LL L il

Specific Languagssn e Art of

SETE:

Development Tools

Markus Voelter http://voelter.de

: : : voelter@acm.org
independent/itemis @markusvoelter

EREEEEE

e

IR RN NN

Tools

Tools

Command -Line Tools

Sd0O0 Terminal — top — 80x24

Z running, 3

=3 =
= o
e I e |

A.8

[N
=
= o
= T

= =
I.'_-..'-I =
e e e N N S

na L
ker

e e e e
Loy I o Y e O e O v
= = o= om
N O e O e R [9
[y O R O R S Y |

Y

Tools

Ul Tools

couriersystem - Eclipse SDK

Fle Eat Nawgete Search Project Modelng Format Run ndow el
[3° Y- “HEE € AQQQ- T- |- Q- &5 - < < =il
DMmiciL O |Br g I o :
= ki ¥ (onumnun].‘
& J| Tradurginfo jave A
a })] User jave w, Took
= SO ATSVEINT. 0N OR @ Pont Eraser

* J CustomerControler jave P

s 1] ShomentConyoler ava & Sweeper

*)] SafContoierjave /' Gestute Peny

&) Trackrginfolontoler jave

Y,
= 1B corersysten mode] Closs
& J] CorerSysiemPersstensvian . Class
& o
5 = Garwr phzabion

.)

& 3 Usage

ol - Association

g, pae —j

& (4} ORM_ShomenttetColecton. i || 9 N-ary Assocation . l
< > T Besncistien Mlives ¢

0

Da

CuatomerConsoler ove

Ny Masst o o

;'Cut-lml-(.ndvol« « Class -
T - package csuriersystex.co
- 3 ” T import AT4 ¥ n 3
Marw CustomeConty ... » b class atooerCer
Pwert controly
- View publ ins
2] =) sionkxcepzion():
Line | L
Fore [SE =5 - puk - id SV LIS CReTACCIUNS
Connextionp,., Fallow dagram O '
Transparenty o &
Show ativibal peblic ORM Céss Di3zzing 14
show aperass... throw new wppoztedd peraticonixception()s
Attrbute sort ...
Oper ation sox =
Show intsl ot . peblic =R MMAIT wh
Show oper s, .,
Visbiity styile 3
v D) vessage

IR RN NN

ToOl

Tool Extensibility

Study Findings |

The majority of our interviewees were very successful
with MDE but all of them either built their own
modeling tools, made heavy adaptations of-tifé-

shelf tools, or spent a lot of time finding ways to work
around tools. The only accounts of edsyuse,

Intuitive tools came from those who had developed
tools themselves for bespoke purposes. Indeed, this
suggests that current tools are a barrier to success
rather than an enabler.

Jon Whittle, John Hutchinson, Mark Rouncefield, Hakan Burden, and
Rogardt Heldal. Industrial Adoption of Model-Driven Engineering: Are
the Tools Really the Problem? In Proceedings of the 16th International
Conference on Model Driven Engineering Languages and Systems (MODELS)
2013. ACM, 2013.

Tool Extensibility

Study Findings Il

Complexity problems are typically associated with off
the- shelf tools. Of particular note is accidental
complexityc which can be introduced due to poor
consideration of other categories, such as lack of

i SEAOAfAGE G2 |RIFLIG GKS
context [..]

Jon Whittle, John Hutchinson, Mark Rouncefield, Hakan Burden, and
Rogardt Heldal. Industrial Adoption of Model-Driven Engineering: Are
the Tools Really the Problem? In Proceedings of the 16th International
Conference on Model Driven Engineering Languages and Systems (MODELS)
2013. ACM, 2013.

Tool Extensibility

Study Findings Il

Our interviews point to a strong need for tailoring of
some sort: either tailor the tool to the process, tailor
the process to the tool, or build your own tool that
naturally fits your own process. Based on our data, it
seems that, on balance, it is currently much easier to
do the latter.

Jon Whittle, John Hutchinson, Mark Rouncefield, Hakan Burden, and
Rogardt Heldal. Industrial Adoption of Model-Driven Engineering: Are
the Tools Really the Problem? In Proceedings of the 16th International
Conference on Model Driven Engineering Languages and Systems (MODELS)
2013. ACM, 2013.

