meaning of program
code in the sense that the bulk of the final implementation, not just class and method skeletons,
can be generated from them. In this case, models are no longer only documentation, but parts of

5 CORBA: Common Object Request Broker Architecture (an OMG standard)
6 In the meantime, UML tools have been improved to handle the J2EE programming model and can thus represent an

EJB Bean through a UML class. However, abstraction cannot be taken any further than that, because the tool does
not ‘know’ the application architecture's concepts. Unique mapping to the source code is also impossible.

c02.fm Page 14 Tuesday, February 28, 2006 2:51 PM

2.3 The MDSD Approach 15

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

the software, constituting a decisive factor in increasing both the speed and quality of software
development. We emphasize ‘model-driven’ as opposed to ‘model-based’ to verbally highlight
this distinction.

The means of expression used by models is geared toward the respective domain’s problem
space, thus enabling abstraction from the programming language level and allowing the corre-
sponding compactness. All model-driven approaches have this principle in common, regardless
of whether the domain is labeled ‘software architecture’, ‘financial service systems’, ‘insur-
ances’, or ‘embedded systems’. To formalize these models, a higher-level Domain-Specific
Modeling Language (DSL) is required. From this ‘bird’s eye view’, it doesn’t matter whether this
is a UML-based language or not.

Besides formal and abstract models, ‘semantically rich’, domain-specific platforms make up
the second foundation pillar: prefabricated, reusable components and frameworks offer a much
more powerful basis than a ‘naked’ programming language or a technical platform like J2EE.
First and foremost, this means that the generator, which is supposed to transform the formal
model, will be simplified once the generated code can rest on APIs of significantly higher qual-
ity. The introduction of reusable frameworks, super classes, and components to avoid code
redundancy is not a new idea, but in the context of MDSD they serve additionally to intercept
the model transformation half-way in the form of a well-formed platform, which causes a signif-
icant complexity reduction of the code generators7.

Figure 2.1 shows the relationships in application development with MDSD.

Let’s take a look at an existing application or a reference implementation (the upper left cor-
ner of the diagram). These are unique items with individual structures. We can restructure the

7 The transformations become less complex because they don’t have to generate code that runs on low-level platforms,
but can assume that there is a platform that provides basic services. This reduces the complexity of the transforma-
tion, since the ‘abstraction gap’ is reduced.

Figure 2.1 The basic ideas behind Model-Driven Software Development

Applikations-
Modell

Applikations-
Modell

CodeCode

Code of Application or
Reference Implementation

analyse separate

Platform

Individual
Code

Application
Model

DSL

Trans-
formations

uses creates

Generic
Code

Individual
Code

Schematic
Repetitive

Code

Schematic
Repetitive

Code

c02.fm Page 15 Tuesday, February 28, 2006 2:51 PM

16 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

code of these application in our minds so that three parts can be separated8 (the lower left
corner): a generic part that is identical for all future applications, a schematic part that is not
identical for all applications, but possesses the same systematics (for example, based on the
same design patterns), and finally an application-specific part that cannot be generalized. At
this point, we won’t make any statements about the significance of each part: in extreme
cases, the application-specific part can even be empty. Model-Driven Software Development
aims to derive the schematic part from an application model. Intermediate stages can occur
during transformation, but in any case DSL, transformation, and platform will constitute the
key elements. They must only be created once for each domain, for example ‘enterprise soft-
ware architecture’ or ‘inventory system for insurance’ (lower right).

2.4 Basic Terminology

This section introduces the most important concepts and terms of the MDA standard, to establish
the basic terminology for MDSD.

Domain-related specifications are defined in Platform-Independent Models (PIMs). To this
end, a formal modeling language is used that is specific to the concepts of the domain to be
modeled. In most cases, one would use UML that has been adapted via profiles to the respective
domain, not least because of its tool support (see Section 6.5). These domain-specific descrip-
tions are completely independent of the later implementation on the target platform. Such target
platforms can be, for example, CORBA, J2EE, .NET or proprietary frameworks/platforms.
Figure 2.2 illustrates this basic principle.

Via model transformation, usually automated with tools, Platform-Specific Models (PSMs)
are created from the Platform-Independent Models. These Platform-Specific Models contain
the target platform’s specific concepts. The implementation for a concrete target platform is

8 Where appropriate through refactoring.

Figure 2.2 The basic principle of MDA

CORBA
Model

J2EE
Model

XML
Model

CORBA / C++
Code

J2EE / Java
Code

XML-
Code

Platform-IndependentModel
(PIM), via UML-Profile

Model-to-model transformation

Platform-SpecificModel
(PSM), via UML-Profile

Model-to-code transformation

Implementation

Domain-related
Specifications

c02.fm Page 16 Tuesday, February 28, 2006 2:51 PM

2.4 Basic Terminology 17

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

then generated with another tool-supported transformation based on one or more PSMs (see
Figure 2.3).

It is important to note that a PIM and a PSM are relative concepts – relative to the platform. In
the example shown above, the EJB-PSM is specific to the EJB 2.0 platform, yet it is independent
regarding its concrete, application server-specific realization.

