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Software Architecture Today 
Software architecture is a somewhat funny thing. Everybody in software 
development agrees that we need it in some way, shape or form. However, 
we cannot agree on a definition, we don’t really know how to manage it 
efficiently in non-trivial projects and we usually don’t have ways to 
express a system’s architectural abstractions precisely and concisely. 
Asking some of my customers to describe a system’s architecture, I get 
responses that include specific technologies, buzzwords (such as AJAX or 
SOA) or vague notions of “components” (like publishing, catalogue or 
payment). Some have wallpaper-sized UML diagrams, the meaning of the 
boxes and lines not being really clear. All of these things are aspects of the 
architecture of their system. But none of those explanations represent a 
concise, unambiguous and “formal” description of the core abstractions of 
a system.  

This is not necessarily surprising since we don’t have a way of expressing 
directly the architectural abstractions of a system. We don’t have a language 
that directly expresses software architecture. As we all know, if we don’t 
have a language to express something, we have a hard time grasping it. 
Today’s mainstream programming languages don’t even have a way to 
express building blocks larger than classes and the relationships between 
them, the very basics of software architecture. 

To address this issue, in this article I explain the usefulness of using 
domain specific languages (DSLs) for describing, managing and validating 
software architecture. The approach centers around the practice of building 
an architecture/system/platform-specific DSL that captures the core 
architectural abstractions of the particular architecture/system/platform, 
and using code generation to implement it consistently. 

At the time of writing of this article, I had implemented the approach with 
various customers from various domains, including embedded control 
systems, finance and large-scale web applications. I cannot name the 
customers here, but they are global players in their respective domains. 
The projects aim at rebuilding core platforms that will be used over at least 
the next decade – explaining the drive towards a stable, well-defined and 
technology-agnostic architecture definition – in a decade technology goes 
through at least 3 hype cycles. 

My Notion of Software Architecture 
So what is software architecture? Many definitions are available in the 
industry (a nice collection is at [AD]). My own working definition of 
software architecture could be seen as a “best of” of many of these 



  

definitions: software architecture is all those aspects of a system that we want 
to be consistent throughout the system for reasons ranging from meeting non-
functional requirements to technology best practices to maintainability to 
developer training. The definition also implies that there are aspects of a 
system for which there’s no need for system-wide consistency. As the 
person (or team) responsible for architecture, I don’t care about how those 
aspects are implemented, as long as they fulfill stated requirements. 

My working definition does not state anything about granularity. There 
might be certain nitty-gritty details of the locking protocol used in a 
concurrent system that I consider part of the system architecture, because if 
they are not implemented consistently, the overall system might encounter 
resource contention.  

Here is how I break down software architecture in practice. There’s what I 
call the conceptual architecture, it defines the concepts used to describe the 
system on an architectural level, as well as the relationship between these 
concepts. Example concepts include component, message queue, interface, 
async RPC call or actor. Application architecture uses instances of these 
concepts to define a concrete system. For example, there might be a 
component CustomerManagement that implements the CustomerLookup 
interface. Once the conceptual architecture is defined, we can use the non-
functional requirements to determine a technology mapping for these 
concepts. For example, components can be mapped to EJBs or WCF 
components. Finally, we define a programming model, the way how 
developers express the application architecture – this includes ways (to 
stick with the examples above) to describe and implement components, an 
API to create messages and post them to a queue or the actual protocol for 
acquiring and locking resources. 

Of course all of this should be developed incrementally, by down-to-earth 
members of the team (not ivory-tower architects). However, I do think that 
even in an agile/iterative/incremental development approach you want to 
make sure that at any given time the system conforms to whatever is 
defined as the architecture. The notion of the architecture evolves over time, 
but at any relevant point in time (for example an incremental release) you 
want the system to be consistent. Although this article is not on process, I 
find this aspect very important to keep in mind. 