Tool Extensibility

Command -Line Tools

e o New File Format:
New Processors

Tool Extensibility

Command -Line Tools

e o New File Format:
New Processors

Assemble Components (Pipes & Filters)

Tool Extensibllity
Ul Tools

UM Modeling

= -| ButtonsViews
Menus Actions

Tool Extensibility

Ul Tools

[CumtamrCortrobe - Cles

ButtonsViews
Menus Actions
New Languages
New Editors

Tool Extensibllity

Ul Tools

ButtonsViews
Menus Actions
New Languages
New Editors

Platform/Plugin Systems

IR RN NN

Challenges

Overview

Context: embedded programming

Examples are from Embedde
Programming and use C as tI

~Y

Adata for mat i

But applies similarly to other «
or other data formats/languac

Extensibility Examples

Physical Units: The Challenge

How do you work with
physical units In your

Extensibility Examples

Physical Units: The Challenge

// 1n file example.c

int distance
int time
int speed

10;
1,
distance / time;

Extensibility Examples

Physical Units: The Challenge

// 1n file example.c
int distance = 10;

int time = 1;
int speed = distance / time;
int speed = time / distance;

How do you detect this el

Extensibility Examples

Physical Units: The Challenge

int speed = time / distance;

How do you detect this et

Yotbnk@aldo the
checking)
Data (the units In
the code)

Extensibility Examples

Physical Units via Comments

10 /x#mx/;
1l /x#sx/,
distance / time;

Bac

int/«#mx/ distance
int/x#sx/ time
int/*#mps=*/ speed

Extensibility Examples

Physical Units via Macros

UT(1int, m) distance = UV(10, s);
UT(int, s) time = UV(1, s);
UT(int, mps) speed distance / time;

Bac

Extensibility Examples

Physical Units via external XML

<unitdeclarations>
<unit name="m" for="distance"/>
<unit name="s" for="time"/>
<unit name="mps" for="speed" calculateAs="m/s"/>
</unitdeclarations>
<programmarkup>
<globalvar file="example.c" name="distance" unit="m"/>
<globalvar file="example.c" name="time" unit="s"/>
<globalvar file="example.c" name="speed" unit="mps"/>

</programmarkup> d

Extensibility Examples

Physical Units via Extension

10 m;
1l s;
distance / time;

int/m/ distance
int/s/ time
int/mps/ speed

GOO!

Extensibility Examples

Physical Units via Extension

10 m;
1l s;
distance / time;

int/m/ distance
int/s/ time
int/mps/ speed

YolypetChecker (to do the
checking)
Program Code (the units In

the code) GOO‘

Extensibility Examples

State Machines: The Challenge

How do you represent

Sstate-based behavior |
and support analyses’

Extensibility Examples

State Machines: The Challenge

yellow red
blinking yeIIow

IS It guaranteed thal o H -]

.. the TL get green eventually?
.. If the TL Is turned off/on, it starts In

.. the TL never goes from yellow to g

Extensibility Examples

State Machines via C idioms

// a state machine that transitions into S2

// when E1 is received while the machine is in S1

void execute_StateMachine(Event_Enum evt) {

switch (currentState) {
case S1: switch (evt) {
case E1: if (guard for E1 in S1) {

// execute exit actions for S1
currentState = S2;
// execute entry actions for S2
break;

case S2:

Bac

Extensibility Examples

State Machines via C idioms

// a state machine that transitions into S2
// when E1 is received while the machine is in S1
// -1 means "do nothing".
// S1 S2 S3 ...
int[N_EVT] [N_STATE] = { { 1, -1, -1} // E1
{ -1, -1, -1} // E2

} :

