
Domain-Specific Languages

voelter.de
voelter@acm.org
@markusvoelter

Dr. Markus Völter

Introduction to

Me :-)

voelter.de
voelter@acm.org
@markusvoelter

Dr. Markus Völter

• Data Transformation, Diffing, Migration
• Laser machining programming, hardware

description, capability mapping
• Wage and tax calculation
• Realtime data processing in medical systems
• Code pattern detection and transformation
• Clinical trial protocols, plus testing
• Document description and diffing
• Data processing in Big Science
• Tax calculation
• Data modeling and validation
• User interface modeling
• An embeddable functional programming

language (KernelF)
• Treatments in digital therapeutics
• Social insurance
• Insurance product modeling
• Functional architecture in automotive systems
• Variability modeling

DSL Design and Implementation
Domain Analysis
Software Architecture
Mitdenker

Consulting, Development,
Speaking, Writing

Dipl. Ing. Technical Physics
PhD Computer Science

voelter.de/

Introduction to

Subject matter experts, or SMEs, own the
knowledge and expertise that is the backbone
of software.

But too often this rich expertise is not captured
in a structured way and gets lost when
translating it for software developers who then
analyze, interpret and understand it before
writing code.

With the rate of change increasing, time-to-
market shortening and product variability
blooming, this approach is increasingly
untenable. It causes delays, quality problems
and frustration for everybody involved.

We advocate for adopting a mindset that puts
subject SMEs directly in control of "their" part of
the software and lets developers focus on their
core skill, software engineering.

Here is how we achieve it:

DSLs for SMEs

Automate DSL to
code transformation

Let devs build DSLs,
IDEs, trafos and
robust platforms

Here is how we achieve it:

DSLs for SMEs

Automate DSL to
code transformation

Let devs build DSLs,
IDEs, trafos and
robust platforms

SUBJECT
MATTER
FIRST!

Tax, Healthcare, Systems Engineering
Examples

Tax Calculation

https://youtu.be/q56wzLQkEho
Video von der OOP 2021

Iterate over lists, count, sum
Monthly and yearly data structures
Time series and operations on them (Kf TT)
Queries in order to construct derived data
Data tables for parameter sets

+

10,000 fields and formulas
1,000 validation rules
100 SMEs
10 years back
significant yearly changesStructure oriented

along the legal text

Salary Calculation
http://voelter.de/data/pub/PayrollDSL.pdf

Buchkapitel Case Study

Percent Types

Currenty Types

Decision Tables

Digital Therapeutics
http://voelter.de/data/pub/M

PS-in-Safety-1.0.pdf
Paper im

 SoSym
 Journal

dozens of treatmets
apps per year

Social Insurance

Mix between form style and
„real“ language.

Social Insurance

Mix between form style and
„real“ language.

Yellow parts are scaffolding
and cannot be removed.

CRC++

CRC++

Big Picture: How does knowledge get into software

Useful for the following Domains

Large and
complicated

subject matter

Experts that
understand the
subject matter

High rate of change
within the domain

Long-lived domain
or large variety
within domain

Insurance [Product Definition]

Healthcare [Treatment algorithms]

Public Administration [Tax, Public Benefits]

Law and Legal [Contract Modeling]

