Supporting

Diverse Notations
In MPS’ Projectional Editor

Markus Volter and Sascha Lisson

with Bernd Kolb, Domenik Pavletic, Kolja Dumman,
Tamas Szabo, Niko Stotz, Dan Ratiu, Zaur Molotnikov,

voelter@acm.org

Noelter {mgmembiot /it

@markusvoelter

1%

Languages, Notations

Models, Programs

__ moreinGPLs __|moreinDSL

Domain Size

Designed by

Language Size

Turing-completeness

User Community

In-language abstraction

Lifespan

Evolution

Incompatible Changes

large and complex

guru or committee

large

almost always

large, anonymous and
widespread
sophisticated

years to decades

slow, often standardized

almost impossible

smaller and well-defined

a few engineers and domain
experts

small

often not

small, accessible and local
limited

months to years (driven by
context)

fast-paced

feasible

General Purpose

Components Domain

Specific

State Machines

Sensor Access

LEGO Robot
Control

Model or Code?

Trackpoint* makeTP(uintl6e alt, intl6 speed) {
static 1nt8 trackpointCounter = 0;
trackpointCounter++;
Trackpoint* tp = ((Trackpoint#) malloc(sizeof Trackpoint));
tp-=1d = trackpointCounter;
tp-=timestamp = trackpointCounter;
tp-=alt = alt
tp->speed = speed
return tp;

Model or Code?
‘—{ beforeFlight [crashed }

reset
next [alt > 0] j | next [alt == 0 && speed == 0]

?
o

next [alt == 0 && speed > 0]

airborne

\ 4

[landing } { landed }
\ next [alt == 0 && speed == 0] /

Model or Code?

statemachine HierarchicalFlightAnalyzer initial = beforeFlight {
in next()
in reset()
out crashNotification() -= raiseAlarm
state beforeFlight {
on next [tp-=alt = 0 m] -= airborne
}
composite state airborne initial = flying {
on reset [] -> beforeFlight
on next [tp-=alt == 0 m && tp->speed == 0 mps] -> crashed
state flying {
on next [tp-=alt == 0 m && tp->speed = 0 mps] -= landing
on next [tp->speed = 200 mps] -> airborne
on next [tp->speed = 100 mps] -> airborne
}
state landing {
on next [tp->speed == 0 mps] -> landed
on next [] - landing
t
state landed {
+
}

state crashed {

}

Model or Code?

statemachine HierarchicalFlightAnalyzer initial = beforeFlight {
in next(Trackpoint* tp)
in reset()
out crashNotification() -= raiseAlarm
readable var intlé points = 0
state beforeFlight {
on next [tp-=alt = 0 m] -= airborne
exit { points += TAKEOFF; }
}
composite state airborne initial = flying {
on reset [| -> beforeFlight { points = 0; }
on next [tp-=alt == 0 m && tp->speed == 0 mps] -=> crashed
state flying {
on next [tp-=alt == 0 m && tp->speed = 0 mps] -> landing
on next [tp-=>speed = 200 mps] -= airborne { points += VERY_HIGH SPEED; }
on next [tp-=speed = 100 mps] -= airborne { points += HIGH SPEED; }

t

state landing {
on next [tp->speed == 0 mps] -> landed
on next [] - landing { points--; }

}

state landed {
entry { points += LANDING; }
}

}
state crashed {

entry { send crashNotification(); }
+
}

Model or Code?

Does it really matter?
What is the difference?
Who cares?

GEMOC 2014 “

To cope with complexity, modern
software-intensive systems are often split in
different concerns, which serve diverse
stakeholder groups and thus must address a
variety of stakeholder concerns. These different
concerns are often associated with specialized
description languages and technologies, which

are based on concern-specific problems and
solution concepts.

GEMOC 2014

different concerns
stakeholder concerns

specialized description languages
concern-specific solution concepts.

GEMOC 2014 “

different concerns
stakeholder concerns

specialized description languages

, , concern-specific notaﬁons,

[Diverse Notations]

Regular Code/Text

Graphical

L

[Diverse Notations]

Regular Code/Text Mathematical
2
]
]
[l
Tables Graphical

L

[Diverse Notations]

Regular Code/Text Mathematical

1 E—]
I D

[l

Tables Graphical

o=

[Diverse Notations]

2%

m
bedd
r

pu
»mbeddr

An extensible set of integrated languages
for embedded software engineering.

Us .
to be defined by users
Extensions
Default
Extensions
Core c99 Model SMT Dataflow Visual- PLE Documen- | Requirements & Reports &
Checking Solving Analysis ization | Variability tation Tracing Assessments
Platform JetBrains MPS
Backend C Compiler, NuSMV Yices CBMC PlantUML | LaTeX
Tool Debugger and Importer
: Implementation Concern : Analysis Concern : Process Concern