Architecture DSLs 
So how does all of this relate to DSLs? An Architecture DSL (ADSL) is a 
language that expresses a system’s architecture directly. Directly means 
that the language’s abstract syntax contains constructs for all the 
ingredients of the conceptual architecture. The language can thus be used 
to describe a system on architectural level. Code generation is used to 
generate representations of the application architecture in the 
implementation language(s), automating the technology mapping (once the 
decisions about the mapping have been made manually, of course). Finally, 
the programming model is defined with regards to the generated code plus 
additional frameworks.  



  

To enable architecture model checking and validation, and to support 
meaningful code generation, the Architecture DSL has to be defined 
formally – meaning that the semantics are unambiguous, and checkers and 
generators are able to process the models. “Just Pictures” is not enough. 

For humans to be able to use the language a suitable concrete syntax must 
be defined. Suitable means that it must efficiently support the abstraction of 
architectural concerns by developers. It must also integrate well with 
existing development tools, specifically, source code management systems. 

I want to (re)emphasize an important point: I do not advocate the 
definition of a generic, reusable language such as the various ADLs, or 
UML (see below). Based on my experience, the approach works best if you 
define the ADSL in real time as you understand, define and evolve the 
conceptual architecture of a system! The process of defining the language 
actually helps the architecture/development team to better understand, 
clarify and refine architectural abstractions – this goes back to the notion 
above: now that you have a language to express architectural aspects of a 
system, this helps you reason and discuss about the architecture. 

An Example 
This section contains an example of an Architecture DSL I have 
implemented for a real system together with a customer from the domain 
of airport management systems. 

The example, as well as the real-world systems mentioned in the first 
section uses textual syntax to express the architecture. I will argue below 
why this decision has been made. 

So I was with a customer for one of my consulting gigs. The customer 
decided they wanted to build a new flight management system. Airlines 
use systems like these to track and publish information about: whether 
airplanes have landed at airports, whether they are late, the technical status 
of the aircraft, etc. The system also populates the online-tracking system on 
the web and information monitors at airports. This system is in many ways 
a typical distributed system. There is a central data center to do some of the 
heavy number crunching, but there’s additional machines distributed over 
relatively large areas. Consequently you cannot simply shut down the 
whole system, introducing a requirement to be able to work with different 
versions of parts of the system at the same time. Different parts of the 
system will be built with different technologies: Java, C++, C#. This is not 
an untypical requirement for large systems. Often you use Java technology 
for the backend, and .NET technology for a Windows frontend. My 
customer had decided that the backbone of the system would be a 
messaging infrastructure and they were evaluating different messaging 
tools for performance and throughput.  

When I arrived they briefed me about all the details of the system and the 
architectural decisions they had already made, and then asked me whether 
all this made sense. It turned out quickly that, while they knew many of the 
requirements and had made specific decisions about certain architectural 



  

aspects, they didn’t have a well-defined conceptual architecture. And it 
showed: when the team were discussing about their system, they stumbled 
over disagreements and misunderstandings all the time. They had no 
language for the architecture.  

Hence, we started building a language. We would actually build the 
grammar, some constraints and an editor while we discussed the 
architecture in a two-day workshop. 

We started with the notion of a component. At that point the notion of 
components is defined relatively loosely. It’s simply the smallest 
architecturally relevant building block, a piece of encapsulated 
functionality. We also assumed that components can be instantiated, 
making components the architectural equivalent to classes in OO 
programming1. To enable components to interact, we also introduced the 
notion of interfaces, as well as ports, which are named communication 
endpoints typed with an interface. Ports have a direction (provides, requires) 
as well as a cardinality. 

component DelayCalculator { 
  provides aircraft: IAircraftStatus  
  provides managementConsole: IManagementConsole  
  requires screens[0..n]: IInfoScreen 
} 
component Manager { 
  requires backend[1]: IManagementConsole 
} 
component InfoScreen { 
  provides default: IInfoScreen  
} 
component AircraftModule { 
  requires calculator[1]: IAircraftStatus 
} 

It is important to not just state which interfaces a component provides, but 
also which interfaces it requires because we want to be able to understand 
(and later: analyze with a tool) component dependencies.  