Let’s look at another example. Figure 2.4 shows a small part of a PIM. It shows a class model
with two domain classes: Customer and Account. Both classes have the «Business Entity» ster-
eotype, and both have an attribute that is assigned the stereotype «UniqueID». The method
findByLastName features the stereotype «Query» under Customer.

Figure 2.3 PIM, PSM and transformation

Figure 2.4 An example that illustrates the relationship between PIM, PSM and code

PIM PSM
(Components)Transformation

PSM
(EJB 2.0)Transformation

PSM
(WLS 7.1)

Transformation

Code
(Java + XML) Transformation

PIM

1
<<UniqueID>> number : Integer
balance : Float

<<BusinessEntity>>
Account

<<Query>> findByLastName()

<<UniqueID>> id : String
lastName : String
firstName : String

<<BusinessEntity>>
Customer*

PSM (EJB)

1
<<PrimaryKey>> number : int
balance : float

<<EJBEntityBean>>
Account

<<EJBFinderMethod>>
findByLastName()

<<PrimaryKey>> id : String
lastName : String
firstName : String

<<EJBEntityBean>>
Customer*

customeraccount

Code

public interface Account extends EJBObject {...}
public interface AccountHome extends EJBHome {...}
public abstract class AccountBean implements EntityBean {...}
public class AccountPK implements Serializable {...}

c02.fm Page 17 Tuesday, February 28, 2006 2:51 PM

18 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

The annotation of stereotypes on UML model elements allows us to change or specify the
meaning of an element. A class with the stereotype «Business Entity» is not just a simple class,
but is rather a self-contained entity in business applications. What this means in practice is
determined by transformations that define how a stereotype such as «Business Entity», for
example, is mapped to an existing platform such as J2EE.

Such an extension of the standard language vocabulary of UML through stereotypes is called
a (UML) profile. It is a standard mechanism specified by the OMG to ensure openness, and is
used here to define a formal modeling language. This formalization is mandatory for trans-
forming a UML model into an MDA model. The concepts «Business Entity», «UniqueID», and
«Query» are completely independent of the target platform. Dependency occurs through the
transformation from PIM to PSM. Here, we find the stereotypes that are specific to J2EE:
«EJBEntityBean», «PrimaryKeyField», and «EJBFinderMethod». These are also originally con-
cepts that acquire their meaning through transformations, in this case transformations into the
Java programming language.

The transformation eventually turns the PSM into source code, in which the concepts
described here can be found in their concrete manifestation.

2.4.1 An Overview of MDA Concepts

The Model

A model is an abstract representation of a system’s structure, function or behavior. MDA models
are usually defined in UML9. In principle, the MDA formally considers even classic program-
ming languages as MDA modeling languages that in turn maintain relationships with a platform.
Without a doubt this is correct, but we are of the opinion that this approach occasionally ham-
pers the elucidation of concepts, so from now on we will keep the terms model and modeling
language clearly separate from the terms program and programming language.

UML models are not per se MDA models. The most important difference between common
UML models (for example analysis models) and MDA models is that the meaning (semantics)
of MDA models is defined formally. This is guaranteed through the use of a corresponding mod-
eling language which that is typically realized by a UML profile and its associated transforma-
tion rules. We discuss these mechanisms in greater detail later in this chapter. All in all, this
means that the mapping of a model to an existing platform is clearly defined.

The Platform

At first the MDA says nothing about the abstraction level of platforms. Platforms can build on
each other, for example an Intel PC is a platform for Linux. Similarly, CORBA, J2EE, or Web
Services are possible platforms for an e-business system, and C++ is a possible platform for
CORBA. A well-defined application architecture, including its runtime system, can also be a
platform for applications. We consider the latter idea of the key concepts for Model-Driven Soft-
ware Development and discuss it in greater detail later on.

9 According to the standard with MOF-based models – see Chapter 6.

c02.fm Page 18 Tuesday, February 28, 2006 2:51 PM

2.4 Basic Terminology 19

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

UML Profiles

UML profiles are the standard mechanism for expanding the vocabulary of UML. They contain
language concepts that are defined via basic UML constructs such as classes and associations,
stereotypes, tagged values, and modeling rules (constraints) – see Figure 2.5.

A UML profile is defined as an extension of the UML metamodel. A metamodel defines,
among other things, the basic constructs that may occur in a concrete model. Conceptually, a
model is an ‘instance’ of a metamodel. Accordingly, the UML metamodel contains elements
such as Class, Operation, Attribute, or Association. The metamodel concept is one of the most
significant concepts in the context of MDSD. For this reason, we dedicate a whole chapter to it,
Chapter 6. However, at this stage we are content just to gain an intuitive understanding. The
relationship between the metamodel and profile is clarified in Figure 2.6, using a simplified
example – a UML profile for Enterprise Java Beans (EJB).

In the UML profile, the standard UML concepts Attribute, Class and Operation are supple-
mented by the specific concepts PrimaryKeyField, EJBEntityBean and EJBFinderMethod. In
addition, a new UML 2.0 language construct, an extension, is used. This is indicated by the
filled-in inheritance pointer. To avoid confusion, we made these larger.

Additional extensions are defined through tagged values and modeling guidelines in the form
of constraints. A constraint is usually annotated as a comment for the respective model elements:
we use the formal constraint language OCL here. Tagged values are rendered as attributes of the
stereotype.

