
Generic Tools -

Specific Languages
On the Art of

Building

 Software

Development Tools

http://voelter.de

voelter@acm.org

@markusvoelter

Markus Voelter

independent/itemis

1

2

3

Tools

Extensibility

Challenges

4

5

6

GTSL

An Example

Wrap Up

1

Tools

Tools

Command - Line Tools

Tools

UI Tools

2

Tool

Extensibility

Tool Extensibility

Study Findings I

The majority of our interviewees were very successful
with MDE but all of them either built their own
modeling tools, made heavy adaptations of off-the-
shelf tools, or spent a lot of time finding ways to work
around tools. The only accounts of easy-to-use,
intuitive tools came from those who had developed
tools themselves for bespoke purposes. Indeed, this
suggests that current tools are a barrier to success
rather than an enabler.

Tool Extensibility

Study Findings II

Complexity problems are typically associated with off-
the- shelf tools. Of particular note is accidental
complexity ς which can be introduced due to poor
consideration of other categories, such as lack of
ŦƭŜȄƛōƛƭƛǘȅ ǘƻ ŀŘŀǇǘ ǘƘŜ ǘƻƻƭǎ ǘƻ ŀ ŎƻƳǇŀƴȅΩǎ ƻǿƴ
context [..]

Tool Extensibility

Study Findings III

Our interviews point to a strong need for tailoring of
some sort: either tailor the tool to the process, tailor
the process to the tool, or build your own tool that
naturally fits your own process. Based on our data, it
seems that, on balance, it is currently much easier to
do the latter.

Tool Extensibility

Command - Line Tools

New File Formats

New Processors

Tool Extensibility

Command - Line Tools

New File Formats

New Processors

Assemble Components (Pipes & Filters)

Tool Extensibility

UI Tools

Buttons

Menus

Views

Actions

Tool Extensibility

UI Tools

Buttons

Menus

Views

Actions

New Languages

New Editors

Tool Extensibility

UI Tools

Buttons

Menus

Views

Actions

New Languages

New Editors

Platform/Plugin Systems

3

Challenges

Overview

Context: embedded programming

Examples are from Embedded

Programming and use C as the

Ădata formatñ

But applies similarly to other domains

or other data formats/languages

Extensibility Examples

Physical Units: The Challenge

How do you work with
physical units in your code?

Extensibility Examples

Physical Units: The Challenge

Extensibility Examples

Physical Units: The Challenge

How do you detect this error

Extensibility Examples

Physical Units: The Challenge

How do you detect this error

Tool (to do the

checking)

Data (the units in

the code)

You need:

Extensibility Examples

Physical Units via Comments

Bad!

Extensibility Examples

Physical Units via Macros

Bad!

Extensibility Examples

Physical Units via external XML

Bad!

Extensibility Examples

Physical Units via Extension

Good!

Extensibility Examples

Physical Units via Extension

Good!

Type Checker (to do the

checking)

Program Code (the units in

the code)

You get:

Extensibility Examples

State Machines: The Challenge

How do you represent
state-based behavior in code
and support analyses?

Extensibility Examples

State Machines: The Challenge

red
red

yellow

green yellow

... the TL get green eventually?

yellow
blinking

... if the TL is turned off/on, it starts in yellow/bl.

Is it guaranteed that ...

... the TL never goes from yellow to green?

Extensibility Examples

State Machines via C idioms

Bad!

Extensibility Examples

State Machines via C idioms

Bad!

Extensibility Examples

State Machines via External Tool

Bad!

Extensibility Examples

State Machines: The Challenge

Tool (to do the

checking)

Data (Ăcleanñ state

machines)

You need:

How do you perform
anlyses on state machines?

Extensibility Examples

State Machines via Extensions

Good!

Extensibility Examples

State Machines via Extensions

Good!

Constraint Checker (to do

the checking)

Program Code (the units in

the code)

You get:

Extensibility Examples

Tracing: The Challenge

How do you add traces to
requirements anywhere in
your code, robustly?

Extensibility Examples

Tracing via Macros

Bad!

Extensibility Examples

Tracing via Macros

Tool (to create trace

reports)

Data (robust trace

annotations)

You need:

Extensibility Examples

Tracing via Language Extensions

You get the idea :-)

Extensibility Examples

Combinations

How do you combine these

(and other) extenions?

