

Architecture as Language
Markus Völter – Final Version

Software Architecture Today
Software architecture is a somewhat funny thing. Everybody in software
development agrees that we need it in some way, shape or form. However,
we cannot agree on a definition, we don’t really know how to manage it
efficiently in non-trivial projects and we usually don’t have ways to
express a system’s architectural abstractions precisely and concisely.
Asking some of my customers to describe a system’s architecture, I get
responses that include specific technologies, buzzwords (such as AJAX or
SOA) or vague notions of “components” (like publishing, catalogue or
payment). Some have wallpaper-sized UML diagrams, the meaning of the
boxes and lines not being really clear. All of these things are aspects of the
architecture of their system. But none of those explanations represent a
concise, unambiguous and “formal” description of the core abstractions of
a system.

This is not necessarily surprising since we don’t have a way of expressing
directly the architectural abstractions of a system. We don’t have a language
that directly expresses software architecture. As we all know, if we don’t
have a language to express something, we have a hard time grasping it.
Today’s mainstream programming languages don’t even have a way to
express building blocks larger than classes and the relationships between
them, the very basics of software architecture.

To address this issue, in this article I explain the usefulness of using
domain specific languages (DSLs) for describing, managing and validating
software architecture. The approach centers around the practice of building
an architecture/system/platform-specific DSL that captures the core
architectural abstractions of the particular architecture/system/platform,
and using code generation to implement it consistently.

At the time of writing of this article, I had implemented the approach with
various customers from various domains, including embedded control
systems, finance and large-scale web applications. I cannot name the
customers here, but they are global players in their respective domains.
The projects aim at rebuilding core platforms that will be used over at least
the next decade – explaining the drive towards a stable, well-defined and
technology-agnostic architecture definition – in a decade technology goes
through at least 3 hype cycles.

My Notion of Software Architecture
So what is software architecture? Many definitions are available in the
industry (a nice collection is at [AD]). My own working definition of
software architecture could be seen as a “best of” of many of these

definitions: software architecture is all those aspects of a system that we want
to be consistent throughout the system for reasons ranging from meeting non-
functional requirements to technology best practices to maintainability to
developer training. The definition also implies that there are aspects of a
system for which there’s no need for system-wide consistency. As the
person (or team) responsible for architecture, I don’t care about how those
aspects are implemented, as long as they fulfill stated requirements.

My working definition does not state anything about granularity. There
might be certain nitty-gritty details of the locking protocol used in a
concurrent system that I consider part of the system architecture, because if
they are not implemented consistently, the overall system might encounter
resource contention.

Here is how I break down software architecture in practice. There’s what I
call the conceptual architecture, it defines the concepts used to describe the
system on an architectural level, as well as the relationship between these
concepts. Example concepts include component, message queue, interface,
async RPC call or actor. Application architecture uses instances of these
concepts to define a concrete system. For example, there might be a
component CustomerManagement that implements the CustomerLookup
interface. Once the conceptual architecture is defined, we can use the non-
functional requirements to determine a technology mapping for these
concepts. For example, components can be mapped to EJBs or WCF
components. Finally, we define a programming model, the way how
developers express the application architecture – this includes ways (to
stick with the examples above) to describe and implement components, an
API to create messages and post them to a queue or the actual protocol for
acquiring and locking resources.

Of course all of this should be developed incrementally, by down-to-earth
members of the team (not ivory-tower architects). However, I do think that
even in an agile/iterative/incremental development approach you want to
make sure that at any given time the system conforms to whatever is
defined as the architecture. The notion of the architecture evolves over time,
but at any relevant point in time (for example an incremental release) you
want the system to be consistent. Although this article is not on process, I
find this aspect very important to keep in mind.

Architecture DSLs
So how does all of this relate to DSLs? An Architecture DSL (ADSL) is a
language that expresses a system’s architecture directly. Directly means
that the language’s abstract syntax contains constructs for all the
ingredients of the conceptual architecture. The language can thus be used
to describe a system on architectural level. Code generation is used to
generate representations of the application architecture in the
implementation language(s), automating the technology mapping (once the
decisions about the mapping have been made manually, of course). Finally,
the programming model is defined with regards to the generated code plus
additional frameworks.