Bac

Extensibility Examples

State Machines via External Tool

2

- L T —— -—— =
|3 i Testscneinge e o —————
. o—
File Edit Diagram Mavigate Search Project Run Window Help
NHBE B0 Q- HET BB B E e = (Fmwa)
’A,m .[g -]B T| A&~ gv—ov||Bivody ow | < H v 100% -
2 *heating.sct i =8
=
<% Palette [+
] - S
main region h b 4 @
[= Tools 40 @
O State
! desiredTemp = 20; < Region
heating T BeJ o9 =
) oggleCn .. —
| internal : off \ 9 > on == Transition E:
INarialbes
L var tempSetPoint : integer entry / & Choice
var desiredTemp : integer tempSetPoint = 5;
var status : integer status=0; - {oooeOnOn 0 ® Junction =
var tempDropValue : integer E|
var actualTemp : integer @ Initial State
liEvents Day _
| event toggleOnOff entry / (H) Shallow History
[event tempDrop ._> tempSetPoint = desiredTemp; .
event setup status = 1; (1) Deep History
| event increaseTemp Alarm | .
event decreazeTemp entry 7 ®© Final State
tempDrop[tempDropValue==1 . .
tempSetPoint = actuallemp / 256 - 2;| g pDropltempDrop ! ®EX|t Point
status = 10; after 10s after 10s
|| =actualTemp Night |
<+ decreaseTemp entry /
I= desiredTemp | tetn';pSethninhdesiredTemp- Tz
. status = 2;
" <rincreaseTemp L setup
4 setup feme; 2
U= status
L -
| <+tempDrop i
’
increaseTemp [desiredTemp < 50] / desiredTemp = desiredTemp + 1;
||
[desiredTemp = 10] / desiredTemp = desiredTemp - 1;
Ll ¥
A

Extensibility Examples

State Machines: The Challenge

How do you perform
anlyses on state machi

Yotbnk@aldo the
checking)
Data (Acl eart
machines)

Extensibility Examples

State Machines via Extensions

statemachine SM {
event E1
state S1 {
entry { // entry action for S1 }
on E1 [qguard for E1 in S1] -> S2
exit { // exit action for S1 }

}
state S2 {

}

Goo

Extensibility Examples

State Machines via Extensions

statemachine SM {
event E1l
state S1 {
entry { // entry action for S1 }
on E1 [guard for E1 in S1] -> S2
exit { // exit action for S1 }

}
state S2 {

7 YQdr@taint Checker (to do
} the checking)
Program Code (the units In

the code) GOO‘

Extensibility Examples

Tracing: The Challenge

How do you add trace

requirements anywhel
your code, robustly?

Extensibility Examples

Tracing via Macros

TRACE(REQ_CALIBRATION)
int calibrate(int measurement) {
return measurement x FACTOR + OFFSET:

}

int getValue() {
int raw = readFromDriver (ADC1_ADDRESS);
TRACE(REQ_CALIBRATION)
return calibrate(raw);

} Bac

Extensibility Examples

Tracing via Macros

TRACE (REQ_CALIBRATION)

int calibrate(int measurement) {
return measurement *x FACTOR + OFFSET;

}

int getvalue() {

int raw = readFromDriver(ADC1_ADDRESS):
TRACE (REQ_CALIBRATION)

return calibrate(raw);

Yotbnkgalcreate trace
reports)

Data (robust trace
annotations)

Extensibility Examples

Tracing via Language Extensions

You get the idea :-)

Extensibility Examples

Combinations

How do you combine these
(and other) extenions?

Extensibility Examples

Combinations

statemachine TrainDoorController {
event DOOR_BUTTON;
state DOORS_CLOSED {
trace REQ_BUTTON_OPENS_DOORS_ONLY_OPEN_WHEN_STOPPED
on DOOR_BUTTON [speed > O mps] -> DOORS_OPEN
}
state DOORS_OPEN {
entry { openDoors(); }
trace REQ_BUTTON_CLOSES_DOORS_WHEN_OPEN
on DOOR_BUTTON [] -> DOORS_CLOSED
exit { closeDoors(); }

Extensibility Examples

Combinations

d

statemachine TrainDoorController {
event DOOR_BUTTON;
state DOORS_CLOSED {
trace REQ_BUTTON_OPENS_DOORS_ONLY_OPEN_WHEN_STOPPED
on DOOR_BUTTON [speed > O mps] -> DOORS_OPEN
}
state DOORS_OPEN {
entry { openDoors(); }
trace REQ_BUTTON_CLOSES_DOORS_WHEN_OPEN
on DOOR_BUTTON [] -> DOORS_CLOSED
exit { closeDoors(); }

