Language-Oriented Business Applications

Helping E nd U Se rS

become

Programmers

Markus Volter

O e | t e r {isno%‘twaretechngiogie // it

3

Product Definition Languages in
the Insurance Domain

Benefits calculation languages
for governments

Languages for (non-programmer)
in technical domains

Languages for use by
programmers

1%

Business Knowledge
and Software

[Business Knowledge]

It's what makes a business tick.
Distinguishes the business.

Business Rules
(Financial) Calculations
Data Structures

Mappings or Queries ‘
Validations 0
Scientific Processes

Contracts

Processes
Uls

[Business Knowledge]

It's what makes a business tick.
Distinguishes the business.

Contributed not by developers

... but is a typically
implemented in software

[Business Knowledge]

SO HOW DOES IT GET
INTO THE SOFTWARE?

Contributed not by developers

... but is a typically
implemented in software

| Rules Categories

Keyword Lists

<<PageOne [Save

Rule

message v

Email Direction

ontains Any
t Contains Phrase
¥ Outgoing Not Contains Special

Internal [~ Bloomberg Mail

¥ Incoming :

Action
¥ Notity

compliance_officer@jal

[~ Notify Manager

Reality @

v | Finandal v | and ~ And
v CreditCard# v and C Or
v | | Treasury v and

v

Summg

y

if, in any incoming or outgoing messages of type Emai
them

them

> has keyword fi
je contains speci

the reci s in department Treasury and
the mes contains all

then
send

an,

fication to compliance officer@jatheion.com
the mail store

Let Business/Domain\
people contribute directly!

Give them expressive,
productive tools to do so!

Expressivity for Core
Domain Knowledge

User-Friendly Notation
Great Tool/IDE

Testing
Meaningful Analyses

Synthesis of Software

Not a software engineer.
Does not care about , software stuff”

But understands the domain very well.
He is a professional, not a casual hacker.

2%

WL
oan
rkgu
ench
e
S

DSL generator | interpreter

An old idea
from the 1970s.

BUT...

Language
Workbench

(Martin Fowler, 2004)

Freely
define

languages and

integrate
them

Language
Workbench

(Martin Fowler, 2004)

powerful
editing
testing
refactoring
debugging
groupware

language definition

implies

IDE definition

Language
Workbench

(Martin Fowler, 2004)

support for +
,classical” .
programming

,,classical”and

modeling

There’s no difference!

LWBs make Languages Easier

Blur the distinction between
programming and modeling.

Several different LWBs exist.

http://languageworkbenches.net

3%

J

e

t
I\I?lra

Programry

A Language Workbench —

a tool for defining, composing
and using ecosystems of languages.

Programry

Open Source
Apache 2.0
http://jetbrains.com/mps

Programry

V 3.2 is current
V 3.3 to be released Q4 2015

[Language Workbench]

Comprehensive Support for
many aspects of Language Definition.

Concepts, Properties, —

—»(Structure Inheritance, Relationships a

__generates to . |2

* provides editors for 2 B

g n

—> . Projection Rules, Side [

—> Language " » Editor Transformations, Intentions % §

o |Z

s |

. 3

extends 0.. |, | Type Typing Rules, Type | [|3

System Checks, Other Validatons § %’_

g |

)

Con- Scopes, Usage Restrictions, PHEN Transfor- Reduction Rules, Weaving [~ spaciies
straints Property Value Limitations mations Rules, Transformation Prios <priority 0..*

+ Refactorings, Find Usages, Syntax Coloring, Debugging, ...

