Efficient Development of

Consistent Projectional Editors
using

Grammar Cells

Markus Volter, Tamas Szabd, Sascha Lisson,
Bernd Kolb, Sebastian Erdweg, Thorsten Berger

Voelter (et /it

rrrrrr

1

Why Projectional
Editors

[Projectional Editing]

Parsing Projectional Editing

) @ M &
Voo 1

Concrete Syntax Concrete Syntax
l i T
Abstract Abstract

Syntax Tree Syntax Tree

[Projectional Editing]
Syntactic Flexibility

Regular Code/Text Mathematical
1 _-

I D

[l
Tables Graphical

D | e

[N
|]
L]

]

[Projectional Editing]
Syntactic Flexibility

Regular Code/Text Mathematical
//] A documentation comment with references double midnight2(int32 a, int32 b, int32 c) {
[to @arg(data) and @arg(datalLen)]) 4 '
void aSummingFunction(int8[] data, int8 datalLen) { b+ b™ - 2 a*c
int16 sum; return i=1 ;
for (int8 i = @; i < datalLen; i++) { I
sum += data[i]; }
}
}
Tables Graphical
int16 decide(int8 spd, int8 alt) {
return spd > @ spd > 100 otherwise 0; W
alt <@ |1 1
alt == 0 |10 20
alt >0 |30 40 Contract =
alt > 100|50 60 starts: date > -
} . dat trf 1 |attributes

[Projectional Editing]
Language Composition

T

—

Separate Files

Type System
Transformation
Constraints

In One File

Type System
Transformation
Constraints
Syntax

IDE

[Projectional Editing]
Language Composition

Embedding

Extension

<
I'Base +

Extension Composition

< L

2

The Usability
Issue

[Projectional Editing]
Study Results on Editor Usability

People prefer MPS over conventional IDEs —

MPS more is more efficient than normal IDEs - E

MPS more is more productive than Nnormal IDES = —| [mom————

IMIPS makes it easier to create correct programs | e mum————

MPS enforces a structurally correct AST | —— —
People benefit from language modularity e]
People benefit from the flexible notations R ——

The experience with learning MPS is mixed. | ——
It takes some time to get used to MPS =

1 2 3 4 5
Strongly ... Neutral ... Strongly
agree disagree

1980 1990 2000 2010

—

Early Days

The tree dominated the editing experience.
Enter new nodes based on tree structure.
Select and modify based on tree structure.

Modify through menu-based user interactions.

No user acceptance because too slow, and not
like text editing for textual notations.

1980 1990 2000 2010
Resurgence

B

Textual Notations can be edited , linearly”.
Based on little tree-transformations triggered
by editing actions.

Those actions had to be built manually.

Effort for good editors is high.
Int{er|ra}-Language Consistency is a problem.

User acceptance was mostly there, but few
good editors ever built.

1980 1990 2000 2010

GC

=

Textual Notations can be edited , linearly”.
Based on little tree-transformations triggered
by editing actions.

Actions automatically derived from higher-
level semantically rich editor descriptions.

Effort for building good editors has gone to
almost zero. Editors are consistent.

1980 1990 2000 2010

GC

Grammar Cells =

Enter new nodes based on tree structure.
Enter nodes mostly linearly/textually.

Modify through menu-based user interactions
Modify mostly through typing, deleting, etc.

Effort for good editors is high.
Reduced through abstraction & code generation.

Int{er|ra}-Language Consistency is a problem.
Consistency is there b/c of idiomatics.

Select and modify based on tree structure.
(This issue is still there, unchanged.)

rrrrrr

3

Grammar
Cells Demo

(11 Tube

https://www.youtube.com/watch?v=QxXHtp90Fcs

éxported int8 x1;
int8 x2;

> » o) 032/2:00

rrrrrr

4

How Grammar
Cells Work

More semantics
in the editor definitions

editor for concept GlobalVariableDeclaration
[- flag{ exported } flag{ extern } % type % { name } [- =% init % -]

=
editor for concept BinaryExpression
rule: [- % left % constant % right % -]
editor for concept NumberLiteral editor for concept ParensExpression
rule: [- splittable{ value } -] rule: brackets[(% expression %)]

based on problems identified in user
studies and accumulated experience from
dozens of developers and languages.

Declarative Descriptions
for the most typical editor actions

flag C, C.cld: Boolean in [flag[1*child[C.cld]]]

optional C,Ccld:T
in [optional[list[1*constant[t], child[C.cld]]]]
wrap C, C.cld: T in [wrap[child[C.cld]]]

substitute C; in [substitute[1*const]]

brackets C, P, Pcld:D,C<:D
in [brackets[1*constant[open],
child[C.cld], constant[close]”r]]

Key for the notation:
C,C1,C,D,P,T € C (language concepts) in [editor] = action(params | typed text — executed code)

Declarative Descriptions
for the most typical editor actions

translated to the available
action primitives in PE

)) side(c@! : C | name0fLink(C.cld) — c.cld = true)
flag C, C.cld: Boolean in [flag[1*child[C.cld]]]

delete(c@! : C | c.cld = false)

optional C,Ccld:T side(c@[:C |t—c.cld=newT)
in [optional[list[1*constant[t], child[C.cld]]]] delete(c@! : C | delete(c.cld))

wrap C, C.cld: T in [wrap[child[C.cld]]] = { subst(|7: T — c=newC, c.cld =t, replace(t +¢))
(VC, € structuralMatches(C)):
substitute C; in [substitute[1*const]] = < subst(c; @[: C; | Cy.const — c; = new Cy,
\ copyStructure(c; « c1), replace(c; < c2))

(side(c@!]:C —t:D=repa , replace(c +t
brackets C, P, Pcld: D, C <:D side(c | open reparse(c), replace(c 1))

in [brackets[l*constant[open], —
child[C.cld], constant[close]”r]]

side(c@r: C | close —t: D = reparse(c), replace(c « 1))
delete(c@!:C |t : D= reparse(c), replace(c «t))

(delete(c@r:C |t : D =reparse(c), replace(c +t))
Key for the notation:
C,C1,C,D,P,T € C (language concepts) in [editor] = action(params | typed text — executed code)

Integrated Parsing
for expressions

to deal with precedence,
associativity and cross-tree editing.

—— o I e ————
User changes N, | Tree Linearization 1 List

oTree via edit
operation
Reparsed tree

is projected

Integrated Parsing

for expressions

complex, non-text tokens
remain intact. Notation
mixing still possible.

int8 x

-~
-—
S - — - - —— -

20 *) i + 10

Node whose editor
has no rule definition

Node whose editor
has rule definition

User edit

Traversal along
ancestors

Set of nodes that
will be linearized

Grammar
Cells

Wrap

PEs have many advantages.
Mixing Notations, Language Composition.

Editing Experience was a Challenge.
Textual Notations were not editable as in text editors.

Editor behavior must be consistent
within one and across several (composed) languages

Grammar Cells support , nice” editors
with very limited editor development effort.

Editor End-User . e
Language Dev } feedback is very positive

»this changes the game for Projectional Editors“

PEs have many advantages.
Mixing Notations, Language Composition.

Grammar Cells make
exploiting these benefits
a real option!

Editor End-User
Language Dev

»this changes the game for Projectional Editors“

} feedback is very positive