To enable architecture model checking and validation, and to support
meaningful code generation, the Architecture DSL has to be defined
formally – meaning that the semantics are unambiguous, and checkers and
generators are able to process the models. “Just Pictures” is not enough.

For humans to be able to use the language a suitable concrete syntax must
be defined. Suitable means that it must efficiently support the abstraction of
architectural concerns by developers. It must also integrate well with
existing development tools, specifically, source code management systems.

I want to (re)emphasize an important point: I do not advocate the
definition of a generic, reusable language such as the various ADLs, or
UML (see below). Based on my experience, the approach works best if you
define the ADSL in real time as you understand, define and evolve the
conceptual architecture of a system! The process of defining the language
actually helps the architecture/development team to better understand,
clarify and refine architectural abstractions – this goes back to the notion
above: now that you have a language to express architectural aspects of a
system, this helps you reason and discuss about the architecture.

An Example
This section contains an example of an Architecture DSL I have
implemented for a real system together with a customer from the domain
of airport management systems.

The example, as well as the real-world systems mentioned in the first
section uses textual syntax to express the architecture. I will argue below
why this decision has been made.

So I was with a customer for one of my consulting gigs. The customer
decided they wanted to build a new flight management system. Airlines
use systems like these to track and publish information about: whether
airplanes have landed at airports, whether they are late, the technical status
of the aircraft, etc. The system also populates the online-tracking system on
the web and information monitors at airports. This system is in many ways
a typical distributed system. There is a central data center to do some of the
heavy number crunching, but there’s additional machines distributed over
relatively large areas. Consequently you cannot simply shut down the
whole system, introducing a requirement to be able to work with different
versions of parts of the system at the same time. Different parts of the
system will be built with different technologies: Java, C++, C#. This is not
an untypical requirement for large systems. Often you use Java technology
for the backend, and .NET technology for a Windows frontend. My
customer had decided that the backbone of the system would be a
messaging infrastructure and they were evaluating different messaging
tools for performance and throughput.

When I arrived they briefed me about all the details of the system and the
architectural decisions they had already made, and then asked me whether
all this made sense. It turned out quickly that, while they knew many of the
requirements and had made specific decisions about certain architectural

aspects, they didn’t have a well-defined conceptual architecture. And it
showed: when the team were discussing about their system, they stumbled
over disagreements and misunderstandings all the time. They had no
language for the architecture.

Hence, we started building a language. We would actually build the
grammar, some constraints and an editor while we discussed the
architecture in a two-day workshop.

We started with the notion of a component. At that point the notion of
components is defined relatively loosely. It’s simply the smallest
architecturally relevant building block, a piece of encapsulated
functionality. We also assumed that components can be instantiated,
making components the architectural equivalent to classes in OO
programming1. To enable components to interact, we also introduced the
notion of interfaces, as well as ports, which are named communication
endpoints typed with an interface. Ports have a direction (provides, requires)
as well as a cardinality.

component DelayCalculator {
 provides aircraft: IAircraftStatus
 provides managementConsole: IManagementConsole
 requires screens[0..n]: IInfoScreen
}
component Manager {
 requires backend[1]: IManagementConsole
}
component InfoScreen {
 provides default: IInfoScreen
}
component AircraftModule {
 requires calculator[1]: IAircraftStatus
}

It is important to not just state which interfaces a component provides, but
also which interfaces it requires because we want to be able to understand
(and later: analyze with a tool) component dependencies.