A UML profile therefore offers a concrete notation for referencing metamodels from a model,
and determines whether a certain model is ‘well-formed’, that is, valid or not. In short, it defines
a formal modeling language as an extension of UML.

Further details of these relationships are elaborated on in Chapter 6.

Figure 2.5 Use of a UML profile

1

{EJBPersistenceType=Container}

<<PrimaryKey>> number : int
balance : float

<<EJBEntityBean>>
Account

{EJBPersistenceType=Container}

<<EJBFinderMethod>>
findByLastName()

<<PrimaryKey>> id : String
lastName : String
firstName : String

<<EJBEntityBean>>
Customer

*

customeraccount

Stereotype

Tagged Value

context Account:
inv: number > 1000000 and
 number < 9999999

Constraint

c02.fm Page 19 Tuesday, February 28, 2006 2:51 PM

20 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

PIM and PSM

The separation of Platform-Independent Model (PIM) and Platform-Specific Model (PSM) is a
key concept of the OMG’s MDA. The background to this is as follows: concepts are more stable
than technologies, and formal models are potentially useful for automated transformations. The
PIM abstracts from technological details, whereas the PSM uses the concepts of a platform to
describe a system (see Figure 2.7). The reverse route – the extraction of a PIM from a PSM – is
extremely hard to automate, and in some cases impossible. That usually requires manual, intel-
lectual work, which is somewhat awkwardly termed Refactoring in the MDA specification. (The
meaning of Refactoring leans more toward equivalence transformations – see [Fow99].)

Figure 2.6 UML metamodel and UML profile for EJB (section of)

Figure 2.7 The relationship between PIM, PSM and platform

UML Meta Model

<<metaclass>>
Class

<<metaclass>>
Attribute

<<metaclass>>
Operation

operation

0..*

attribute

0..*

Simple
EJB Profile

<<stereotype>>
PrimaryKey

EJBPersistenceType: (Bean, Container)

<<stereotype>>
EJBEntityBean

<<stereotype>>
EJBFinderMethod

context EJBEntityBean:
inv: attribute->exists(isStereoKinded("PrimaryKey")

PIMPIM'

PSM-1

Mapping

PSM-1'

Refactoring

Platform-1

based on

c02.fm Page 20 Tuesday, February 28, 2006 2:51 PM

2.5 Architecture-Centric MDSD 21

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

Transformations

Transformations map models to the respective next level, be it further models or source code. In
terms of the MDA, transformations must be definable flexibly and formally based on an existing
profile. This is a prerequisite for the desired automation of the transformation via generators.

Most of the currently-available MDA/MDSD tools define their transformation rules not
between two metamodels, but instead for example use templates for the direct generation of
source code, without the programming language’s metamodel being formally known to the gen-
erator. However, generators exist that attach the transformation rules to the UML profile or,
respectively, its corresponding metamodel. Such approaches are absolutely workable in practice,
and are described in Chapters 3 and 9. The advantage of a transformation based on two meta-
models (source and target) is mostly the elegant mapping from one metamodel to another. We
doubt whether this paradigm is feasible for the generation of source code in practice, however.

Current generators solve this problem in a different way, through the use of proprietary trans-
formation languages. In this context, JPython, TCL, JSP, XSLT, or custom script/template lan-
guages are used10. The generator templates defined with these languages principally work like
macros and use the models as input data. As a consequence, at present no interoperability for
model transformations exists: standardization is on its way, however – see Section 10.5. Here we
will have to wait until standardization has been accomplished.

Chapter 12 provides a deeper insight into the MDA standard.

2.5 Architecture-Centric MDSD

In this section we want to supply the foundations that can enable you to understand the later case
study: one flavor of MDSD that is termed Architecture-Centric MDSD (AC-MDSD). The
approaches described here have evolved in the course of six years’ practical experience with
many projects, and particularly focus on practical usability.

2.5.1 Motivation

In contrast to the primary goals of the OMG for MDA, interoperability and software portability,
AC-MDSD aims at increasing development efficiency, software quality, and reusability. This
especially means relieving the software developer from tedious and error-prone routine work.
Today developers are confronted with extremely complex software infrastructures: application
servers, databases, Open Source frameworks, protocols, interface technologies and so on, which
all need be connected to create robust and maintainable high-performance software. Due to
increasing complexity in this field, the discipline of software architecture assumes more and
more importance.

The existence of a software infrastructure also implies the existence of corresponding infra-
structure code in the software systems using it. This is source code, which mostly serves to
establish the technical coupling between infrastructure and applications to facilitate the devel-
opment of domain-specific code on top of it. The J2EE/EJB programming model is a prime

10 These languages are themselves domain-specific languages for the domain of defining code-generation templates.

c02.fm Page 21 Tuesday, February 28, 2006 2:51 PM

22 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

example in this context: home and remote interfaces, Bean classes, descriptors – technical
code that admittedly contains domain-related information such as method signatures, but
which also exhibits a high degree of redundancy. After they have built four or five Enterprise
Beans manually, if not before, a J2EE developer will long for a generator to create this type of
infrastructure code – and can get this kind of support, typically in the shape of a preprocessor
or an IDE wizard.