A CAD program for the knowledge worker
A compiler for requirements

Tachographs

Testing

Direct Execution
in the MPS IDE

Intuitive capture of relevant
data constellations and test expectations

Automatic derivation
of test structure

from calculation schema

Automated coverage measurement
for models and languages

+
Testing

Tracing in the IDE
Overlay of values

over the calcualtion
schema

Testing

Workflows
Teams, Generation and DevOps

Subject Matter Workflow
Specification and test
of calculation rules

Technical Workflow

Collaboration
based on well-defined
and executable artifacts

De
sc

rib
e

Te
st

Re
vi

ew

Un
te

rs
ta

nd

Efficient and high-quality
implementations for data center
and on-premise apps

Models IDE
Languages

Generators
Interpreters

Tests

13.03.23Seite 61DevOps Perspective

Architecture
How to integrate DSL runtimes

13.03.23Seite 64Runtime vs. Rest of the System

Quality
Why DSLs help with software quality

Direct “programming“ by SMEs avoids misunderstandings

Higher Level of Abstraction avoids low-level errors
x x

 x x
 x x

 x
x x

 x x
 x x

 x
x x

 x x
 x x

 x

Abstraction and Notation helps with Reviews

Simulators allow SMEs to “play“ with stuff

SM-level analyses are much easier to build

Pre- and postconditions of function-like things are always met.

For all possible program executions, a dangerous state never occurs.

There’s a resource contention betw. resources X and Y in scenario Z.

Not all security risks have been discharged through a mitigation.

There are tax values declared as public, but they are never used.

The fault X is propagated from A to B but B does not handle it.

In your decision tree, the following alternative is not handled.

The attack scenario X is classified HIGH RISK, but there‘s no mitigation.

You cannot add a temporal value and a scalar value.

Devs freed from SM details can focus on platforms
Automatic translations capture idioms and patterns

Separation of SM and technology avoids legacy problem

Subject
Matter

Technical
Stuff

Software

informal

„programming“

formal
the only thing that survives

and is maintained and evolved

Subject
Matter

Technical
Stuff

Software

so what do you do when you want to
run that subject with new technology?

unscram
ble?

Separation of SM and technology avoids legacy problem

Subject
Matter

Technical
Stuff

Software

informal

„programming“

formal
the only thing that survives

and is maintained and evolved

Subject
Matter

Technical
Stuff

Software

so what do you do when you want to
run that subject with new technology?

Subject
Matter

Technical
Stuff

Software

formal

formal +
automated

disposable

these now survive and are
maintained and evolved

Language?
When is something a language?

When is something a language?

Glossary

When is something a language?

Glossary

Structured Glossary

When is something a language?

Glossary

Structured Glossary

Metamodel

When is something a language?

Glossary

Structured Glossary

Metamodel

Validations if
the X contains a Y

then
this A over there cannot have
more than 2 children of type B.

When is something a language?

Glossary

Structured Glossary

Metamodel

Validations

Serialisation Format

When is something a language?

Glossary

Structured Glossary

Metamodel

Validations

Serialisation Format

Syntax

When is something a language?

Glossary

Structured Glossary

Metamodel

Validations

Serialisation Format

Syntax

Type System

+(int, int) → int
+(int, real) → real
+(real, int) → real
+(real, real) → real
+(string, *) → string
+(*, string) → string

val(<name>, <type>, <init>) → typeof(type)
typeof(type) > typeof(init)

When is something a language?

Glossary

Structured Glossary

Metamodel

Validations

Serialisation Format

Syntax

Type System

Semantics

When is something a language?

Glossary

Structured Glossary

Metamodel

Validations

Serialisation Format

Syntax

Type System

Semantics

Too informal.

When is something a language?

Glossary

Structured Glossary

Metamodel

Validations

Serialisation Format

Syntax

Type System

Semantics

Too informal.

When is something a language?

Glossary

Structured Glossary

Metamodel

Validations

Serialisation Format

Syntax

Type System

That’s just a data model.
Or a domain model.
Or an OO structure.
Or a schema.

Semantics

When is something a language?

Glossary

Structured Glossary

Metamodel

Validations

Serialisation Format

Syntax

Type System

That’s just a data model.
Or a domain model.
Or an OO structure.
Or a schema.

With Validations.

Semantics

Totally useful,
just not a DSL

When is something a language?

Glossary

Structured Glossary

Metamodel

Validations

Serialisation Format

Syntax

Type System

Semantics

That’s just a data model.
Or a domain model.
Or an OO structure.
Or a schema.

With Validations.
And a way to store.