Extensibility Examples

Combinations

Extensibility Examples

Combinations

C

Extensibility Examples

Combinations

C S
ta

te
m

a
c
h

in
e

s

Extensibility Examples

Combinations

C S
ta

te
m

a
c
h

in
e

s

Tracing

Extensibility Examples

Combinations

C S
ta

te
m

a
c
h

in
e

s

TracingUnits

Extensibility Examples

Combinations (in an actual tool)

Key Takeaway Point

Tool Extension is not enough!

Key Takeaway Point

Tool Extension is not enough!

Focus on the

data first!

Key Takeaway Point

Tool Extension is not enough!

These both do not

explicitly support

extending the

Key Takeaway Point

Tool Extension is not enough!

Relatively high effort to

reimple-ment editors

and Ăsynchronizersñ

Key Takeaway Point

Tool Extension is not enough!

Focus on the

data first!

4

GTSL Generic
Tools

Specifi

c Langua

ges

Thought Process

From Data Formats To Languages

Thought Process

From Data Formats To Languages

Structure, Constraints, Semantics

Data Format

Thought Process

From Data Formats To Languages

Structure, Constraints, Semantics

+ Syntax Data Format

Language

Thought Process

From Data Formats To Languages

Languages

Thought Process

Language Engineering

Languages Language Reuse

Language

Modularization

Language

Composition

Thought Process

Language Engineering

Languages Language Reuse

Language

Modularization

Language

Composition Language Engineering

Thought Process

Language Engineering

Languages

Language Engineering

Thought Process

Language Engineering

Languages

Language Engineering

Text

Table

s

Math

Symb

ols

Graph

ics

Forms

Thought Process

Language Engineering

Languages

Language Engineering

Syntactic Diversity

Text

Table

s

Math

Symb

ols

Graph

ics

Forms

Thought Process

Language Engineering

Languages

Language Engineering

Syntactic Diversity

Thought Process

Language Workbenches

Languages

Language Engineering

Syntactic Diversity

But does this

really work?

Thought Process

Language Workbenches

Languages

Language Engineering

Syntactic Diversity

But does this

really work?
Language Workbenches

Thought Process

Language Workbenches

Languages

Language Engineering

Syntactic Diversity

Language Workbenches

Generic Tools, Specific Languages

Ingredients

Languages

Language Engineering

Syntactic Diversity

Language Workbenches

Generic Tools, Specific Languages

Ingredients

Languages

Language Engineering

Syntactic Diversity

Language Workbenches
Generic

Tools

Specific

Language

s

Generic Tools, Specific Languages

Ingredients

Languages

Language Engineering

Syntactic Diversity

Language Workbenches
Generic

Tools

Specific

Language

s

(we donót have to
reimplement editors
and synchronizers)

