Design and Implementation of an Asynchronous
Invocation Framework for Web Services

Uwe Zdun Markus Voelter Michael Kircher
zdun@acm.org Vvoelter@acm.org michael.kircher@siemens.com

The International Conference on Web Services - Europe 2003 (ICWS-Europe’03),
Erfurt, Germany, Sep 2003.

Overview

Synchronous vs. asynchronous communication
Asynchronous invocation of Web Services
Client Asynchrony Patterns

Simple Asychronous Invocation Framework for Web Services

Uwe Zdun, Vienna University of Economics

Synchronous vs. Asynchronous Communication

Synchronous communication in remote object frameworks:

The client wants to reach a Remote Object

It invokes a Client Proxy in the client process that handles network com-
munication

The client blocks until the Client Proxy returns the result from the Remote
Object invocation

Asychronous communication in remote object frameworks:

The client also invokes a Client Proxy, but . ..

The Client Proxy returns to the client immediately and handles the remote
invocation on its own

Different variants how to pass the result (and exceptions) back to the client
(see asynchrony patterns).

Uwe Zdun, Vienna University of Economics 3

Asynchronous Invocation of Web Services

Asynchronous invocations are an important functionality in the context
of distributed object frameworks:

jitter and network latency make remote invocation times unpredictable
in many situations clients should not block during remote invocations
loose coupling between clients and remote services

Popular web service implementations (such as Apache Axis) offer only
synchronous invocations (over HTTP) or messaging protocols

Client asynchrony can be built on top of synchronous invocation frame-
work — Asynchrony Patterns

This is tedious and error-prone — Simple Asychronous Invocation
Framework for Web Services

Uwe Zdun, Vienna University of Economics 4

Client Asynchrony Patterns

A pattern describes a recurring solution to a problem in a context bal-
ancing a set of forces:

Patterns cover the problem that expertise is hard to convey

Pattern Languages: no pattern is used in isolation — patterns are used as
elements of a language

Four patterns for client asynchrony from a larger pattern language for
OO Remoting

Full pattern language in forthcoming book “ " by
Markus Voelter, Michael Kircher, Uwe Zdun, and Michael Englbrecht
to be published in Wiley’s Pattern Series in 2004.

Uwe Zdun, Vienna University of Economics 5

Client Asynchrony Patterns:
Fire and Forget/Sync with Server

Fire and Forget:

A Remote Object should be notified and a result is not required
Reliability is not critical

Client Proxy sends invocation and returns to the client immediately
It does not wait for a notification

Sync with Server:

A Remote Object should be notified and a result is not required
The invocation should be performed reliably

Client Proxy sends invocation and returns to the client immediately
It waits for an acknowledgment

Uwe Zdun, Vienna University of Economics

Client Asynchrony Patterns:
Poll Object/Result Callback

Poll Object:

An operation should be invoked asynchronously and a result is required
The client is able to decide when to use the returned result

Poll Objects receive the result of remote invocations on behalf of the client
The client subsequently uses the Poll Object to query the result

Result Callback

An operation should be invoked asynchronously and a result is required
The client needs to react immediately on incoming results

The client passes a Result Callback object to the Client Proxy

For arriving results the Client Proxy calls the predefined callback operation

Uwe Zdun, Vienna University of Economics 7

Alternatives for Applying the Patterns

Client Result | Acknowledgment Responsiblity
asynchrony to client to client for result
pattern
Fire and Forget no no -
Sync with Server no yes -
Poll Object yes yes Client is
responsible for
getting the result
Result Callback yes yes Client is
Informed via
a callback

Uwe Zdun, Vienna University of Economics

Simple Asynchronous Invocation Framework for
Web Services

o Framework that realizes the asynchrony patterns on top of syn-
chronous invocations

o Works with Apache Axis on top of HTTP

o Can be downloaded from: saiws.sourceforge.net

Uwe Zdun, Vienna University of Economics

Client Proxies

Invocation is performed using a Client Proxy. Synchronous invocations:

SyncClientProxy scp = new SyncClientProxy();
String result = (String) scp.invoke(endpointURL,
operationName, null, rt);

Asynchronous invocation:

AsyncHandler ah = ..;
Object clientACT = ..,
AsyncClientProxy ascp = new asyncClientProxy();

ascp.invoke(ah, clientACT, endpointURL, operationName,
null, rt);

Uwe Zdun, Vienna University of Economics 10

Asynchrony Handlers

«interface»

AsyncHandler

void inform(Object clientData, Object result);

r=-=-=-=-=-=-============-= r=- b - - - 1
1 1 1
1 1 1
«interface» «interface» «interface»
SyncWithServer ResultCallback PollObject

int ackArrived()

void doCallback()

boolean resultArrived();
Object getResult();

SingleSyncWithServer

SingleResultCallback

SinglePollObject

QueuedSyncWithServer

QueuedResultCallback

QueuedPollObject

Uwe Zdun, Vienna University of Economics

V

ObjectQueue

11

Example: Poll Object

AsyncClientProxy clientProxy = new AsyncClientProxy();

SimplePollObject p = new SimplePollObject();

clientProxy.invoke(p, null, endpointURL, operationName,
null, rt);

while (!p.resultArrived()) {
/[do some other task ...
}

System.out.printin("Poll Object Result Arrived = " +
p.getResult());

Uwe Zdun, Vienna University of Economics

12

Poll Object Dynamics

client :PollObject | [:AsyncClientProxy :AsyncClientinvocationHandler :Call
new "
<_ - -
pollObject
invoke() | pollObject now >
? execute()
resultArrived() " |: >
e ; I_ - il async: run() ? constructCall()
alse
> |:—| new >
resultArrived() _
€ - m e e . >
false invoke()
<_ ______________
» [result
resultArrived() inform()
4_ ____________
true‘
getResult() "
4_ ____________
T result T

Uwe Zdun, Vienna University of Economics

13

Queued Asynchrony Handlers

Handle multiple responses
Queuing handlers with FIFO behavior are pre-defined

Client ACT (Asynchronous Completion Token) identifies invocation

Example: Queued Result Callback

AsyncClientProxy clientProxy = new AsyncClientProxy();
DateClientQueue results = new DateClientQueue(10);
for (int i = 0; i < 10; i++) {
String 1d = "callback" + 1I;
clientProxy.invoke(results, id, endpointURL,
operationName, null, rt);

}

Uwe Zdun, Vienna University of Economics

Fire and Forget Invocations

Fire and Forget is not implemented using an AsyncHandler, but with an
operation.

Internally implemented using one-way invocations (as in WSDL).

AsyncClientProxy clientProxy = new AsyncClientProxy();

clientProxy.invokeFireAndForget(endpointURL,
operationName,
null, rt);

Uwe Zdun, Vienna University of Economics 15

Performance

Performance | Synchronous | Fire and | Sync with Poll Result
Test Invocation Forget Server Object Callback
1 invocation 30ms 1ms 1ms 1ms/39ms 1ms/42ms
3 invocation 68ms 2ms 2ms 2ms/89ms 2ms/69ms
10 invocation 204ms 2ms 2ms 2ms/265ms | 2ms/189ms
20 invocation 378ms 5ms 4ms 5ms/409ms | 4ms/368ms

Uwe Zdun, Vienna University of Economics

16

Conclusion

Practical approach for asynchronous invocations of web services

Simple invocation API
Easily extensible with new handlers

Designed with a set of patterns from a larger pattern language for
distributed object frameworks

The SAIWS framework can be downloaded at:
salws.sourceforge.net

More information on the patterns can be found in the forthcoming book
and in our VikingPlop/EuroPlop papers

Uwe Zdun, Vienna University of Economics 17