SIEMENS

. users Mercedés—BenZ

| — fortiss
@BOSCH — = N

Whirloc HUAWEI
pruacen Whirlpool

B McGill

ower controls you can

UNIVERSITY OF

WATERLOO ERICSSON
#9 Belastingdienst

2s QoD

| INSURANCE KNOWLEDGE AU6|

[Projectional Editing]

Parsing Projectional Editing

) @@ M &
Voo 1

Concrete Syntax Concrete Syntax
l i T
Abstract Abstract

Syntax Tree Syntax Tree

[Projectional Editing]
Syntactic Flexibility

Regular Code/Text Mathematical

1 E—]
I D

[l

Tables Graphical

o=

[Projectional Editing]
Syntactic Flexibility

Regular Code/Text Mathematical
//[A documentation comment with references double midnight2(int32 a, int32 b, int32 c) {
[to @arg(data) and @arg(datalen)] b) 4 '
void aSummingFunction(int8[] data, int8 datalen) { o b™ - 2 a*c
int16 sum; return i=1 ;
for (int8 i = @9; i < datalen; i++) { 2*a
sum += data[i]; }
}
}
Tables Graphical
int16 decide(int8 spd, int8 alt) {
return spd > @ spd > 100 otherwise 0; cust 1’
alt <0 |1 1
alt == @ |10 20
alt >0 |30 40 Contract — -
alt > 100| 50 60 starts: date 7 -
} ends: r attributes

[Projectional Editing]
Language Composition

=] —

Separate Files In One File
Type System Type System
Transformation Transformation
Constraints Constraints
Syntax
IDE
50+ extensions to C
rnl'\ ar

PRESUIUE 10+ extensions to requirements lang.

Projectional Editing provides syntactic
flexibility and lang. extensibility.

Usability Issues are mostly solved.

MPS is great, but alternatives exist.

Most business people are able to and
want to express themselves precisely!

Let’s give them the tools to do it!

Examples

O

Rigid Structures

Rule Set Type DemoRuleSetType

Business objects

person : Person

Variables: Parent

PRMI : int <no parent>
FR : int

NN : int

TT : int Libraries

] : int Standard

A3 . int Extra

G3 : int

ANUI : int

X ¢ int

Rule Set Type DemoRuleSetType

Business objects

<no business objects>

Variables: Parent
<no variables> <no parent>
Libraries

<no libraries>

Calculation Rules

rule set DemoRulseSet2 is of type DemoRuleSetType

EUO : int [save false print false]
CATEG : string [save false print false]
“CATEG1 : double [save true print true]

Toggle Information

PREMIO = | A1 > 10 =>EU@

calways> => FLAG
FLAG = | CATEG1 equals 60 or CATEG1l equals 63 or CATEG1l equals 64 => 160

PREMIO equals © => 162

CATEG1 > @ or substr(inga[4], 1, 1) equals "V" => 163

calways: => PREMIO + FLAG
PREMIO = | <always> => round(PREMIO * (1 + factacer),) |

Prose-Like Language for Calc Rules

bloedverwanten : lijst wvan Burgers zijn gedefinieerd als {
Een bloedverwant is een Burger die
bloedverwant in rechte lijn is of die
bloedverwant in tweede graad zijlijn is
Einde declaratie

¥

bloedverwanten in rechte lijn : lijst van Burgers zijn gedefinieerd als {
Een bloedverwant in rechte lijn is een Burger die
nakomeling is of die
voorouder is
Einde declaratie

i

bloedverwanten in tweede graad zijlijn : lijst vamn Burgers zijn gedefinieerd als {
Een bloedverwant in tweede graad zijlijn is een ouder.kind met
ouder.kind ongelijk het actuele voorkomen
Einde declaratie
" dus: broer of zus (incl. erkend kind van ouder)

}

bloed- of aanverwanten in rechte lijn : lijst van Burgers zijn gedefinieerd als {
Een bloed- of aanverwant in rechte lijn is een Burger die
bloedverwant in rechte lijn is of die
aanverwant in rechte lijn is
Einde declaratie

Textual Notation for Data Modeling

Data Contract

proxy for Customer.Customer

core data entity BillingRegion

code [key]: string references:
name: string
baseMinPrice: float
maxRebateFactor: float

entity Contract

starts: date I customer: Customer 1[1] <--> contracts 0..*
ends: date applicableTatiff: Tariff 10

entity Tariff
attributes: ‘ references:

Diagrams for Data Modeling

> Tariff
applicableTatiff 1 |attributes

Contract
starts: date

contracts 0..*
ends: date —— 1> Customer.Customer

[core data] '
BillingRegion .