At best, some infrastructure components will bring their own ‘helpers’ for the generation of
their own infrastructure code11. The problem here is that these tools do not ‘know’ each other,
which is why they fall short of the possibility of a holistic and architecture-centric approach, as
we will see in the case study.

Ergo, the goal of AC-MDSD must be integrated automation of infrastructure code genera-
tion and, as a consequence, the minimization of redundant infrastructure code in application
development.

When we talk about infrastructure code, we are not talking about peanuts: measurements
[Chapter 18] show that between 60% and 70% of modern e-business applications typically con-
sists of infrastructure code.

2.5.2 Generative Software Architectures

As the adjective architecture-centric already implies, software architecture plays the central role
in the MDSD flavor discussed here. Actually, a holistic, generative approach for the creation of
infrastructure code can only work on the basis of a thoroughly worked-out and formalized soft-
ware architecture.

You can imagine this as follows: the more and the better a software architecture has been elu-
cidated, the more schematic the source code of applications using this architecture will become.
If the architecture’s definition consists only of slides representing the system infrastructure
(databases, application server, mainframes, networks and so on) and maybe additionally the
most important layers, it is likely that two developer teams will realize the same application in
entirely different ways – including the implementation of the software architecture: two unique
applications will be created.

If we assume however that a team of architects does some groundwork and develop some sort
of technical reference implementation that shows the concrete realization of the most important
software architectural aspects at the source code level, application developers can use this refer-
ence as a blueprint. Since the same technical realizations – notwithstanding domain variations –
recur in development practice (for example use of a specific interface technology or an MVC
pattern), the majority of the workload would be copy and paste programming. Of course, this
sort of programming is much more efficient than individually thought-out code created from
scratch.

In essence, the more of a software architecture’s definition has been fleshed out in source
code, the more schematic and repetitive the application development process will become. Sche-
matic programming means mostly copy and paste, followed by modifications that depend on the
domain context. This part of the work is clearly non-intellectual. If we pursue this train of
thought, it is not too far-fetched to leave the tedious and error-prone copy/paste/modify job to a

11 In the case of EJB this will for example be realized in Version 3.0.

c02.fm Page 22 Tuesday, February 28, 2006 2:51 PM

2.5 Architecture-Centric MDSD 23

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

generator, which ultimately leads to a generative software architecture. Here, all implementation
details of the architecture’s definition – that is, all architectural schemata – are incorporated in
software form. This requires a domain model of the application as its input, and as output it gen-
erates the complete infrastructure code of the application – the very code that otherwise would
need to be generated via a tedious copy/paste/modify process. To this end, the model only needs
to have specific annotations that reference the architectural concepts defined as part of the gen-
erative software architecture.

Usually an architecture-centric UML profile is used for modeling in AC-MDSD. Thus a for-
mal, architecture-centric application design is created. The model-to-code transformations are
defined typically in the form of generator templates, so that the complete infrastructure code can
be generated automatically from the architecture-centric design model. It is important to note
that the model must already contain all relevant information for the generation of the infrastruc-
ture code – it is just a lot more abstract and more compact than the expanded code. The tem-
plates can use the entire infrastructure’s power and base the generated code on this platform, as
described in Section 2.3, simplifying the templates. Since the generation of the code is motivated
by technical and architectural concerns, a ‘semantic gap’ remains: developers must manually
create the application’s actual domain code, that is, the actual, domain-specific functionality that
is not infrastructure code.

There are various techniques for the integration of generated and manually-created code. We
look at them in detail in Chapter 8 and Chapter 9. Figure 2.8 illustrates these correlations. They
are explained further in the next chapter’s case study, using a practice-oriented, realistic example.

A generative software architecture is a powerful means to achieve the goals we listed in
Section 2.2. Its most important advantages are higher development speed and software quality,
better maintainability, and practical reusability – reusability within one application, but of
course even more beyond the boundaries of a single application. A generative software archi-
tecture can support an entire group or family of architecturally-similar applications – a soft-
ware system family. In effect, AC-MDSD deals with the creation of generative software
architectures for software system families, instead of creating unique products.

Figure 2.8 The principle of architecture-centric MDSD

Application

Architecture-centric
Design Model

Infrastructure Code

Business
Logic Code

(manually developed)

Generative Architecture

Architecture-centric
UML Profile (DSL)

modeled using

Generator Templates
(Model-2-Code

Transformation)

Infrastructure
Components (Platform)

Generator

supported by

transformed into

c02.fm Page 23 Tuesday, February 28, 2006 2:51 PM

24 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

2.5.3 Architecture-Centric Design

The defined design language (typically a UML profile) contains the software system family’s
architecture concepts in the shape of a ‘platform-independent’12 abstraction. Designers use this
design language to create the domain’s application design in the form of PIMs. Other than when
dealing with the OMG–MDA vision, they will in most cases deliberately forego the transforma-
tion of these PIMs into explicitly visible, platform-dependent UML models (PSMs) when work-
ing with AC-MDSD.

Practical project experience has hitherto proved that this simplification is usually more useful
than the additional degrees of freedom gained with PSMs. As a consequence, one need not con-
trol, manipulate, and enrich the various intermediate transformation results with specific infor-
mation13. This not only allows for a more efficient development, but also avoids potential
consistency problems: a manual change of an intermediate model might result in an inconsist-
ency with higher abstraction levels that is not automatically correctable.