Extensibility Examples

Combinations

d

statemachine TrainDoorController {
event DOOR_BUTTON;
state DOORS_CLOSED {
trace REQ_BUTTON_OPENS_DOORS_ONLY_OPEN_WHEN_STOPPED
on DOOR_BUTTON [speed > O mps] -> DOORS_OPEN
}
state DOORS_OPEN {
entry { openDoors(); }
trace REQ_BUTTON_CLOSES_DOORS_WHEN_OPEN
on DOOR_BUTTON [] -> DOORS_CLOSED
exit { closeDoors(); }

saulyoewsaiels

Extensibility Examples

Combinations

d

saulyoewsaiels

statemachine TrainDoorController {
event DOOR_BUTTON;
state DOORS_CLOSED {
trace REQ_BUTTON_OPENS_DOORS_ONLY_OPEN_WHEN_STOPPED
on DOOR_BUTTON [speed > O mps] -> DOORS_OPEN
}

|
state DOORS_OPEN { TraCI n

entry { openDoors(); }
trace REQ_BUTTON_CLOSES_DOORS_WHEN_OPEN |
on DOOR_BUTTON [] -> DOORS_CLOSED

exit { closeDoors(); }

Extensibility Examples

Combinations

d

saulyoewsaiels

statemachine TrainDoorController {
event DOOR_BUTTON;
state DOORS_CLOSED {
trace REQ_BUTTON_OPENS_DOORS_ONLY_OPEN_WHEN_STOPPED
on DOOR_BUTTON [speed > O mps] -> DOORS_OPEN

. |
itate DOORS_OPEN { , U n |tS TraC| ﬂ

entry { openDoors();

trace REQ_BUTTON_CLOSES_DOORS_WHEN_OPEN |
on DOOR_BUTTON [] -> DOORS_CLOSED

exit { closeDoors(); }

Extensibility Examples

Combinations (in an actual tool)

[verifiable]
// | This state machine implements a way to grade flights.
It has separate states for the important flight phases,
such as @child(beforeFlight) or @child{airborne).
statemachine FlightAnalyzer initial = beforeFlight {
in next(Trackpoint* tp) <no binding>
in reset() <no binding>
out crashNotification{) =» raiseAlarm
readable var intl6 points = @
state beforeFlight {
//[Here is a comment on a transition.]
on next [tp-»alt == @ m] -» airborne
[exit { points += TAKEOFF; }]%5 implements PointsForTakeott
}
//| This represents the state in which the airplane flies.
It has several substates. Note how it uses the @top(VERY_HIGH_SPEED)
and @top(HIGH_SPEED) constants. These constants are defined in the
same module @module(StateMachines).
state airborne {
on next [tp-»alt == @ m B& tp-»speed == @ mps] =-> crashed
on next [tp-»alt == @ m B& tp-»speed » @ mps] -» landing
[on next [tp->speed > 200 mps && tp-»alt == @ m] -> airborne { points += VERY_HIGH_SPEED; }]-5> implements Fasterthanzee
[un next [tp-»speed » 188 mps && tp-»speed <= 288 mps && tp-»alt == B m] -» airborne}¢ implements FasterThanl@e
{ points += HIGH_SPEED; }
on reset [] -» beforeFlight

}

Key Takeaway Point

Tool Extension is not enough!

Key Takeaway Point

Tool Extension is not enough!

Focus on the
data first!

Key Takeaway Point

ool Extension Is not enough!

00 Terminal — top — 80x24

e A
T | — .

These both do not
explicitly support

Key Takeaway Point

Tool Extension is not enough!

Relatively high effort to
reimple-ment editors

Key Takeaway Point

Tool Extension is not enough!

Focus on the
data first!