We then looked at instantiation. There are many aircraft, each running an 
AircraftModule, and there are even more InfoScreens. So we need to express 
instances of components. Note that these are logical instances. Decisions 
about pooling and redundant physical instances have not yet been made. 
We also introduced connectors to define actual communication paths 
between components (and their ports). 

instance dc: DelayCalculator 
instance screen1: InfoScreen 
instance screen2: InfoScreen 
connect dc.screens to (screen1.default, screen2.default) 

At some point it became clear that in order not to get lost in all the 
components, instances and connectors we need to introduce some kind of 
namespace. And we’d need to distribute things to different files (the tool 
support makes sure that go to definition and find references still works).  

                                                      
1 Coming up with the concrete set of components, their responsibilities, and 
consequently, their interfaces is not necessarily trivial either. Techniques like CRC 
cards can help here [CRC]. 



  

namespace com.mycompany { 
  namespace datacenter { 
    component DelayCalculator { … } 
    component Manager { … } 
  } 
  namespace mobile { 
    component InfoScreen { … } 
    component AircraftModule { … } 
  } 
}  

It is also a good idea to keep component and interface definition 
(essentially: type definitions) separate from system definitions (connected 
instances), so we introduced the concept of compositions. 

namespace com.mycompany.test { 
  composition testSystem { 
    instance dc: DelayCalculator 
    instance screen1: InfoScreen 
    instance screen2: InfoScreen 
    connect dc.screens to (screen1.default, screen2.default) 
  } 
}  

Of course in a real system, the DelayCalculator would have to dynamically 
discover all the available InfoScreens at runtime. There is not much point in 
manually describing those connections one by one. So we introduced 
dynamic connectors: we specify a query that is executed at runtime against 
some kind of naming/trader/lookup/registry infrastructure. It is 
reexecuted every 60 seconds to find the InfoScreens that had just come 
online. 

namespace com.mycompany.production { 
  instance dc: DelayCalculator 
  dynamic connect dc.screens every 60 query { 
    type = IInfoScreen 
    status = active 
  } 
}  

A similar approach can be used to realize load balancing or fault tolerance. 
A static connector can point to a primary as well as a backup instance. Or a 
dynamic query can be reexecuted when the currently used component 
becomes unavailable.  

To support registration of instances, we add additional syntax to their 
definition. A registered instance registers itself with the registry, using its 
name (qualified through the namespace) and all provided interfaces. 
Additional parameters can be specified, the following example registers a 
primary and a backup instance for the DelayCalculator. 

namespace com.mycompany.datacenter { 
  registered instance dc1: DelayCalculator { 
    registration parameters {role = primary} 
  } 
  registered instance dc2: DelayCalculator { 
    registration parameters {role = backup} 
  } 
}  

Until now we didn’t really define what an interface is. We knew that we’d 
like to build the system based on a messaging infrastructure. Here’s our 



  

first idea: an interface is a collection of messages, where each message has a 
name and a list of typed parameters (this also requires the ability to define 
data structures, but in the interest of brevity, we won’t show that). We also 
defined several message interaction patterns, here are examples of oneway 
and request-reply:  

interface IAircraftStatus { 
  oneway message reportPosition(aircraft: ID, pos: Position ) 
  request-reply message reportProblem { 
    request (aircraft: ID, problem: Problem, comment: String) 
    reply (repairProcedure: ID)  
  } 
}  

We talked a long time about suitable message interaction patterns. After a 
while it turned out that a core use case for messages is to push status 
updates of various assets out to various interested parties. For example, if a 
flight is delayed because of a technical problem with an aircraft, then this 
information has to be pushed out to all the InfoScreens in the system. We 
prototyped several of the messages necessary for “broadcasting” complete 
updates, incremental updates and invalidations of a status item. And then 
it hit us: We were working with the wrong abstraction! While messaging is 
a suitable transport abstraction for these things, architecturally we’re really 
talking about replicated data structures:  

• you define a data structure (such as FlightInfo).  