,, Specific Languages “

A

5 Ul

mbed

8006 || StateMachines - tutorial - [~/Documents/mbeddr/mbeddr.core/code/applications/tutorial] e’
OO ¢ XD ¢ 4 M moeddrtutorial v P @& § P 7
O stateMachines J Q stateMachines \
#constant TAKEOFF = 109; [SIRpIeRentsIPOIntSEoRTaReort] #constant TAKEOFF = 100; [SIRpIeRentsiPOIntSEoRTaReort
#constant HIGH_SPEED = 10; [SIiRplenentsrastenthanioal #constant HIGH_SPEED = 10; [BIiSpienents Fasterthanioa|
#constant VERY_HIGH_SPEED = 20; BliRplenentsirastenthanzon) #constant VERY_HIGH_SPEED = 20; BliRpienentsirastenthanson)
#constant LANDING = 1090; SIiRplesentsiculistop! #constant LANDING = 100; SIiRplenentsirulistopl
[verifiable] ~ [verifiable] -
exported statemachine FlightAnalyzer initial = beforefFlight { g exported statemachine FlightAnalyzer initial = beforeFlight
in event next(Trackpoint* tp) <no binding> next(Trackpoint* tp)
in event reset() <no binding> beforeFlight //[Here is a comment on a transition.]
out event crashNotification() => raiseAlarm [tp->alt == @ m] -> airborne
readable var int16 points = @ { airborne [tp->alt == @ m & tp->speed == @] -> crashe
state beforeFlight { [tp->alt == @ m && tp->speed > @ mps] -> lan
//[Here is a comment on a transition.] [tp->speed > 200 mps && tp-»>alt == @ m] ->
on next [tp->alt == @ m] -> airborne [tp->speed > 100 mps && tp->speed <= 20 mp
exit { points += TAKEOFF; } ISNRpIenents PoIntsrorTaReors! tp->alt == @ m] -> airborne
b } L'E‘fg:typeinllsltm/s] is not comparable with (uint8 || intS)] landing [tp->speed == wps] -> landed
state airbo { \/ [tp->speed > @ mps] -> landing -> implements sh« _
[s on next [tp->alt == @ m &&,39;3Epeed|== 9] -> crashed landed
on next [tp->alt == 8 m && tp->h alt ApataStructures.Trackpoint.alt (Member)

on next [tp->speed > 200 mps &

o id
on next [tp->speed > 109 mps & . speed
on reset [] -> beforeFlight + time

} n X
state landing { 0y

m crashNotification ~StateMachines.FlightAnalyzer.crashNotification (OutEvent)

ADataStructures.Trackpoint.id (Member)
~pataStructures.Trackpoint.speed (Member)
ADataStructures.Trackpoint.time (Member)
ADataStructures.Trackpoint.x (Member)ilyzer initial =
ADataStructures.Trackpoint.y (Member)

on next [tp->speed == @ mps] -> landed
on next [tp->speed > @ mps] -> landing { points--; } SRS

| [tp->alt > @
composite state airborne initial = flying { | [onTheGround

mheddr fortiss it

BEm
M Bundesministerium
7| % fiir Bildung
" und Forschung

BMW CarlIT

Research Project 2011 - 2013

Open Source @ eclipse.org
Eclipse Public License 1.0 3 =
http://mbeddr.com

: : 1t
Commercial Use and Extension SIEMENS

Research Platform

3%

J
e
tB
CIhE
\
p
S

|

Meta Programming System 3.1

JetBRAINS

Open Source
Apache 2.0
http://jetbrains.com/mps

[Language Workbench]

Jenerates to

—>

> Language (@

extends 0..”

Con- Scopes, Usage Restrictions,
straints Property Value Limitations

Concepts, Properties, —
—»{ Structure Inheritance, Relationships « a
a |=>
f provides editors for %’ =
L)
@
. Projection Rules, Side A
» Editor Transformations, Intentions § §
o I3
s |2
3
5 Type Typing Rules, Type 2 3
System Checks, Other Validatons o S
> |9
)
1> Transfor- Reduction Rules, Weaving [~ spaciies
mations Rules, Transformation Prios <priority 0..*

+ Refactorings, Find Usages, Syntax Coloring, Debugging, ...

‘ VI
Meta Programming System 3.1

JetBRAINS

Projectional Editing

[Projectional Editing]

Parsing Projectional Editing

) @@ M &
Voo 1

Concrete Syntax Concrete Syntax
l i T
Abstract Abstract

Syntax Tree Syntax Tree

[Projectional Editing]
Language Composition

T

—

Separate Files

Type System
Transformation
Constraints

In One File

Type System
Transformation
Constraints
Syntax

IDE

[Projectional Editing]
Language Composition

=] —

Separate Files In One File
Type System Type System
Transformation Transformation
Constraints Constraints
Syntax
IDE
50+ extensions to C
rnl'\ ar

PRESUIUE 10+ extensions to requirements lang.

[Projectional Editing]
Syntactic Flexibility

Regular Code/Text Mathematical

1 E—]
I D

[l

Tables Graphical

o=

[Projectional Editing]
Syntactic Flexibility

Regular Code/Text Mathematical
//[A documentation comment with references double midnight2(int32 a, int32 b, int32 c) {
[to @arg(data) and @arg(datalen)] b) 4 '
void aSummingFunction(int8[] data, int8 datalen) { o b™ - 2 a*c
int16 sum; return i=1 ;
for (int8 i = @9; i < datalen; i++) { 2*a
sum += data[i]; }
}
}
Tables Graphical
int16 decide(int8 spd, int8 alt) {
return spd > @ spd > 100 otherwise 0; cust 1’
alt <0 |1 1
alt == @ |10 20
alt >0 |30 40 Contract — -
alt > 100| 50 60 starts: date 7 -
} ends: r attributes

Thank you!

voelter@acm.org

Noelter (gt /it

@markusvoelter