IR RN NN

RS TSIERSE

Thought Process

From Data Formats To Languages

Thought Process

From Data Formats To Languages

Structure, Constraints, Seme

Data Format

Thought Process

From Data Formats To Languages

Structure, Constraints, Seme
Data Format + Syntax

Language

Thought Process

From Data Formats To Languages

Thought Process

Language Engineering

Language Reljrs
Language
Modularization
Language
Composition

Thought Process

Language Engineering

Language Reljrs
Language
Modularization
Language

Gayade ogiHon

Thought Process

Language Engineering

Language Engineering

Thought Process

Language Engineering

Language Engineering

Text Math Graph
TableSymb ics
S ols Forms

Thought Process

Language Engineering

Language Engineering

Text Math Graph
TableSymb ics
S ols Forms

Syntactic Diversity

Thought Process

Language Engineering

Language Engineering

Syntactic Diversity

Thought Process

Language Workbenches

Language Engineering

But does this

really work?

Thought Process

Language Workbenches

Language Engineering

But does this

2

Language Workbenches

Thought Process

Language Workbenches

Language Engineering

Syntactic Diversity

Language Workbenches

Generic Tools, Specific Languages

Ingredients ﬁ

Language Engineering

Syntactic Diversity

Language Workbenches

Generic Tools, Specific Languages

Ingredients ﬁ
Specific

| an guage Language Engineering

S Syntactic Diversity

| Language Workbenches

Generic
Tools

Generic Tools, Specific Languages

Ingredients ﬁ
Specific

| an guage Language Engineering

S Syntactic Diversity

Generic |
Tools

Language Workbenches
(wWe donot |

reimplement editors
and synchronizers)

Generic Tools, Specific Languages

Ingredients ﬁ
Specific

| an guage Language Engineering

c
support f

| Language Workbenches

Generic
Tools

Language Workbenches

Typical Features

Language Workbenches

Typical Features

Language Definition,
Reuse, Extension,
Composition

Language Workbenches

Typical Features

Language Definition,
Reuse, Extension,
Composition

Mixing Notations

Language Workbenches

Typical Features

Language Definition,
Reuse, Extension,
Composition

WS NQREFHENS
Constraints,

Transformation,
Interpretation

Language Workbenches

Typical Features

Goto Definition/Find
Usages

Language Workbenches

Typical Features

Goto Definition/Find
Beagddarkup/Quick
Fixes

Language Workbenches

Typical Features

Goto Definition/Find
Beagddarkup/Quick

EUi§3ix Highlighting

Language Workbenches

Typical Features

Goto Definition/Find
Beagddarkup/Quick
EUi§3ix Highlighting
Code Completion

Language Workbenches

Typical Features

Goto Definition/Find
Beagddarkup/Quick
EUi§3ix Highlighting
Code Completion
Search/Replace

Language Workbenches

Typical Features

Goto Definition/Find
Beagddarkup/Quick
EUi§3ix Highlighting
Code Completion
Search/Replace

Refactoring

Language Workbenches

Typical Features

Goto Definition/Find
Beagddarkup/Quick
EUi§3ix Highlighting
Code Completion
Search/Replace
Refactoring

Debugging

Language Workbenches

Typical Features

Goto Definition/Find
Beagddarkup/Quick
EUi§3ix Highlighting
Code Completion
Search/Replac&eporting
Refactoring

Debugging

Language Workbenches

Typical Features

Goto Definition/Find
Beagddarkup/Quick
EUi§3ix Highlighting
Code Completion
Search/Replac&eporting
RefactoringVisualization

Debugging

Language Workbenches

Typical Features

Goto Definition/Find
Beagddarkup/Quick
EUi§3ix Highlighting
Code Completion
Search/Replac&eporting
RefactoringVisualjzation

Debugging ers1of

CAnntrnl

Language Workbenches

Typical Features

for any
Language!

Language Workbenches

Typical Features

Language
Workbenches are
IDE s for arbitrary
languages.

Languages / Language Extensions

Contribute Customizations

Languages / Language Extensions

Contribute Customizations

‘I

)

5
h]
-

(

=

Language Definition,
Reuse, Extension,
Composition

HE SNRERHENS
Constraints,

Transformation,
Internretation

Languages / Language Extensions

Contribute Customizations

%
_%-

Find
JEdJE' QUiCk

E%etsax Highlighting

Code Completion

Reporting
RefactoringVisualization
Debugging

Languages / Language Extensions

Additional Stuff

2
=

ButtonsViews
Menus Actions

=

Tool Extensibility

Study Findings |

The majority of our interviewees were very successful
with MDE but all of them either built their own
modeling tools, made heavy adaptations of-tifé-

shelf tools, or spent a lot of time finding ways to work
around tools. The only accounts of edsyuse,

Intuitive tools came from those who had developed
tools themselves for bespoke purposes. Indeed, this
suggests that current tools are a barrier to success
rather than an enabler.