• The system then keeps track of a collection of such data structures 

• This collection is updated by a few components and typically read 
by many other components 

• The update strategies from publisher to receiver always include full 
update of all items in the collection, incremental updates of just one 
or a few items, invalidations, etc. 

Once we understood that in addition to messaging there’s this additional 
communication abstraction in the system, we added this to our 
Architecture DSL and were able to write something like the following.  

struct FlightInfo { 
   //  … attributes …  
} 
 
replicated singleton flights { 
  flights: FlightInfo[] 
} 
 
component DelayCalculator { 
  publishes flights { publication = onchange } 
} 
 
component InfoScreen { 
  consumes flights { init = all update = every(60) } 
} 

We define data structures and replicated items. Components can then 
publish or consume those replicated data structures. We state that the 
publisher publishes the replicated data whenever something changes in the 



  

local data structure. However, the InfoScreen only needs an update every 60 
seconds (as well as a full load of data when it is started up). 

Data replication is much more concise compared to a description based on 
messages. We can automatically derive the kinds of messages needed for 
full update, incremental update and invalidation. The description also 
much more clearly reflects the actual architectural intent: it expresses better 
what we want to do (replicate data) compared to a lower level description 
of how we want to do it (sending messages). 

While replication is a core concept for data, there’s of course still a need for 
messages, not just as an implementation detail, but also as a way to express 
architectural intent. It is useful to add more semantics to an interface, for 
example, defining valid sequencing of messages. A well-known way to do 
that is to use protocol state machines.  

Here is an example that expresses that you can only report positions and 
problems once the aircraft is registered. In other words, the first thing an 
aircraft has to do is register itself.  

interface IAircraftStatus { 
  oneway message registerAircraft(aircraft: ID )  
  oneway message unregisterAircraft(aircraft: ID )  
  oneway message reportPosition(aircraft: ID, pos: Position )  
  request-reply message reportProblem { 
    request (aircraft: ID, problem: Problem, comment: String) 
    reply (repairProcedure: ID)  
  } 
  protocol initial = new { 
    state new { 
      registerAircraft => registered 
    } 
    state registered {  
      unregisterAircraft => new 
      reportPosition 
      reportProblem 
    } 
  } 
}  

Initially, the protocol state machine is in the new state. The only valid 
message is registerAircraft. Once this is received, we transition into the 
registered state. In registered, you can either unregisterAircraft and go back 
to new, or receive a reportProblem or reportPosition message in which case 
you’ll remain in the registered state. 

We mentioned above that the system is distributed geographically. This 
means it is not feasible to update all part of the systems (e.g. all InfoScreens 
or all AircraftModules) in one swoop. As a consequence, there might be 
several versions of the same component running in the system. To make 
this feasible, many non-trivial things need to be put in place in the runtime. 
But the basic requirement is this: you have to be able to mark up versions 
of components, and you have to be able to check then for compatibility 
with old versions.  

The following piece of code expresses that the DelayCalculatorV2 is a new 
implementation of DelayCalculator. newImplOf means that no externally 
visible aspects change. This is why no ports and stuff are declared. For all 



  

intents and purposes, it’s the same thing. Just maybe a couple of bugs are 
fixed. 

component DelayCalculator { 
  publishes flights { publication = onchange } 
} 
newImplOf component DelayCalculator: DelayCalculatorV2 

If you really want to evolve a component (i.e. change its external signature 
you can write it like this: 

component DelayCalculator { 
  publishes flights { publication = onchange } 
} 
newVersionOf component DelayCalculator: DelayCalculatorV3 { 
  publishes flights { publication = onchange } 
  provides somethingElse: ISomething 
} 

The keyword is newVersionOf, and now you can provide additional features 
(like the somethingElse port) and you remove required ports. You cannot 
add additional required ports or remove any of the provided ports since 
that would destroy the “plug in compatibility”. Constraints make sure that 
these rules are enforced on model level.  

