
Design and Implementation of an Asynchronous
Invocation Framework for Web Services

Uwe Zdun Markus Voelter Michael Kircher
zdun@acm.org voelter@acm.org michael.kircher@siemens.com

The International Conference on Web Services - Europe 2003 (ICWS-Europe’03),
Erfurt, Germany, Sep 2003.

1



Overview

• Synchronous vs. asynchronous communication

• Asynchronous invocation of Web Services

• Client Asynchrony Patterns

• Simple Asychronous Invocation Framework for Web Services

Uwe Zdun, Vienna University of Economics 2



Synchronous vs. Asynchronous Communication

• Synchronous communication in remote object frameworks:

• The client wants to reach a Remote Object

• It invokes a Client Proxy in the client process that handles network com-
munication

• The client blocks until the Client Proxy returns the result from the Remote
Object invocation

• Asychronous communication in remote object frameworks:

• The client also invokes a Client Proxy, but . . .

• The Client Proxy returns to the client immediately and handles the remote
invocation on its own

• Different variants how to pass the result (and exceptions) back to the client
(see asynchrony patterns).

Uwe Zdun, Vienna University of Economics 3



Asynchronous Invocation of Web Services

• Asynchronous invocations are an important functionality in the context
of distributed object frameworks:

• jitter and network latency make remote invocation times unpredictable

• in many situations clients should not block during remote invocations

• loose coupling between clients and remote services

• Popular web service implementations (such as Apache Axis) offer only
synchronous invocations (over HTTP) or messaging protocols

• Client asynchrony can be built on top of synchronous invocation frame-
work → Asynchrony Patterns

• This is tedious and error-prone → Simple Asychronous Invocation
Framework for Web Services

Uwe Zdun, Vienna University of Economics 4



Client Asynchrony Patterns

• A pattern describes a recurring solution to a problem in a context bal-
ancing a set of forces:

• Patterns cover the problem that expertise is hard to convey

• Pattern Languages: no pattern is used in isolation→ patterns are used as
elements of a language

• Four patterns for client asynchrony from a larger pattern language for
OO Remoting

• Full pattern language in forthcoming book “Remoting Patterns ” by
Markus Voelter, Michael Kircher, Uwe Zdun, and Michael Englbrecht
to be published in Wiley’s Pattern Series in 2004.

Uwe Zdun, Vienna University of Economics 5



Client Asynchrony Patterns:
Fire and Forget/Sync with Server

• Fire and Forget:

• A Remote Object should be notified and a result is not required

• Reliability is not critical

• Client Proxy sends invocation and returns to the client immediately

• It does not wait for a notification

• Sync with Server:

• A Remote Object should be notified and a result is not required

• The invocation should be performed reliably

• Client Proxy sends invocation and returns to the client immediately

• It waits for an acknowledgment

Uwe Zdun, Vienna University of Economics 6



Client Asynchrony Patterns:
Poll Object/Result Callback

• Poll Object:

• An operation should be invoked asynchronously and a result is required

• The client is able to decide when to use the returned result

• Poll Objects receive the result of remote invocations on behalf of the client

• The client subsequently uses the Poll Object to query the result

• Result Callback

• An operation should be invoked asynchronously and a result is required

• The client needs to react immediately on incoming results

• The client passes a Result Callback object to the Client Proxy

• For arriving results the Client Proxy calls the predefined callback operation

Uwe Zdun, Vienna University of Economics 7



Alternatives for Applying the Patterns

Client Result Acknowledgment Responsiblity
asynchrony to client to client for result

pattern
Fire and Forget no no -

Sync with Server no yes -
Poll Object yes yes Client is

responsible for
getting the result

Result Callback yes yes Client is
informed via
a callback

Uwe Zdun, Vienna University of Economics 8



Simple Asynchronous Invocation Framework for
Web Services

• Framework that realizes the asynchrony patterns on top of syn-
chronous invocations

• Works with Apache Axis on top of HTTP

• Can be downloaded from: saiws.sourceforge.net

Uwe Zdun, Vienna University of Economics 9



Client Proxies

Invocation is performed using a Client Proxy. Synchronous invocations:

SyncClientProxy scp = new SyncClientProxy();
String result = (String) scp.invoke(endpointURL,

operationName, null, rt);

Asynchronous invocation:

AsyncHandler ah = ...;
Object clientACT = ...;
AsyncClientProxy ascp = new asyncClientProxy();
...
ascp.invoke(ah, clientACT, endpointURL, operationName,

null, rt);

Uwe Zdun, Vienna University of Economics 10



Asynchrony Handlers

AsyncHandler
«interface»

ResultCallback
«interface»

boolean resultArrived();
Object getResult();

PollObject
«interface»

int ackArrived()

SyncWithServer
«interface»

SingleSyncWithServer SingleResultCallback

QueuedResultCallback

void inform(Object clientData, Object result);

SinglePollObject

void doCallback()

ObjectQueue

QueuedPollObjectQueuedSyncWithServer

Uwe Zdun, Vienna University of Economics 11



Example: Poll Object

AsyncClientProxy clientProxy = new AsyncClientProxy();
SimplePollObject p = new SimplePollObject();
clientProxy.invoke(p, null, endpointURL, operationName,

null, rt);

while (!p.resultArrived()) {
// do some other task ...

}
System.out.println("Poll Object Result Arrived = " +

p.getResult());

Uwe Zdun, Vienna University of Economics 12



Poll Object Dynamics

:AsyncClientProxy

invoke()

client

new

execute()

:AsyncClientInvocationHandler

async: run()

:Call

constructCall()

new

invoke()

result

:PollObject

new

pollObject

pollObject

inform()

resultArrived()

false

resultArrived()

false

resultArrived()

true

getResult()

result

Uwe Zdun, Vienna University of Economics 13



Queued Asynchrony Handlers

• Handle multiple responses

• Queuing handlers with FIFO behavior are pre-defined

• Client ACT (Asynchronous Completion Token) identifies invocation

Example: Queued Result Callback

AsyncClientProxy clientProxy = new AsyncClientProxy();
DateClientQueue results = new DateClientQueue(10);
for (int i = 0; i < 10; i++) {

String id = "callback" + i;
clientProxy.invoke(results, id, endpointURL,

operationName, null, rt);
}

Uwe Zdun, Vienna University of Economics 14



Fire and Forget Invocations

Fire and Forget is not implemented using an AsyncHandler, but with an
operation.

Internally implemented using one-way invocations (as in WSDL).

AsyncClientProxy clientProxy = new AsyncClientProxy();
clientProxy.invokeFireAndForget(endpointURL,

operationName,
null, rt);

Uwe Zdun, Vienna University of Economics 15



Performance

Performance Synchronous Fire and Sync with Poll Result
Test Invocation Forget Server Object Callback

1 invocation 30ms 1ms 1ms 1ms/39ms 1ms/42ms
3 invocation 68ms 2ms 2ms 2ms/89ms 2ms/69ms

10 invocation 204ms 2ms 2ms 2ms/265ms 2ms/189ms
20 invocation 378ms 5ms 4ms 5ms/409ms 4ms/368ms

Uwe Zdun, Vienna University of Economics 16



Conclusion

• Practical approach for asynchronous invocations of web services

• Simple invocation API

• Easily extensible with new handlers

• Designed with a set of patterns from a larger pattern language for
distributed object frameworks

• The SAIWS framework can be downloaded at:
saiws.sourceforge.net

• More information on the patterns can be found in the forthcoming book
and in our VikingPlop/EuroPlop papers

Uwe Zdun, Vienna University of Economics 17