- ———

'code [key]: string,
'name : string,

'baseMinPrice: float |
'maxRebateFactor : float

Tables for Reference Data

Core Data DefaultRegions for entity BillingRegion

Code Name Base Min Price Max Rebate Factor
BW Baden Wurttemberg 0.20 0.8
BY Bayern 90.20 0.8
BE Berlin 0.15 0.7
BB Brandenburg 0.10 0.7
HB Bremen 0.20 0.7
HH Hamburg 0.15 0.7
HE Hessen 0.15 0.7
MV Mecklenburg-Vorpommern 0.10 0.7
NI Niedersachsen 0.15 0.7
NW Nordrhein-Westfalen 0.15 0.7
RP Rheinland-Pfalz 0.15 0.7
SL Saarland 0.15 0.7
SN Sachsen 0.10 0.7
ST Sachsen-Anhalt 0.10 0.7
SH Schleswig-Holstein 0.15 0.7
TH Thiringen 0.10 0.7

Word-Like Comments

Calculations CallCalculations for Call imports: ¥ CustomerBasic

flag islLocal := magic of type boolean

|
| flag isLongDistance := magic of type boolean §Here is a comment added in
| flag isRoaming := magic of type boolean gthe gutter, just as in MS
| value cust := entity.customer : /
value pricingFactor := isLocal isLongDistance isRoaming otherwise 1
cust.isRebated | 0.5 9.6 0.8

Icust.isRebated| 0.8 9.9 1.0

Business Rules, Math, Tooltips

Calculations CustomerBasic for Customer imports: TimeUnits
(3 BusinessRequirements

F_a ~] . (] .] L L | L ~ 1 (] P | | - |
Node: isRebated [FlagVar]
Kind: implements

= 1st Target: Users should be rebated

[some users should get cheaper phone calls. The reasons for the rebates are outlined below.]

I 1ddap L1ONTLTIILLYyALLLVT .= sCITLALYy . LALllS..d SDL.OLAl LILIT. ADOVLUCT 1H1ali\ovu uayy

| flag isRebated := magic of type boolean[T

[A couple of statistics about the last month's activity]

| value callsLastMonth := entity.calls.where(!it.startTime.isOlderThan(30 day))
| flag activeThisMonth := !callsLastMonth.isEmpty

| value devicesUsedLastMonth := callsLastMonth.select(it.sourceDevice).distinct

callsLastMonth.size

value totalPricelLastMonth := 28 callsLastMonth.at(i).price.value
i=o0

totalPricelLastMonth
callsLastMonth.size

value averageCallPricelLastMonth :=

[Some random examples. |
| value example := all[Call].first.customer.calls.first.startTime

Tests executed in the Editor

group Calculate and Test calls

| flag hasEverMadeACall
value amount of calls
tests:

lentity.callsOfCustomer.isEmpty
((hasEverMadeACall))?(entity.callsOfCustomer.size):(9)

| (entity :=Peter M) == 0 actual: 2
(entity :=Peter M) == 2

| (entity :=Hanna B) == 2 actual: 3
(entity :=Hanna B) == 3

endtests
value all calls := entity.callsOfCustomer

value discountFactor := magic of type double

amount of calls - 1

value current price := :S ((all calls.at(i).price.value)) * discountFactor
i=o0
tests:
(entity :=Hanna B, discountFactor := 90.9) == 10.8
| (entity :=Hanna B, discountFactor := 1.0) ==
| (entity :=Peter M, discountFactor := 1.0) ==
(entity :=Peter M, discountFactor := 1.9) ==
endtests
value everageCallPrice := current price
amount of calls
tests:
(entity :=Hanna B, discountFactor := 1.0) == 4.0
| (entity :=Hanna B, discountFactor := 1.0) == 2 actual: 4.0
(entity :=Peter M, discountFactor := 1.9) == 2.45

endtests

Business Rules for Contracts

contract BaseContract specializes <no baseContract: imports: <

Context Objects:
c: Customer

[final] assign callsThisMonth
callsThisMonth :=c.callslLastMonth

assign amountThisMonth
amountThisMonth := @

[final] store storeBill
c.bills :+ new MonthlyBill {
amount :=amountThisMonth

}

Business Rules for Contracts

contract FlatrateContract specializes BaseContract

imports: () BusinessRequirements

Context Objects:
c: Customer

[final] assign BaseContract.callsThisMonth
callsThisMonth :=c.callsLastMonth

[final] store BaseContract.storeBill
c.bills := new MonthlyBill {
amount :=amountThisMonth