Similarly, we forego reverse engineering from the source code to the PIM, which in general is
not feasible anyway. A model that has been created ‘backwards’ from source code is naturally as
little abstract as the source code itself. Only its presentation is different, perhaps providing better
understandability for some purposes. For specific arbitrary sections of source code, a PIM from
which the program could be derived via transformation14 may not exist – especially if the PIM
modeling language focuses on a specific domain such as software architecture for e-business
systems. In the context of MDA specifications, this fact is more or less ignored by the OMG
however.

Some members of the MDSD tool-builders community anticipate tool-supported wizards or
some similar solution that will at least enable semi-automated reverse engineering. In our opin-
ion this is a concession rather than a goal-oriented concept15 – at least where newly developed
software is concerned. Admittedly, this view may first be perceived as being disadvantageous,
depending on your personal work preferences, but in truth it is an advantage, as we will learn
later on. Basically, AC-MDSD builds on forward engineering.

This forward-engineering based, generative approach allows us to derive conclusions about
generated applications from the ‘hard facts’ of architecture-centric models. A generative archi-
tecture can guarantee a loose coupling of components or the absence of access paths between
different application layers. For example, it can ensure that a presentation layer, for example a
Web user interface, cannot access a database’s SQL interface directly.

At this point it’s important to note that forward engineering is not to be mistaken for a model
that uses the waterfall approach to development. It merely means that design changes must be
made to the model instead of the source code, which of course does not mean that the whole
application must be modeled at once. We concede that forward engineering does not exclude
such an approach, but this does not mean that it is mandatory. In fact, we favor an iterative,
incremental process [Oes01].

12 Platform-independence is a relative term. Here, it refers to the independence of standard software platforms like
J2EE.

13 We are not against the modularization of transformations through successive execution here, yet we do not favor
explicitly visible and manipulable intermediate results.

14 Mathematicians would say that the mapping of a PIM model to a programming language is not surjective.
15 In the context of adaptation of legacy software for MDSD, reverse engineering can make sense, quasi as boot-

strapping.

c02.fm Page 24 Tuesday, February 28, 2006 2:51 PM

2.5 Architecture-Centric MDSD 25

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

Let’s now examine an example of such a PIM, shown in Figure 2.9. This model does not
reveal anything about the technologies that were used – the technological realization of such
models is defined only once it is mapped to a concrete platform. A formal UML design language
is created through the semantic enrichment of the model with stereotypes, tagged values, and
constraints. For AC-MDSD, the abstraction level of this language lies on the level of architec-
tural concepts, which is why we speak of architecture-centric design. In other words: the domain
of AC-MDSD is software architecture.

The domain-related meaning of the diagram in Figure 2.9 is fairly obvious: at its core is an activ-
ity, a module for superordinate process models that is able to carry out an action for the creation
of a customer-specific account overview. The customer entity serves as input, which is transmit-
ted to the activity. Besides two domain-related attributes, the customer entity possesses an iden-
tifying characteristic (a key) and is able to calculate the total balance by adding balances of the
associated accounts. The activity, or respectively its action, uses a presentation with three
domain-related attributes to display the result.

A standard Java code generator would ignore the annotated stereotypes and generate the sig-
natures of four simple Java classes. In AC-MDSD, the realization of the model on the program-
ming language side is realized by a mapping to a concrete platform. This is illustrated by the two
examples that follow.

For an EJB-Based Architecture with HTML Clients

Activity classes are stateless session Beans that implement the interfaces of a server-
side process engine. Each action is declaratively transactional. The entity classes are
Beans with corresponding local interfaces. Attributes of the type key constitute the pri-
mary key classes. For public attributes, getter and setter methods are applied. Container
Managed Persistence (CMP) is used for persistence. The necessary descriptors can be
deduced from the model. For associations, access methods are available that are based

Figure 2.9 An example of architecture-centric design

<<action>> + createOverview()

<<activity>>
CreateAccountOverview

calculateTotalBalance() : Double

<<key>> + CustomerNumber : String
+ Surname : String
+ Forename : String

<<entity>>
Customer

<<input>>

1

<<key>> + AccountNumber : String
+ BankCode : String
+ Balance : Double

<<entity>>
Account1 1..n

+ Surname : String
+ Forename : String
+ TotalBalance : Double

<<presentation>>
AccountOverview

c02.fm Page 25 Tuesday, February 28, 2006 2:51 PM

26 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

on the associated model’s finder methods. The presentation classes specify JSP models
that serve to fill JSP/HTML pages. The presentation implementations are activated by a
FrontController framework.

For a C++/CORBA-Based Client-Server Architecture

For each activity class there is an IDL interface. All attribute and parameter types of the
design are mapped to corresponding IDL types. A suitable C++ skeleton exists. The
activity classes implement the interfaces to a specific workflow system. Actions (action
operations) are transactions on an Object Transaction Monitor (OTM). All entity
classes are non-distributable C++ classes: their instances are submitted to a RDBMS
via object-relational mapping. Attributes of the type key serve as primary keys. The
presentation classes are Java Swing GUIs that implement the interfaces of a specific
client-framework.