What we did in a nutshell 
The approach shown above proposes the definition of a formal language 
for a system’s conceptual architecture. You develop the language as the 
understanding of your architecture grows, in realtime: the example above 
has been built during a two-day architecture exploration workshop. The 
language therefore always resembles the complete understanding about 
your architecture in a clear and unambiguous way.  

We were able to separate what we wanted the system to do from how it 
would achieve it: all the technology discussions were now merely an 
implementation detail of the conceptual descriptions given here (albeit of 
course, a very important implementation detail). We also had a clear and 
unambiguous definition of what the different terms meant. The nebulous 
concept of component has a formal, well-defined meaning in the context of 
this system.  

As we enhance the language, we also describe the application architecture 
using that language. We are building Architecture DSLs. 

DSLs can be used to specify any aspect of a software system. The big hype 
is around using a DSL to describe the business functionality (for example, 
calculation rules in an insurance system). While this is a very worthwhile 
use of DSLs, it is also worthwhile to use DSLs to describe software 
architecture. 

Benefits 
All involved will have clear understanding of the concepts used to describe 
the system, there is an unambiguous vocabulary to describe applications. 



  

Models can be analyzed and used as a basis for code generation (see 
below). The architecture is freed from implementation details, or in other 
words: conceptual architecture and technology decisions are decoupled, 
making both easier to evolve. We can define a clear programming model 
based on the conceptual architecture. Last but not least, the architect(s) can 
contribute directly to the project, by building (or helping to build) the 
languages and related tools – an artifact that the rest of the team can 
actually use. In a very real sense, this could be called executable 
architecture. 

Why textual? 
Textual DSLs have several advantages. Here are some of them: 

• Languages as well as editors are easier to build compared to 
custom graphical editors (although the validity of this  statement 
depends  on the tooling used) 

• Textual artifacts integrate much better with existing developer 
tooling than repository-based models. You can use well-known 
diff/merge tools, and it is much easier to version/tag/branch 
models and code together. Generally, the tooling is more lightweight. 

• Model evolution (i.e. adaptation of models when the DSL evolves 
over time) is much simpler. While you can use the standard 
approach – a model-to-model transformation from the old to the 
new version – you can always use search/replace or grep as a 
fallback, technologies familiar to everybody. 

Where a graphical notation is useful to see relationships between architectural 
elements, you can use tools like Graphviz [GV] or Prefuse [PF]. Since the 
model contains all the relevant data, you can easily transform the model into a 
format those tools can process. The following is an example of a graphviz-
generated diagram. It shows namespaces, components, interfaces and datatypes as 
well as their relationships. It has been created by transforming the textual 
model into a dot file, graphviz’ way of describing graphs. 



  

 

Tooling 
There are several tools available that support the definition of DSLs – 
textual or graphical. What those tools have in common is support for the 
definition of abstract and concrete syntax, as well as for user-friendly 
editors. In the textual category, you might want to look at Eclipse/TMF 
Xtext/openArchitectureWare [oAW] the Microsoft Oslo [OSLO] toolkit 
Jetbrains MPS [MPS], or Intentional’s Domain Workbench [IDW]. In the 
graphical world, take a look at MetaEdit+ [ME].   

For reasons of space, the detailed discussion of how to use these tools is 
out of the scope of this article. 