}

conditional assign overrides BaseContract.amountThisMonth as of 16/8/2614-

amountThisMonth := | c.isRebated | 40 |
| otherwise | 50 |

conditional assign overrides BaseContract.amountThisMonth as of 20/8/2614-

amountThisMonth := | c.isRebated || 40 |
| otherwise | 60 |

BDD-style Tests for Business Rules

rule checkStuff

given anything

when

then

the customer.calls.size is equal to 10] and

| the call.endTime is smaller than 20
'set call.price to 20
 execute cancelContract with customer

Assessments

Assessment: UnusedCode

query: unused code
sorted: [x] must be ok: [¥] hide ok ones: []
last updated: Sep 18, 2014 (3 days ago) by markusvoelter

BaseContract
| [x] storeBill

CustomerBasic

I O example
I O isMale
I O activeThisMonth

FlatrateContract

I O FlatrateContract.amountThisMonth
I O FlatrateContract.amountThisMonth

total 11, new 0, ok 1

Embedded Buttons in Editors

1] Initially you have no points.
InitialNoPoints /functional:

Add Comment Add Other Data Add Child Requirement Add Next Requirement N2

| When the game starts, you have no points.]

workpackage inital scope: 1 responsible: peter prio: 1 effort: 1 days

[]

2| Once a flight lifts off, you get 100 points

PointsForTakeoff /functional:
Add Comment Add Other Data Add Child Requirement Add Next Requirement 1w = 7

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent feugiat
enim arcu, ut egestas velit. Suspendisse potenti. Etiam risus ante, bibendum
ut mattis eget, convallis sit amet nunc. Ut nec justo sapien, vel condimentum
velit. Quisque venenatis faucibus tellus consequat rhoncus.

3| The factor of points
PointsFactor /functional:

o\

Add Comment Add Other Data Add Child Requirement Add Next Requirement () = 4

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent feugiat
enim arcu, ut egestas velit. Suspendisse potenti. Etiam risus ante, bibendum
ut mattis eget, convallis sit amet nunc.

Math Notations

vector<intl6, 3> aVector =[

w N =

] * 512;

vector<intl6, 3> resultOfCrossProduct = aVector x aVector;

matrix<int16, 2x3> aMatrix =|1 + 2 2 *7 42|,
3 51 24

T
matrix<intl6, 3x2> transposedMatrix = aMatrix ;

int32 averageIntArray(int32[] arr,int32 size) {

size

:S arr[i]

i=29
return - ;
size

Explorability of the Language

) HelloMath x Context Actions 5 —f
. Q|
[C Extensions]

O HelloMath constraints Math Expressions

model mbeddr.tutorial.main.math imports nothing o F=
l | Eal 'OE ']—l \n',
abs frac log pow product sqrt

int32 sumUpIntArray(int32[] arr, int32 size) { 2,

sum
size

return }S arr[i] ;

i=o0

int32 averagelIntArray(int32[] arr, int32 size) {

size

:S arr[i]

i=o0
size

return

JeqgapIs 1Xa1uo0)

SUOIIDY 1X31U0)D)

Live Tests for Business Rules

‘l

Points you get for each trackpoint

InFlightPoints /functional:
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent feugiat enim arcu, ut egestas velit. Suspendisse
potenti. Etiam risus ante, bibendum ut mattis eget, convallis sit amet nunc. Ut nec justo sapien, vel condimentum
velit. Quisque venenatis faucibus tellus consequat rhoncus. Vestibulum dapibus dictum vulputate. Phasellus rhoncus
quam eu dui dictum sollicitudin.
Duis tempus justo magna. Nunc lobortis libero sed eros interdum aliquet ele. It uses @req(PointsFactor) sdf
@cfmod(ArchitecturalComponents) to calculate the total points.