By means of this simple example of a model we can easily recognize the main
advantages of this approach: architecture-centric models are compact, sufficiently rich
in information and do not contain any superfluous details that would impede portability
and lower their degree of abstraction. They are therefore more concise and easier to
maintain. Moreover, they are better suited for enabling discussions with other project
members, as they are not polluted with technical details.

2.5.4 Development Process

Generative software architectures and architecture-centric design can only be applied effectively
when the development methodology is adequately adapted. This extremely important issue is not
in the focus of the MDA’s attention. We dedicate the whole of Chapter 13 to this issue, which
illuminates MDSD from a process point of view. Since we are dealing with the special case of
architecture-centric design here, preparing the foundations for the following case study, we high-
light only a few aspects here.

Separation Between Architecture Development and Application
Development

We have already seen that a generative software architecture leads to a modularization of appli-
cation development: UML profile, generator templates, and infrastructure components on one
hand, architecture-centric design, generated infrastructure code, and manually-implemented
code on the other.

Quite clearly, the applications depend on the generative software architecture, but not vice
versa. This leads us to the consideration of splitting the creation of these artifacts into two sep-
arate paths: as in framework development, one team can handle the creation of the generative
software architecture (the architecture development track) while another team deals with appli-
cation development (the application development track). The dependencies must be alleviated
by a suitable synchronization of the iterations, or through release management – more about

c02.fm Page 26 Tuesday, February 28, 2006 2:51 PM

2.5 Architecture-Centric MDSD 27

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

this topic can be found in Chapter 13. Regardless of the question of whether one wants to assign
different people to the two paths or not, we are obviously dealing with substantially different
activities here, so that a role-oriented view makes sense:

• Architects develop the generative software architecture.
• Designers create the application’s architecture-centric model.
• Developers program the application logic and integrate it in the generated infrastructure

code.

The Importance of the Reference Implementation

A practical generative software architecture is not realized out of the blue – a blueprint is needed
for the code to be generated. This blueprint is called a reference implementation. We are refer-
ring to a runnable sample that is as concise as possible with respect to actual domain functional-
ity, but which shows the semantics of the architecture-centric UML profile constructs on the
source code level. In the next step, generator templates can be derived from such a reference
implementation. We will concretize these in the course of a case study, as well as discussing
them in greater detail in Chapter 13.

2.5.5 The Properties of Architecture-Centric MDSD

Before we get started with the case study in the next chapter, we’ll briefly summarize the proper-
ties of architecture-centric MDSD. Methodological aspects come to the fore here: AC-MDSD
supports individual architectural requirements. Its focus is clearly the engineering principle and
not the integrated development environment (CASE or MDA tool/IDE). In other words, nothing
will be generated that hasn’t been verified before via a reference implementation. Therefore, we
can skip questions that often emerge in the context of generative approaches, such as “How good
is the runtime performance of the generated code?” or “How good is the quality of the generated
source code?” The generated code is as good (or as bad) as the reference implementation from
which the generator templates are derived.

• Software system families instead of unique items. AC-MDSD not only aims at increas-
ing efficiency and quality when developing one-off applications, it also aims at the
reuse of generative software architectures for architecturally-similar applications that
therefore constitute software system families. This aspect is not explicitly a main con-
cern of the MDA.

• Architecture-centric design. Other than the MDA, we (usually) work without platform-
specific models. Instead we apply platform-independent models in architecture-centric
design. This approach, which on one hand poses a limitation, clearly leads to optimization
on the other. The maintenance effort for intermediate results is reduced and consistency
problems are avoided.

• Forward engineering. Contrary to the MDA vision, we deliberately avoid round-trip
engineering. Since architecture-centric MDSD models require real abstractions, reverse

c02.fm Page 27 Tuesday, February 28, 2006 2:51 PM

28 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

engineering is either not possible, or does not make sense. Design changes have to be
made to the actual design – that is, the model. Thus the model will always be consistent
with the generated source code.

• Model-to-model transformation for modularization only. We use a PIM that is as abstract
as possible, but ideally is directly (and of course iteratively) transformable into source
code. The ‘transformation gap’ can be modularized via model-to-model transformations,
but intermediate models occurring en route are implementation details that are invisible to
the application developer.

• Source code generation without explicit use of the target metamodel. The generation of
programming language source code is essential for AC-MDSD (Chapter 9). However, we
believe that model transformations as they are currently being discussed in the context of
the MDA standardization are only helpful for model-to-model transformations. The gener-
ation of architecturally-motivated infrastructure source code in this manner is very cum-
bersome, whereas the use of generator templates is proven and can be handled very
intuitively. The source metamodel (that is, that of the design language) is, with the excep-
tion of the target metamodel, very useful for the generation of source code in order to
structure the transformation rules, as our case study will demonstrate.

• No 100% generation. As a rule, ‘only’ 60% to 80% of software is generated from architec-
ture-centric models. We think that 100% generation is possible, and wise, in only very few
exceptional cases16. Architectural infrastructure code of an application is 100% generated,
but the individual/domain-related aspects are supplemented in the target language.