Validating the Model 
We need validation rules that constrain the model even further than what 
we can express with the language grammar. Examples include name-
uniqueness, type checks or versioning constraints. To implement such 
constraints, two preconditions are necessary. The constraint itself must be 
describable via a formal algorithm (expressed, for example in OCL). And 
the data needed to evaluate the algorithm must be available in the model. 
For example, if you want to verify whether a certain deployment scheme is 
feasible, you might have to put the available network bandwidth and the 
timing/frequency of messages as well as the size of primitive data types 
into the model (maybe in a separate file). While capturing this data sounds 
like a burden, this is actually an advantage: it is core architectural 
knowledge. 



  

Generating Code 
The primary benefit of developing and using the architecture DSL is to 
better understand concepts by removing any ambiguity and defining them 
formally. It helps you understand the system and get rid of unwanted 
technology dependencies. However, ultimately we are not interested in 
correct models, but in correct running systems. To make this possible, we 
use code generation. It simplifies and constrains application 
implementation.. 

• We generate an API against which the implementation is coded. 
That API can be non-trivial, for example taking into account the 
various messaging paradigms or data replication. The generated 
API allows components to be implemented in a way that does not 
depend on specific technologies (it does depend on a specific 
programming language, though). The generated API hides those 
from the component implementation code.  

• We also generate the code that is necessary to run the components 
(incl. their technology-neutral implementation) on a suitable 
middleware infrastructure . We call this layer of code the 
technology mapping code (or glue code). It typically also contains 
configuration files for the target platform(s). Sometimes this 
requires additional “mix in models” that specify configuration 
details for the platform. As an additional benefit, the generators 
capture best practices in working with the selected technologies.  

It is of course feasible to generate APIs for several target languages 
(supporting component implementation in various languages) and/or 
generating glue code for several target platforms (supporting the execution 
of the same component on different middleware platforms, for example for 
local testing). This nicely supports potential multi-platform requirements, 
and also provides a way to scale or evolve the infrastructure over time. 

Component Implementation 
By default, component implementation code is written manually against 
the generated API code, using well-known composition techniques such as 
inheritance, delegation or partial classes.  

However, there are other alternatives for component implementation that 
do not use a 3GL, but instead use formalisms that are specific to certain 
classes of behavior: state machines, business rules or workflows. You can 
also define and use a domain-specific language for certain classes of 
functionality in a specific business domain. Note how this connects the 
dots to business DSLs mentioned earlier. 

Be aware that the discussion in this section is only really relevant for 
application-specific behavior, not for all implementation code. Large 
amounts of implementation code are related to the technical infrastructure 
– remoting, persistence, workflow – of an application. It can be derived 
from the architectural models, and generated automatically. 



  

Standards, ADLs and UML 
Describing architecture with formal languages is not a new idea. Various 
communities recommend using Architecture Description Languages 
(ADLs, for example [ADL1, ADL2, ADL3, and ADL4]) or the Unified 
Modeling Language (UML) to this end. However, all of those approaches 
advocate using existing, generic languages for specifying architecture, 
although some of them, including the UML, can be customized to some 
degree.  

However this completely misses my point! I have not experienced much 
benefit in shoehorning your architecture description into the (typically 
very limited) constructs provided by predefined languages – one of the 
core activities of the approach explained is this paper is the process of 
actually building your own language to capture your system’s conceptual 
architecture.  

So: are standards important? And if so, where?  

In order to use any architecture modeling language successfully, people 
first and foremost have to understand the architectural concepts they are 
dealing with. Even if UML is used, people will still have to understand the 
architectural concepts and map them to the language – in case of UML that 
often requires an architecture-specific profile. Is a profiled UML still 
standard?  

Note that I do not propose to ignore standards altogether. The tools are 
built on MOF/EMOF, which is an OMG standard, just like the UML. It is 
just on a different meta level.  

Of course you can use the approach explained above with UML profiles. I 
have done this in several projects. It works, but not as well by far as the 
approach explained in this paper. There are several reasons, some of them 
are: 

• Instead of thinking about architectural concepts, working with UML 
makes you think more about how to use UML’s existing constructs 
to express your architectural intentions. That is the wrong focus! 