calculation PointForATrackpoint: This rule computes the points awarded for a Trackpoint.
It does so by taking into account the @alt and the @speed
passed as arguments.
parameters:[int16 alt: current altitude of the trackpoint] => (uint8 || int8)
int16 speed: current speed of the trackpoint]

result = (BASEPOINTS * 1) * alt > 2000 alt > 1000 otherwise 0
speed > 180|360 15
speed > 130|160 20

tests: PointForATrackpoint(500, 46) ==

Point Error:-f_aliled; e.xpected-2‘10, but wa-s_Zb(_))
PointForArrackpoiat(11vy, 165)
PointForATrackpoint (2100, 140)
PointForATrackpoint (2100, 200)

0

21p
100
300

Debugger for Business Rules

‘l

Points you get for each trackpoint
InFlightPoints /functional:

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent feugiat enim arcu, ut egestas velit. Suspendisse
potenti. Etiam risus ante, bibendum ut mattis eget, convallis sit amet nunc. Ut nec justo sapien, vel condimentum
velit. Quisque venenatis faucibus tellus consequat rhoncus. Vestibulum dapibus dictum vulputate. Phasellus rhoncus
quam eu dui dictum sollicitudin.

Duis tempus justo magna. Nunc lobortis libero sed eros interdum aliquet ele. It uses @req(PointsFactor) sdf
@cfmod(ArchitecturalComponents) to calculate the total points.

calculation PointForATrackpoint: This rule computes the points awarded for a Trackpoint.
It does so by taking into account the @alt and the @speed
passed as arguments.
parameters:[intl16 alt: current altitude of the trackpoint] => (uint8 || int8)
int16 speed: current speed of the trackpoint]

result = 200
(10 . 20
%
10|BASEPOINTS 1 false true otherwise 9
1100|alt > 2000 1106|a1t > 1000
false 30 15
165| speed > 180
true 10 20
165| speed > 130
tests: PointForATrackpoint(500, 46) ==
PointForATrackpoint(500, 1200) == 0
PointForATrackpoint(1100, 165) == 200 | ciear | [o | [4
PointForATrackpoint(2100, 149) == 100
PointForATrackpoint(2100, 200) == 300

4%

L
ea

How to make
People precise?

:‘
Formulas, Rules

Precision Data Structures

Tables
Values

Performance
Scalability

Robustness } P rog ramm | ng

Deployment

Tables
Values

Formulas, Rules
e o Data Structures
Precision {

l []
Greek Letters

Analyses } Formalization

Proofs

Benefits of being

precise

Make changes to system without waiting for IT
Directly Test and Debug business knowledge
Explore Alternatives and Experiment

How to get business people to be

precise

Willingness to take responsibility
Very good fit with domain

yFriendly” Abstractions and Notations
Good Tools (see later)

Education and Training

How to get business people to be

precise

Technical People:
»It’s not my job!

|Il

(and it really isn‘t)

Business L
vs. Programming L

o &

Structure 1 -
Notation Mixed Text
Guidance 1 -
Layout Predefined Custom
Views * 1
IDE/Tool Clean Powerful

Learn/Effective L E

@

Structure

Notation Business oriented languages are

Guidance very different from what we have
learned about languages for

LayOUt developers. LWBs let you build
Views such languages.
IDE/Tool

Learn/Effective

Language Workbenches enable
developers to build really expressive
tools for business people to work
with data effectively.

A hybrid of
many worlds

Expressions

Code Completion
Syntax Highlighting
Error Markup
Version Control
Refactoring
Debugging
Scalability

Code Reviews

Languages/
IDEs

Languages/
IDEs

Abstraction Levels
Multiple Abstractions
Multiple Notations

Process-Orientation
Rigid Structures
Visualizations

Tree Views
Applications Languages/ Guidance
Leld IDEs Buttons

Applications
Forms

Languages/
IDEs

Prose Integration
Cross-Links
,Plugins”