Generic Tools, Specific Languages

Ingredients

Languages

Language Engineering

Syntactic Diversity

Language Workbenches
Generic

Tools

Specific

Language

s

support

Language Workbenches

Typical Features

Language Workbenches

Typical Features

Language Definition,

Reuse, Extension,

Composition

Language Workbenches

Typical Features

Language Definition,

Reuse, Extension,

Composition

Mixing Notations

Language Workbenches

Typical Features

Language Definition,

Reuse, Extension,

Composition

Mixing Notations Type Systems,

Constraints,

Transformation,

Interpretation

Language Workbenches

Typical Features

Goto Definition/Find

Usages

Language Workbenches

Typical Features

Goto Definition/Find

Usages Error Markup/Quick

Fixes

Language Workbenches

Typical Features

Goto Definition/Find

Usages Error Markup/Quick

Fixes
Syntax Highlighting

Language Workbenches

Typical Features

Goto Definition/Find

Usages Error Markup/Quick

Fixes
Syntax Highlighting

Code Completion

Language Workbenches

Typical Features

Goto Definition/Find

Usages Error Markup/Quick

Fixes
Syntax Highlighting

Code Completion

Search/Replace

Language Workbenches

Typical Features

Goto Definition/Find

Usages Error Markup/Quick

Fixes
Syntax Highlighting

Code Completion

Search/Replace

Refactoring

Language Workbenches

Typical Features

Goto Definition/Find

Usages Error Markup/Quick

Fixes
Syntax Highlighting

Code Completion

Search/Replace

Refactoring

Debugging

Language Workbenches

Typical Features

Goto Definition/Find

Usages Error Markup/Quick

Fixes
Syntax Highlighting

Code Completion

Search/Replace

Refactoring

Debugging

Reporting

Language Workbenches

Typical Features

Goto Definition/Find

Usages Error Markup/Quick

Fixes
Syntax Highlighting

Code Completion

Search/Replace

Refactoring

Debugging

Reporting

Visualization

Language Workbenches

Typical Features

Goto Definition/Find

Usages Error Markup/Quick

Fixes
Syntax Highlighting

Code Completion

Search/Replace

Refactoring

Debugging

Reporting

Visualization
Version

Control

Language Workbenches

Typical Features

for any
Language!

Language Workbenches

Typical Features

Language
Workbenches are
IDE s for arbitrary
languages.

Languages / Language Extensions

Contribute Customizations

Languages / Language Extensions

Contribute Customizations

Language Definition,

Reuse, Extension,

Composition

Mixing Notations Type Systems,

Constraints,

Transformation,

Interpretation

Languages / Language Extensions

Contribute Customizations

Goto Definition/Find

Usages Error Markup/Quick

Fixes
Syntax Highlighting

Code Completion

Search/Replace

Refactoring

Debugging

Reporting

Visualization
Version

Control

Languages / Language Extensions

Additional Stuff

Buttons

Menus

Views

Actions

Tool Extensibility

Study Findings I

The majority of our interviewees were very successful
with MDE but all of them either built their own
modeling tools, made heavy adaptations of off-the-
shelf tools, or spent a lot of time finding ways to work
around tools. The only accounts of easy-to-use,
intuitive tools came from those who had developed
tools themselves for bespoke purposes. Indeed, this
suggests that current tools are a barrier to success
rather than an enabler.

Tool Extensibility

Study Findings I

The majority of our interviewees were very successful
with MDE but all of them either built their own
modeling tools, made heavy adaptations of off-the-
shelf tools, or spent a lot of time finding ways to work
around tools. The only accounts of easy-to-use,
intuitive tools came from those who had developed
tools themselves for bespoke purposes. Indeed, this
suggests that current tools are a barrier to success
rather than an enabler.

Tool Extensibility

Study Findings II

Complexity problems are typically associated with off-
the- shelf tools. Of particular note is accidental
complexity ς which can be introduced due to poor
consideration of other categories, such as lack of
ŦƭŜȄƛōƛƭƛǘȅ ǘƻ ŀŘŀǇǘ ǘƘŜ ǘƻƻƭǎ ǘƻ ŀ ŎƻƳǇŀƴȅΩǎ ƻǿƴ
context [..]

Tool Extensibility

Study Findings II

Complexity problems are typically associated with off-
the- shelf tools. Of particular note is accidental
complexity ς which can be introduced due to poor
consideration of other categories, such as lack of
flexibility to adapt the tools ǘƻ ŀ ŎƻƳǇŀƴȅΩǎ ƻǿƴ
context [..]

Language Workbenches

Typical Features

Used by the tool vendor

to

build the initial tool

(languages).

Language Workbenches

Typical Features

Used by the tool vendor

to

build the initial tool

(languages). Used by the end user to

adapt the tool (lang

extensions)!

Language Workbenches

Typical Features

Used by the tool vendor

to

build the initial tool

(languages). Used by the end user to

adapt the tool (lang

extensions)!
Extensions are first-

class!

Generic Tools, Specific Languages

Adaptability is built - in!

Extensio

ns are first-class!

Generic Tools, Specific Languages

Adaptability is built - in!

Extensio

ns are first-class!
Fundamentally different from

Todayós State- of - the - Art in Tools

5

An Example

An Example System

Language Engineering Embedded Software

Specific

Languages

An Example System

Language Engineering Embedded Software

Specific

Languages

A collection of integrated

languages for embedded software

engineering.

An Example System

Language Engineering Embedded Software

A collection of integrated

languages

Specific

Languages

for embedded software

engineering.

An Example System

Language Engineering Embedded Software

Specific

Languages

An

IDE

for

all

Of

them

