
Markus	Völter,	Tamás	Szabó,	Sascha	Lisson,	
Bernd	Kolb,	Sebas>an	Erdweg,	Thorsten	Berger	

voelter@acm.org	
www.voelter.de	
@markusvoelter	

Consistent	Projec>onal	Editors	
Efficient	Development	of	

using	
Grammar	Cells	



Why	Projec>onal	
Editors	

1	
Grammar	

Cells	



Parsing	 Projec>onal	Edi>ng	

[Projec>onal	Edi>ng]	



Regular	Code/Text	 Mathema>cal	

Tables	 Graphical	

Syntac>c	Flexibility	
[Projec>onal	Edi>ng]	



Regular	Code/Text	 Mathema>cal	

Tables	 Graphical	

Syntac>c	Flexibility	
[Projec>onal	Edi>ng]	



L2	 L1	

Separate	Files	 In	One	File	

Type	System	
Transforma>on	
Constraints	
	

Type	System	
Transforma>on	
Constraints	
Syntax	
IDE	
	

Language	Composi>on	
[Projec>onal	Edi>ng]	



Language	Composi>on	
[Projec>onal	Edi>ng]	



The	Usability	
Issue	

2	
Grammar	

Cells	



Study	Results	on	Editor	Usability	
[Projec>onal	Edi>ng]	

Strongly	...	Neutral	...	Strongly	
agree																											disagree	

People	prefer	MPS	over	conven>onal	IDEs	
MPS	more	is	more	efficient	than	normal	IDEs	
MPS	more	is	more	produc>ve	than	normal	IDEs	
MPS	makes	it	easier	to	create	correct	programs	
MPS	enforces	a	structurally	correct	AST	
People	benefit	from	language	modularity	

People	benefit	from	the	flexible	nota>ons	

The	experience	with	learning	MPS	is	mixed.	
It	takes	some	>me	to	get	used	to	MPS	



1980	 1990	 2000	 2010	
Early	Days	

No	user	acceptance	because	too	slow,	and	not	
like	text	edi>ng	for	textual	nota>ons.	

The	tree	dominated	the	edi>ng	experience.	
Enter	new	nodes	based	on	tree	structure.	
Select	and	modify	based	on	tree	structure.	
Modify	through	menu-based	user	interac>ons.	



1980	 1990	 2000	 2010	
Resurgence	

Textual	Nota>ons	can	be	edited	„linearly“.	
Based	on	licle	tree-transforma>ons	triggered	
by	edi>ng	ac>ons.	
Those	ac>ons	had	to	be	built	manually.	
Effort	for	good	editors	is	high.		
Int{er|ra}-Language	Consistency	is	a	problem.	
User	acceptance	was	mostly	there,	but	few	
good	editors	ever	built.		



1980	 1990	 2000	 2010	
GC	

Textual	Nota>ons	can	be	edited	„linearly“.	
Based	on	licle	tree-transforma>ons	triggered	
by	edi>ng	ac>ons.	
Ac>ons	automa>cally	derived	from	higher-
level	seman>cally	rich	editor	descrip>ons.		

Effort	for	building	good	editors	has	gone	to	
almost	zero.	Editors	are	consistent.	



1980	 1990	 2000	 2010	
GC	

Enter	new	nodes	based	on	tree	structure.	
	
Modify	through	menu-based	user	interac>ons	
	
Effort	for	good	editors	is	high.	
	
Int{er|ra}-Language	Consistency	is	a	problem.	
	
Select	and	modify	based	on	tree	structure.	
	

Enter	nodes	mostly	linearly/textually.	
	

Modify	mostly	through	typing,	dele>ng,	etc.	
	

Reduced	through	abstrac>on	&	code	genera>on.	
	

Consistency	is	there	b/c	of	idioma>cs.	
	

(This	issue	is	s>ll	there,	unchanged.)	

Grammar	Cells	



Grammar		
Cells	Demo	

3	
Grammar	

Cells	



h7ps://www.youtube.com/watch?v=QxXHtp90Fcs	
	



How	Grammar	
Cells	Work	

4	
Grammar	

Cells	



More	seman>cs	
in	the	editor	defini>ons	

based	on	problems	iden>fied	in	user	
studies	and	accumulated	experience	from	

dozens	of	developers	and	languages.	



Declara>ve	Descrip>ons		
for	the	most	typical	editor	ac>ons	



Declara>ve	Descrip>ons		
for	the	most	typical	editor	ac>ons	

translated	to	the	available	
ac>on	primi>ves	in	PE	



Integrated	Parsing	
for	expressions	

to	deal	with	precedence,	
associa>vity	and	cross-tree	edi>ng.	



Integrated	Parsing	
for	expressions	

complex,	non-text	tokens	
remain	intact.	Nota>on	
mixing	s>ll	possible.	



Wrap	
Up	

5	
Grammar	

Cells	



PEs	have	many	advantages.	
Mixing	Nota>ons,	Language	Composi>on.	

Edi>ng	Experience	was	a	Challenge.	
Textual	Nota>ons	were	not	editable	as	in	text	editors.	

Editor	behavior	must	be	consistent	
within	one	and	across	several	(composed)	languages	

Grammar	Cells	support	„nice“	editors	
with	very	limited	editor	development	effort.	

																																feedback	is	very	posi>ve	
„this	changes	the	game	for	Projec>onal	Editors“	

Editor	End-User	
Language	Dev	 }	



PEs	have	many	advantages.	
Mixing	Nota>ons,	Language	Composi>on.	

																																feedback	is	very	posi>ve	
„this	changes	the	game	for	Projec>onal	Editors“	

Editor	End-User	
Language	Dev	 }	

Grammar	Cells	make		
exploi>ng	these	benefits	
a	real	op>on!	