Jon Whittle, John Hutchinson, Mark Rouncefield, Hakan Burden, and
Rogardt Heldal. Industrial Adoption of Model-Driven Engineering: Are
the Tools Really the Problem? In Proceedings of the 16th International
Conference on Model Driven Engineering Languages and Systems (MODELS)
2013. ACM, 2013.

Tool Extensibility

Study Findings |

The majority of our interviewees were very successful
with MDE but all of them eithepuilt their own

modeling toolsmade heavy adaptationsf off-the-

shelf tools, or spent a lot of time finding ways to work
around tools. The only accounts of edsyuse,

Intuitive tools came from those who had developed
tools themselves for bespoke purposes. Indeed, this
suggests that current tools are a barrier to success
rather than an enabler.

Jon Whittle, John Hutchinson, Mark Rouncefield, Hakan Burden, and
Rogardt Heldal. Industrial Adoption of Model-Driven Engineering: Are
the Tools Really the Problem? In Proceedings of the 16th International
Conference on Model Driven Engineering Languages and Systems (MODELS)
2013. ACM, 2013.

Tool Extensibility

Study Findings Il

Complexity problems are typically associated with off
the- shelf tools. Of particular note is accidental
complexityc which can be introduced due to poor
consideration of other categories, such as lack of
FTEtSEAOATAGE (2 | RIFLWG GKS
context |[..]

Jon Whittle, John Hutchinson, Mark Rouncefield, Hakan Burden, and
Rogardt Heldal. Industrial Adoption of Model-Driven Engineering: Are
the Tools Really the Problem? In Proceedings of the 16th International
Conference on Model Driven Engineering Languages and Systems (MODELS)
2013. ACM, 2013.

Tool Extensibility

Study Findings Il

Complexity problems are typically associated with off
the- shelf tools. Of particular note eccidental
complexity¢ which can be introduced due to poor
consideration of other categories, suchlask of
flexibility to adapt the tools1 2 O2 Y LI y & Q
context |[..]

Jon Whittle, John Hutchinson, Mark Rouncefield, Hakan Burden, and
Rogardt Heldal. Industrial Adoption of Model-Driven Engineering: Are
the Tools Really the Problem? In Proceedings of the 16th International
Conference on Model Driven Engineering Languages and Systems (MODELS)
2013. ACM, 2013.

Language Workbenches

Typical Features

Used by the tool vendor
to

build the initial tool
(languages).

Language Workbenches

Typical Features

Used by the tool vendor
to
build the initial tool

Useduangdsd.end user to

adapt the tool (lang
extensions)!

Language Workbenches

Typical Features

Used by the tool vendor
to
build the initial tool

Vaedungdsd.end user to

adapt the tool (lang

BN N arefirst—

class!

Adaptability is built

Extenélo

NS 4r3t-clas

Generic Tools, Specific Languages

Adaptability is built -1n!

Extensio

NS 4r3t-clas

Fundamentally different from
Today 6s -8ft-thet-Artin Tools

IR RN NN

5

An Example

An Example System

Language Engineering Embedded Software

pu
mbedar

An Example System

Language Engineering Embedded Software

A collection of integrated
f8ﬁ§ ded software

engineering.

An Example System

Language Engineering Embedded Software

A collection of Integrate

ah§

==

User
Extensions

Default
Extensions

Backend
Tool

ded software

Test Decision E E Glossaries Use Cases &
Support | Tables ' : Scenarios
Compo- | Physical State State Machine | Decision

nents Units Machines Verification Tables Contracts

C core Model SMT Dataflow Visual- PLE Documen- | Reguirements &
Checking Solving Analysis ization | Variability tation Tracing
JetBrains MPS
G Compiler, NuSMV Yices CBMC PlantUML

Debugger and Importer

Implemeantation Concern

Analysis Concern

Process Concern

An Example System

Language Engineering Embedded Software

An
IDE
for
all
Of
them