• Software architecture becomes manageable. Generative software architecture is per se for-
mal and up-to-date. The developers cannot leave the frame of the infrastructure code that
has been set, either accidentally or on purpose. This is clearly an advantage as far as qual-
ity is concerned. Developers and designers can immediately detect all changes in the
architecture and can handle them in the right place – that is, centrally in the generative
software architecture, instead of distributed all over the application. Technical and
domain-related aspects are clearly separated. Therefore AC-MDSD makes sure the archi-
tecture is really used consistently in an application, and helps to realize architectural
changes that cut across the system. This again supports the scalability of the development
process. In other words, AC-MDSD is a very useful and powerful instrument for software
architecture management.

So where do we go from here? After you have established a stable AC-MDSD infrastructure, it is
often useful to cascade additional MDSD-layers on top of it. This approach, called cascaded
MDSD, is explained in Section 8.2.8.

16 This statement is valid for AC-MDSD only, not for MDSD in general.

c02.fm Page 28 Tuesday, February 28, 2006 2:51 PM

50 Case Study: A Typical Web Application

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

To propagate these changes for all classes of type EntityObject, we change the template for the
generation of the descriptor files as described in the following listing, then re-run the generator.

The architectural aspects’ requirements can not only necessitate changes to existing structures,
but can also require extensions. To explain the necessary steps for the expansion of a generative
software architecture, a tagged value for business classes should be introduced. This tagged value
should be labeled KeyType and can either assume the value USER or SYSTEM. Via KeyType, the
type of the business class’ unique key can be determined. In the case of KeyType==SYSTEM an
attribute and a unique key are generated, otherwise, for KeyType == USER, the key is determined

 </type-identifier>
 <type-version>6.0</type-version>
 <type-storage>
 META-INF/weblogic-cmp-rdbms-jar.xml
 </type-storage>
 </persistence-use>
 </persistence>
 </entity-descriptor>
 <local-jndi-name>
 de.amg.carsharing.user.entity.UserHome
 </local-jndi-name>
</weblogic-enterprise-bean>

«DEFINE DeplDescr FOR EntityObject»
«FILE FullPathName"/"Name"weblogic-ejb-jarDD.xml"»
 <weblogic-enterprise-bean>
 <ejb-name>«Name»EJB</ejb-name>

 <entity-descriptor>
 <persistence>
 <persistence-use>
 <type-identifier>
 WebLogic_CMP_RDBMS
 </type-identifier>
 <type-version>6.0</type-version>
 <type-storage>
 META-INF/weblogic-cmp-rdbms-jar.xml
 </type-storage>
 </persistence-use>
 </persistence>
 </entity-descriptor>
 «IF needsRemote»
 <jndi-name>
 «FullPackageName».«Name»RemoteHome
 </jndi-name>
 «ENDIF»
 <local-jndi-name>
 «FullPackageName».«Name»Home
 </local-jndi-name>
 </weblogic-enterprise-bean>
«ENDFILE»
«ENDDEFINE»

c03.fm Page 50 Tuesday, February 28, 2006 4:29 PM

3.2 Architecture Development 51

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

through identification of an attribute with the stereotype «Key». In the example provided in
Figure 3.11, the business class User possesses the KeyType == USER and the attribute Name
labeled as «Key».

Due to the extension of the profile element «EntityObject», the modeling constraint must be
adapted accordingly: «Key» attributes must and may only be defined in the case of KeyType ==
USER. Figure 3.12 shows the respectively adapted formal profile definition with tagged value
and OCL constraint.

In our generative software architecture’s implementation, the metamodel’s tagged value is intro-
duced into the class EntityObject as a property, which is set by the generator framework during
instantiation of the metamodel. Thus the implementation of the CheckConstraints() method
must be extended respectively:

Figure 3.11 Extended EntityObject User

Figure 3.12 Profile definition with constraints

public class EntityObject extends JavaObject {
 public String KeyType = "USER"; //TaggedValue Default
 ...

- <<Key>> Name : String
- Password : String
- Userid : String

<<EntityObject>>
User

{KeyType=USER}

Class
<<stereotype>>

ProcessObject

<<profile>>
EBusinessApps

context EntityObject:
inv: (taggedValue.exists(tv: taggedValue |
 tv.name = "KeyType" and
 tv.dataValue = "USER")
 implies
 features->collect(i|i.hasStereotype("Key")->
 size() >= 1)
 and (!taggedValue.exists(tv: taggedValue |
 tv.name = "KeyType" and
 tv.dataValue = "SYSTEM")
 implies
 features->collect(i|i.hasStereotype("Key")->
 size() == 0)

<<stereotype>>
EntityObject

<<stereotype>>
ValueObject

<<stereotype>>
Controller

Attribute
<<stereotype>>

Key

KeyType : {USER, SYSTEM}

c03.fm Page 51 Tuesday, February 28, 2006 4:29 PM

52 Case Study: A Typical Web Application

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

The higher expressive power of the UML profile is also reflected by the templates. Here, the
following transformations must take place, depending on the KeyType, as indicated below for the
Entity Bean class:

You can see what the generated Entity Bean class looks like in the implementation directly
from the template. Depending on the KeyType, either the «Key» attributes will be set in the con-
structor, or a system-side ID is assigned.