Live Execution
,Visible Computation”
Document-Oriented

Applications
Forms

Languages/
IDEs

Applications

>WRWOr

Why Version Control

Ty ™ . ..
~ _ Why Version Control

- Ze Branﬁpi’ng‘(Fe

Support Stagin
T

e

Use Staging

Change

:> Test > Production
System System

For Business People Live for Customers
Real-Like Data Real Data
May Have Bugs Mission Critical

Integration Tests
Simulations
Reviews

How do you achieve
Consistency

Strict Language
Cross-References
Modularization and Reuse

Automatic Derivation based on rules
(transformation, generation)

@ GLOBAL

Common Respository
Version Control System
Periodic, Global Checks/Reports

Influences on
the Language

Domain
Structure

Sep. of Con S
Different Views

Non

Functionals
Permissions,
IP, Sharing

Model

Purpose
Analyze, Generate

er tool :-)

Tool
Capabilities

Notations,
Editing, Scale

User
Skills

esults in context

R tor towards

tructure

Software
Engineering
Practices

The Language is
not Enough

GREAT

Debuggers

Animate Execution
Simulators

Testing

Write Tests
Run them
Report Back

Refactorings

Aligned with Processes

GOOD Analyses

Relevant
Good Errors

Great IDE

Syntax Coloring
Code Completion
Goto Definition

Language

Abstractions
Notations

Requirements on
the tool

b e 4 S RN
WAL BT S QRN
T =0,

Be a great L

obviously

Support all the language
goodness we talked
about so far.

Quickly evolve the
language as the
(understanding of)
domain changes

Performance

Nobody wants to work
with a sluggish tool

Non-trivial languages
and
significant model sizes

Migration Support

Migrate existing models
as the languages evolve.

. \ \‘-:.\ i’ .-‘,‘ /: ’
A~ s 37>
2

s

Friendliness

Don‘t overwhelm end
users with too much , cruft”

Explorablllty

Ensure the language
can be explored

O HelloMath x ~=13 | Context Actio 8~ 1
int32 sumArr(int32[] arr, int32 size) { © | | Ll Z -
! size
© return X arr[i]] ; i
) Arr i V >

pow produc sum

A tool is not
enough

Methodology =
Process + Tool (+ Metrics)

Precision/Consistency
Artifacts

refers to

and not to a rigid

Process

Discipline:
do the right thing.

Define what is ,right”
Force People?
Tool should makes the right thing easy.

Error Messages

Process-Guidance in the tool
Checklists to finish manual processes
Tool must fit the process!

gl

Tool should makes the right thing easy.

Does this scale?

Does the approach scale? \\T///
g1
If structure,
formalization, and
tool support don‘t scale,

then what will??

What are the alternatives?
Excel?
Wikis?
Prose Documents?

Do the tools scale? .-§ Z-
/
In terms of overall system size? '/IN\'

Yes, the system has to be broken down into models
of manageable size, as usual. This requires some thought.

In terms of team size?

Yes, since we rely on established version control
systems (git) to deal with groupware aspects; and
ves, diff/merge works as expected.

In terms of language complexity?

Yes, in particular, since you can modularize
the language definitions.

Can | find the people
to do this? -’.7/41

Yes, but it is a significant change, so:

- it may be a significant education/training effort.
- a few people might not get it

- a few people may not want to do it.

This is a threat!

@

Precision and Formality
Different Processes
Higher Efficiency

&

Automation
Focus on Engineering
Empower Business Ppl

-> New Skills
-> Role Change
-> Job Loss

-> Job Loss
-> Role Change
-> Less Importance

Some people are afraid of this.
Take them seriously.

FEARLESS

llllllllllllllllllllllllllll

CHANGE,
MR

NARCEN AR e

A change of

that must be managed!

We tried it before,
and it failed.

The UML tool was a bad choice

-> ok, choose a better one

Hard to represent business logic in UML.
-> oh, really?? Who would have thunk.

Generate Class-Skeletons, fill in app logic.
-> how and why does this solve the challenges??

Round-Tripping did not work.

-> never works, but why use it?

Such an approach is completely pointless!!

