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Tool Extensibility  

Study Findings I  

The majority of our interviewees were very successful 
with MDE but all of them either built their own 
modeling tools, made heavy adaptations of off-the-
shelf tools, or spent a lot of time finding ways to work 
around tools. The only accounts of easy-to-use, 
intuitive tools came from those who had developed 
tools themselves for bespoke purposes. Indeed, this 
suggests that current tools are a barrier to success 
rather than an enabler. 



Tool Extensibility  

Study Findings II  

Complexity problems are typically associated with off-
the- shelf tools. Of particular note is accidental 
complexity ς which can be introduced due to poor 
consideration of other categories, such as lack of 
ŦƭŜȄƛōƛƭƛǘȅ ǘƻ ŀŘŀǇǘ ǘƘŜ ǘƻƻƭǎ ǘƻ ŀ ŎƻƳǇŀƴȅΩǎ ƻǿƴ 
context [..] 
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Study Findings III  

Our interviews point to a strong need for tailoring of 
some sort: either tailor the tool to the process, tailor 
the process to the tool, or build your own tool that 
naturally fits your own process. Based on our data, it 
seems that, on balance, it is currently much easier to 
do the latter.  



Tool Extensibility  

Command - Line Tools  

New File Formats 

New Processors 



Tool Extensibility  

Command - Line Tools  

New File Formats 

New Processors 

Assemble Components (Pipes & Filters)  



Tool Extensibility  

UI Tools  

Buttons 

Menus 

Views 

Actions 



Tool Extensibility  

UI Tools  

Buttons 

Menus 

Views 

Actions 

New Languages 

New Editors 



Tool Extensibility  
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Overview  

Context: embedded programming  

Examples are from Embedded 

Programming and use C as the 

Ădata formatñ 

But applies similarly to other domains 

or other data formats/languages
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Physical Units: The Challenge  

How do you work with 
physical units in your code?
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Physical Units: The Challenge  

How do you detect this error

Tool (to do the 

checking) 

Data (the units in 

the code) 

You need: 
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Physical Units via Comments  

Bad! 
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Bad! 
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Physical Units via external XML  

Bad! 
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Extensibility Examples  

Physical Units via Extension  

Good!

Type Checker (to do the 

checking) 

Program Code (the units in 

the code) 

You get: 
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State Machines: The Challenge  

How do you represent 
state-based behavior in code
and support analyses? 



Extensibility Examples  

State Machines: The Challenge  

red 
red 

yellow 

green yellow 

... the TL get green eventually? 

yellow 
blinking 

... if the TL is turned off/on, it starts in yellow/bl. 

Is it guaranteed that ... 

... the TL never goes from yellow to green?
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State Machines via C idioms  

Bad! 
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Bad! 
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State Machines via External Tool  

Bad! 
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State Machines: The Challenge  

Tool (to do the 

checking) 

Data (Ăcleanñ state 

machines) 

You need: 

How do you perform 
anlyses on state machines?
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Good!
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State Machines via Extensions  

Good!

Constraint Checker (to do 

the checking) 

Program Code (the units in 

the code) 

You get: 
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Tracing: The Challenge  

How do you add traces to
requirements anywhere in
your code, robustly? 
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Tracing via Macros  

Bad! 
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Tracing via Macros  

Tool (to create trace 

reports) 

Data (robust trace 

annotations) 

You need: 
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Tracing via Language Extensions  

You get the idea :-) 
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Combinations  

How do you combine these 

(and other) extenions? 
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Combinations  
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Combinations (in an actual tool)  





Key Takeaway Point  

Tool Extension is not enough!  



Key Takeaway Point  

Tool Extension is not enough!  

Focus on the  

data first! 



Key Takeaway Point  

Tool Extension is not enough!  

These both do not 

explicitly support 

extending the 
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Tool Extension is not enough!  

Relatively high effort to 

reimple-ment editors 

and Ăsynchronizersñ 
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Tool Extension is not enough!  
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+ Syntax Data Format  

Language  
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Languages  

Language Engineering  
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Language Workbenches  
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Ingredients  
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Language Engineering  
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Ingredients  
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Language Workbenches  

Typical Features  

Language 
Workbenches are 
IDE s for arbitrary 
languages.  
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Additional Stuff  

Buttons 

Menus 

Views 
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Study Findings I  

The majority of our interviewees were very successful 
with MDE but all of them either built their own 
modeling tools, made heavy adaptations of off-the-
shelf tools, or spent a lot of time finding ways to work 
around tools. The only accounts of easy-to-use, 
intuitive tools came from those who had developed 
tools themselves for bespoke purposes. Indeed, this 
suggests that current tools are a barrier to success 
rather than an enabler. 
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Tool Extensibility  

Study Findings II  

Complexity problems are typically associated with off-
the- shelf tools. Of particular note is accidental 
complexity ς which can be introduced due to poor 
consideration of other categories, such as lack of 
flexibility to adapt the tools ǘƻ ŀ ŎƻƳǇŀƴȅΩǎ ƻǿƴ 
context [..] 
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Typical Features  

Used by the tool vendor 

to 

build the initial tool 

(languages). Used by the end user to 

adapt the tool (lang 

extensions)! 
Extensions are first-

class! 
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Generic Tools, Specific Languages  

Adaptability is built - in!  

Extensio

ns are first-class!
Fundamentally different from  

Todayós State- of - the - Art in Tools  
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An Example System  

Language Engineering Embedded Software  

Specific 

Languages 

An 

IDE 

for 

all  

Of 

them 