• Customizing UML tools (beyond different colors or icons for 
stereotyped elements) is restricted, cumbersome and tool-specific 
(i.e. non-standard). A lot of effort must be spent to make profiled 
UML look and feel as if it was a DSL. And of course, you still have 
to deal with the complex UML meta model when processing the 
models… 

• UML tools typically don’t integrate very well with existing 
development infrastructure (editors, CVS/SVN, diff/merge). That is 
a huge problem now models play the role of source code (as 
opposed to being “analysis pictures”). Tool integration issues can 
make developer acceptance very challenging. 



  

A few words on Process and People 
Define the language iteratively. Build example models all the time, and 
keep a reference model (one the uses all parts of the language) current at 
times. Interleave language definition and generator construction, to verify 
you have all the data in the models you need for generating meaningful 
code.  

Don’t just define a nice language, but also a user-friendly editor for the 
application developers who will have to use the language. Although 
language and editor definition with the modern tools mentioned above is 
quite straight forward and much simpler that what you might know from 
lex/yacc or antlr, make sure the developers who define the language can 
“think meta”; for some people this can be a challenge.  

Please document how to use the language, editor and code generator based 
on examples and walk-throughs. Nobody reads “reference manuals”. In the 
documentation, also explain the architectural concepts expressed via the 
language. People will not understand the language unless they understand 
what the language describes! And please set aside some time for taking 
into account feedback (bugs, improvements) from the language users. 
Throwing something like a custom language “over the fence” and then not 
supporting it is a death sentence for the approach! 

This paper does not contain a consistent methodology. I believe that  

• a good idea proven in real projects (as suggested in this in this 
article) 

• together with general software development common sense (such as 
iterative/incremental development and testing) 

• as well as (architectural) experience (which I expect you to bring to 
the table) 

• and of course learning how to use the language engineering tools 

is enough to apply this approach successfully in the real world.  

Challenges 
The approach of course does have a couple of challenges. Let me point out 
some of them.  

Although the tools for defining DSLs, editors and code generators are 
becoming better, there is some overhead involved in building the language 
tools. I don’t count the analytical part of distilling the architectural 
concepts and defining the language as overhead, since you’ll have to do 
that in some form anyway. But the construction of the tools is additional 
work. In my experience it pays off in most settings, but it is an initial 
investment that needs to be done.  

Convincing developers and especially management to abandon the use of 
standards (UML, ADLs) for architecture description can be a challenge. To 
overcome it I like to do a small, but meaningful prototype and show the 
benefits of being in control of your language and not being constrained by 
a predefined language. 



  

Another challenge is the fact that the semantics of the DSL are usually not 
formally specified. Typically you write documentation that explains the 
meaning of language constructs. The code generator also serves as a 
vehicle for semantics definition, since it maps the language constructs to 
executable concepts in a target language with known semantics. However, 
if you generate towards several languages, then you need one central 
semantics definition against which you validate the various 
implementations. In practice, such a definition is not feasible. To overcome 
this, you write tests. 

Finally, if you have many related, but not identical systems there will be 
common parts between several architecture DSLs. Consequently, you 
might want to modularize your DSL into several combinable language 
modules. This “base language” can then be extended with the concepts that 
are specific to the system in question. However, because of limitations in 
today’s language engineering tools, such an approach is still a bit of a 
challenge. I have written about my prototypical implementations here 
[FAM]. Tools like MPS [MPS] mandate another try, though.  

Summary 
The article describes how to use DSLs to describe architecture. I want to 
reemphasize the importance of defining the language specifically for your 
context, together with the architecture team as the architecture is built – a 
generic approach does not reap the same benefits. Also, experience with 
my customers shows one thing consistently: once familiar with the 
capabilities of today’s tools, the approach is considered much more feasible 
compared to what they had initially thought.  
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