Rule Language

No tests and debuggers for end users
-> hard to be sure about things

Language not expressive enough (tables)

Tool too limited to enhance expressivity
-> tedious to express many algorithms

Parts still had to be programmed manually
-> overall process more complex, not simpler

The right direction, but not good enough.

How is this not
an EDM?

the whole enterprise
— never works.

Language Modularization,
Composition and Extensions

Narrow interfaces between languages
(and between the models build with the languages)

Delayed global consistency checks
(in contrast to local, eager checks)

Can be limited to
one or more subdomains

Why now?
What has changed?

Complexity rises, time to market
reduces, variability increases.
What is the alternative?

Tools have gotten better in terms of
flexibility, usability, scalability.
It seems realistic now.

Contra-
indications

No structure in domain
-> language would be too low level

No availability of domain experts
-> cannot retrieve knowledge for building the language

No resources available
-> initially it will be additional work...

Immature Organization
-> never heard of unit test, Cl and VCS? Bad sign!

How do you
introduce this?

YOU NEVER KNOW HOW

STRONG

YOU ARE..
UNTIL BEING GTQONG IS THE

AONLY cHOICE YOU HAVE.

1 Agree this is the right way

Self-Learning and considering alternatives
Consulting & Look at relevant similar cases
Analysis of your own situation

2 Prototype it

Possibly with external help to learn tool and guide
Small but meaningful sub problem

Evaluate Approach and tools

Integrate Stake Holders -> Sales Job!

3 Go for the real thing

See next slides.

The
Skunk
. Works

Create a dedicated team/organization
whose goal it is to be successful with the
approach.

Decouple from Daily Business.

Staff with people who are driven, open to
change and good communicators.

&
A \7 \‘\ / \.\ |
Y A3 Z “‘ o/ \ Xdisd
g pp S O e N
S N K A=) ; ,'\ t
"Z,.'Jl‘,/ 7 '
7 mrL \
7 | =47 { p
: g 9 & | '
a s
A hice

Step by Step 1
Vertical Slice through Domain, then expand

Step by Step 2
Increasing Levels of Formality

Prose
Prose + Glossary
Prose + Glossary + Calculation Rules + Code Generation

b P
bt 7K Ay PERE S el
i NG 7 P~\‘—~‘——r/,—»‘ & \ |
IS LN AN A
A N D\ At
R AN = 7 \ !
7 Y \
7 | =47 { p
: g 9 & |
a 7
; /
)

Step by Step 1
Vertical Slice through Domain, then expand

Step by Step 2
Increasing Levels of Formality

Keep the end goal (formalization, automation) in sight, othewise
it is hard to justify ,,strange tools” as opposed to a Wiki, e.g.

Why is this an
initiative by engineers?

Business people don‘t feel the pain
-> the developers find inconsistencies and problems

They don‘t necessarily know the ways

to solve the problem
-> don‘t have the ideas of how to do it better

And by the way:
We know many organizations where the business
people want to be involved more directly, but the

technical people don‘t know how do do it.

5

S
u
m
uk
r
Y

Expressivity for Core
Domain Knowledge
Build Language for Domain!
User-Friendly Notation
Great Tool/IDE
You‘ve seen the demos.

Testing
An integrated DSL for testing.

Meaningful Analyses
Types, Consistency, Checking

Synthesis of Software
Code Generation.

- @

Fundamentally
still manual, no Al.
But much better tooling.

N

9

o

@
L 2

Become Language
Engineering Experts.

)

N
&

S
e @
g

technology, engineering

consider using an LWB as

the foundation,

and recasting the ,, application”
as a set of languages.

DSL Engineering

Designing, Implementing and Using
Domain-Specific Languages

s, A
6 A
Lmm——

The MPS Language
Markus Voelter Workbench

with Sebastiun Beng, Christiun Dietrich, Birgt Evgelmann “ﬂ‘ric TWI, » vo‘ '
Mats Helunder, Lennwrt Kats, Relco Vieser, Guido Waschsmuth ume
Specific Languages

dsibook.org hitp://books.campognelob,.org
Rarkes Yoalter =3

A A~
mheddr

Meta Programming System

voelter@acm.org

Noelter (gt /it

@markusvoelter