As we have shown, changes and extensions of architectural aspects need only be made in a
single place in the generative software architecture, rather than in many distributed places in the
applications’ code.

 // EntityObject.CheckConstraints()
 // defines the DesignConstraints for
 // Elements with stereotype <<EntityObject>>
 public String CheckConstraints()throws DesignException {
 if(Key().isEmpty() &&
 KeyType.equals("USER")) {
 throw new DesignException("Constraint "+
 +"violation: No Key found for "+
 +"EntityObject '" + this.Name() + "'");
 }
 return "";
 }
 ...
}

«IF KeyType == "SYSTEM"»
 // init-method
 private void init() {
 long time;
 time = System.currentTimeMillis();
 setImplId(String.valueOf(time) + "+" +
 System.identityHashCode(this));
 }
 public «Name»PK ejbCreate() throws CreateException {
 init();
 ...
«ELSE»«REM KeyType==”USER”»
 public «Name»PK ejbCreate(
 «EXPAND Attribute::Signature FOREACH Key
 USING SEPARATOR ", "»)
 throws CreateException {
 «FOREACH Key AS CurKey EXPAND USING SEPARATOR "\n"»
 setImpl«CurKey»(«CurKey.asPARA»);
 «ENDFOREACH»
 ...
«ENDIF»

c03.fm Page 52 Tuesday, February 28, 2006 4:29 PM

3.2 Architecture Development 53

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

3.2.6 The Boundary of Infrastructure Code

Up to this point we have shown which tasks must be taken on in the context of architecture
development and how the infrastructure code is defined. But how can the manually-developed
code – typically, the business logic – be implemented within this skeleton, and how can we
maintain it if iterative regeneration and structural changes occur? There are various approaches
to the integration of generated infrastructure code and manually-written business code, and we
expand on these in Chapter 9.

The MDSD generator used in this example supports protected regions: that is, it is possible to
designate certain areas of code in which developers implement the business logic. To preserve the
code during regeneration, it is necessary to mark these areas as unique. To this end, the relevant
protected regions are assigned unique, constant IDs from the model, the UUIDs from the UML
tools’ XMI output. The definition of a protected region of the template might look like this:

3.2.7 Structuring Metaprograms

The templates introduced here – together with the properties of the metamodel implemented in
Java – constitute one possible implementation technique for MDSD transformations, in this case
distributed across two languages. We are effectively dealing with metaprograms here, since they
serve the creation of programs. It should be kept in mind, however, that metaprograms are pro-
grams too. This means that on this (meta-)level software is also created in real-life projects –
software that must be structured so that it can grow iteratively and incrementally.

Here, mechanisms such as those we know from object-orientation are required. For example,
construction of components is desirable. There might for example be a need to switch the com-
ponent for the generation of the Entity layer to facilitate a migration from EJB 1.1 to EJB 2.0.
Inheritance and polymorphism are useful allies here too. The availability of such features says a
lot about how good your MDSD tool really is.

More information on this topic can be found in Chapter 11, as well as in the second case study
in Chapter 16.

«PROTECT CSTART "//" CEND "" ID Id"Operation_MethodBody"»
 //add custom initialization here ...
«ENDPROTECT»
This leads to the following generator output:
// PROTECTED REGION ID(12aaaeOperation_MethodBody) START
 ReservationParameterValueObject vo = null;
 try {
 CarSharingAutoModuleComponent component =
 new CarSharingModuleComponentImpl();
 ...
 } catch (…) { … }
 return vo;
// PROTECTED REGION END

c03.fm Page 53 Tuesday, February 28, 2006 4:29 PM

54 Case Study: A Typical Web Application

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

3.3 Conclusion and Outlook

The practicability of the OMG–MDA approach is often partially met with skepticism, which
may not be totally unfounded. There are quite a few people who consider MDA to be merely a
‘discipline for theorists’. However, the pragmatic version of architecture-centric MDSD intro-
duced here has proved its practical value over many years and in projects of differing scope and
size, and early adopters have come to use this approach productively.

Some think the introduction of generative approaches will limit their personal freedom, or
they fear being locked in by the generator supplier. Such prejudices typically emerge due to bad
experiences with CASE approaches, or through missing or bad information. The approach itself
does not require the assignment of roles to specific people, it merely describes the tasks that
come with certain roles, such as developer and architect. The allocation of roles is the sole
responsibility of the team or project management.

Besides a suitable methodology, the availability of tools that support realization of the
required concepts is significant for the successful use of AC-MDSD. In our view, this support is
not yet optimal. Better support on the UML tool side through distributed modeling, profiling,
generator integration and OCL constraint support on the metalevel are particularly desirable.
However, there are promising attempts to provide for example debugging or traceability at the
metalevel as part of MDSD generators.

Architecture-centric MDSD is not the only MDSD variant. For example, profiles for busi-
ness-related domains focus on much narrower application domains, yet their generation poten-
tial is usually much higher (often 100%). We deal with this more comprehensive topic in the
remaining parts of this book. However, we want to point out that the tools introduced in this
chapter can also be used for this purpose, especially as they do not depend on a concrete domain.

c03.fm Page 54 Tuesday, February 28, 2006 4:29 PM