Totally useful,
just not a DSL

When is something a language?

Glossary

Structured Glossary

Metamodel

Validations

Serialisation Format

Syntax

Type System

Semantics

Finally, a language!

It‘s about syntax, stupid!

When is something a language?

Glossary

Structured Glossary

Metamodel

Validations

Serialisation Format

Syntax

Type System

Semantics

A serious language :-)

https://medium.com/@markusvoelter/when-is-something-a-
domain-specific-language-83b7eff79ed4

Find more details at:

What about frameworks and libraries?

Glossary

Structured Glossary

Metamodel

Validations

Serialisation Format

Syntax

Type System

Semantics

Only what the programming language supports.

Only those that relate to the language, not the domain.

Interpreters are simple, generators are hard

What about internal DSLs?

The DSL is defined with the means of the host language.
as opposed to using external, specialised language definition tools.

not whether the DSL code and GPL code
are syntactically mixed or not.

What about internal DSLs?

Glossary

Structured Glossary

Metamodel

Validations

Serialisation Format

Syntax

Type System

Semantics

Depending on the language. Often just trees w/o parens.
or “exploits” of syntactic freedom. Metaprogramming.

Often none in dynamically typed langs, some of it in Scala.

Interpreters are simple, generators are hard

val myHtml = html {
table {

th {
td { /* .. */ }
td { /* .. */ }

}
for (i in 1..10) {

tr {
td { /* .. */ }
td { /* .. */ }

} } } } Kotlin

"20.seconds ++ 1.minutes" should "be equal to 80.seconds" in {
20.seconds ++ 1.minutes shouldBe 80.seconds

} Scala

Ruby

Meta
How to build the languages, IDE and generators

(Software)
Product

End Users
Tax Advisors

Patients
Regular Folks

End User LevelSoftware Dev Level
Subject
Matter
Experts

Doctors
Tax Experts

Meteorologists

Code
GenerationPlatformSoftware

Engineers

Subject Matter

SME Tool

Big Picture: How does knowledge get into software

Software
(Language)
Engineers

Subject
Matter

Gurus :-)
Domain

Expertise

Meta meta
Level

Language
Workkbench

Builders

Domain Level

Tool Development

Language Workbenches

Tools for building
languages

and their IDEs

Language Workbench

Open Source Language Workbench from

Projectional Editor that supports
a wide variety of notations

Robust support for language
modularity and composition

Support for all relevant language aspects:
Structure • Editor • Type System • Constraints • Intentions
Refactorings • Interpretation • Code Generation
Code Completion • Find References • Goto Definition
Version Control • Diff/Merge ...

Really not your Daddy‘s Parser Generator!

Language Workbench

Language Workbench – the future

Language Workbench – the future

Language Workbench – the future

Language Workbench – the future

Language Workbench – the future

The LIonWeb initiative aims to facilitate the
community-based development of language
engineering and modeling tools on the web.
1. Protocols for communication between

participating software components
2. Meta-meta model as well as a reference

architecture
3. APIs to access models and metamodels and

to encapsulate the protocols
4. Hub for the developers of such components

and to empower other software developers
to develop web-based modeling solutions.

Roll your own – what do you need?

https://medium.com/@markusvoelter/the-minimum-
infrastructure-for-running-languages-and-models-da922aa3b4b4

Find more details at:

• represent models in memory,
• persist them somehow using a metamodel-specific serialization

format (not a syntax, see my last post),
• provide an API to read, traverse and modify models,
• and to support a a rudimentary but generic way of editing them.

A robust M
3

M
odel
API

M
eta

M
odel

Def

} Store
Query

Notification

Language Design

Growing a DSL on top of KernelF

n Robust existing language and interpreter
n Initial "Demoware" very quick
n Good foundation for wow-features (Tables, Visualization)
n „Trap door“ for complex exceptions
n Step-wise DSL-ification

Functional
KernelF

Primitive Types and Literals • Basic Operators • Conditionals • Decision Tables and Trees •
Lists • Records • Dates • Temporale Types • Functions • Constants • Test Cases •
Interpreter • Coverage Analyzer • etc.

https://github.com/IETS3/iets3.opensource
https://build.mbeddr.com/overview.html

Functional
KernelF

Domain-specific Abstractions
Declarative

KernelF concepts
you don‘t need

Additions
Replacements
(Declarative)

Growing a DSL on top of KernelF

Functional
KernelF

Growing a DSL on top of KernelF

Language Architecture and Sizes

Domain Analysis

(Software)
Product

End Users
Tax Advisors

Patients
Regular Folks

End User LevelSoftware Dev Level
Subject
Matter
Experts

Doctors
Tax Experts

Meteorologists

Code
GenerationPlatformSoftware

Engineers

Subject Matter

SME Tool

Big Picture: How does knowledge get into software

Software
(Language)
Engineers

Tool Development

Meta meta
Level

Language
Workkbench

Builders

Domain Level
Subject
Matter

Gurus :-)
Domain

Expertise

(Software)
Product

End Users
Tax Advisors

Patients
Regular Folks

End User LevelSoftware Dev Level
Subject
Matter
Experts

Doctors
Tax Experts

Meteorologists

Code
GenerationPlatformSoftware

Engineers

Subject Matter

SME Tool

Big Picture: How does knowledge get into software

Software
(Language)
Engineers

Tool Development

Subject
Matter

Gurus :-)
Domain

Expertise

Meta meta
Level

Language
Workkbench

Builders

Domain Level
Subject
Matter

Gurus :-)
Domain

Expertise?

(Software)
Product

End Users
Tax Advisors

Patients
Regular Folks

End User LevelSoftware Dev Level
Subject
Matter
Experts

Doctors
Tax Experts

Meteorologists

Code
GenerationPlatformSoftware

Engineers

Subject Matter

SME Tool

Big Picture: How does knowledge get into software

Software
(Language)
Engineers

Tool Development

Subject
Matter

Gurus :-)
Domain

Expertise

Meta meta
Level

Language
Workkbench

Builders

Domain Level
Subject
Matter

Gurus :-)
Domain

Expertise?

People are key

High-Level Process

Written Material
Hidden Languages
Consistent Terminology
Working Sessions
Active Listening
Consistency vs. Change
Dealing with Uncertainty
Capture Results

High-Level Process

Time to Think!
Removing Cruft
Abstraction
Test Support
Domain Crosscuts
Ups and Downs

High-Level Process

Domain Specification
Domain Implementation
Let Users Play
Analyse Usage
Dealing with Feedback
Great Demos
Writing

Wrap Up

MPS
http://jetbrains.com/mps

KernelF
https://github.com/IETS3/iets3.opensource

Artikel: Why DSLs? A collection of anecdotes
https://www.infoq.com/articles/why-dsl-collection-anecdotes

Paper: Fusing Modeling and Programming into Language-Oriented Programming
http://voelter.de/data/pub/markusvoelter-ISOLA2018-final.pdf

Paper: The Design, Evolution and Use of KernelF
http://voelter.de/data/pub/kernelf-icmt.pdf

Video/Presentation: Build your own Language: Why & How?
https://www.youtube.com/watch?v=9BvpBLzzprA

Video/Presentation: Language-oriented Business Applications
https://voelter.de/data/presentations/voelter-splash-i-LOBA.pdf

Things to read and watch

Dr. Markus VölterUse DSLs to allow SMEs to contribute directly.

Direct SME input and easier validation will improve SM quality.

Software engineers build languages, IDEs, platforms and trafos.

Translate DSL models to code on top of platforms.

Platforms + Transformations will reduce/avoid low-level errors.

Maintain these artifacts instead of the final software product.

Use language workbenches like MPS or Xtext for meta tooling.

Enjoy work (more) :-)

Things to remember