We then looked at instantiation. There are many aircraft, each running an
AircraftModule, and there are even more InfoScreens. So we need to express
instances of components. Note that these are logical instances. Decisions
about pooling and redundant physical instances have not yet been made.
We also introduced connectors to define actual communication paths
between components (and their ports).

instance dc: DelayCalculator
instance screen1: InfoScreen
instance screen2: InfoScreen
connect dc.screens to (screen1.default, screen2.default)

At some point it became clear that in order not to get lost in all the
components, instances and connectors we need to introduce some kind of
namespace. And we’d need to distribute things to different files (the tool
support makes sure that go to definition and find references still works).

1 Coming up with the concrete set of components, their responsibilities, and
consequently, their interfaces is not necessarily trivial either. Techniques like CRC
cards can help here [CRC].

namespace com.mycompany {
 namespace datacenter {
 component DelayCalculator { … }
 component Manager { … }
 }
 namespace mobile {
 component InfoScreen { … }
 component AircraftModule { … }
 }
}

It is also a good idea to keep component and interface definition
(essentially: type definitions) separate from system definitions (connected
instances), so we introduced the concept of compositions.

namespace com.mycompany.test {
 composition testSystem {
 instance dc: DelayCalculator
 instance screen1: InfoScreen
 instance screen2: InfoScreen
 connect dc.screens to (screen1.default, screen2.default)
 }
}

Of course in a real system, the DelayCalculator would have to dynamically
discover all the available InfoScreens at runtime. There is not much point in
manually describing those connections one by one. So we introduced
dynamic connectors: we specify a query that is executed at runtime against
some kind of naming/trader/lookup/registry infrastructure. It is
reexecuted every 60 seconds to find the InfoScreens that had just come
online.

namespace com.mycompany.production {
 instance dc: DelayCalculator
 dynamic connect dc.screens every 60 query {
 type = IInfoScreen
 status = active
 }
}

A similar approach can be used to realize load balancing or fault tolerance.
A static connector can point to a primary as well as a backup instance. Or a
dynamic query can be reexecuted when the currently used component
becomes unavailable.

To support registration of instances, we add additional syntax to their
definition. A registered instance registers itself with the registry, using its
name (qualified through the namespace) and all provided interfaces.
Additional parameters can be specified, the following example registers a
primary and a backup instance for the DelayCalculator.

namespace com.mycompany.datacenter {
 registered instance dc1: DelayCalculator {
 registration parameters {role = primary}
 }
 registered instance dc2: DelayCalculator {
 registration parameters {role = backup}
 }
}

Until now we didn’t really define what an interface is. We knew that we’d
like to build the system based on a messaging infrastructure. Here’s our

first idea: an interface is a collection of messages, where each message has a
name and a list of typed parameters (this also requires the ability to define
data structures, but in the interest of brevity, we won’t show that). We also
defined several message interaction patterns, here are examples of oneway
and request-reply:

interface IAircraftStatus {
 oneway message reportPosition(aircraft: ID, pos: Position)
 request-reply message reportProblem {
 request (aircraft: ID, problem: Problem, comment: String)
 reply (repairProcedure: ID)
 }
}

We talked a long time about suitable message interaction patterns. After a
while it turned out that a core use case for messages is to push status
updates of various assets out to various interested parties. For example, if a
flight is delayed because of a technical problem with an aircraft, then this
information has to be pushed out to all the InfoScreens in the system. We
prototyped several of the messages necessary for “broadcasting” complete
updates, incremental updates and invalidations of a status item. And then
it hit us: We were working with the wrong abstraction! While messaging is
a suitable transport abstraction for these things, architecturally we’re really
talking about replicated data structures:

• you define a data structure (such as FlightInfo).

• The system then keeps track of a collection of such data structures

• This collection is updated by a few components and typically read
by many other components

• The update strategies from publisher to receiver always include full
update of all items in the collection, incremental updates of just one
or a few items, invalidations, etc.

Once we understood that in addition to messaging there’s this additional
communication abstraction in the system, we added this to our
Architecture DSL and were able to write something like the following.

struct FlightInfo {
 // … attributes …
}

replicated singleton flights {
 flights: FlightInfo[]
}

component DelayCalculator {
 publishes flights { publication = onchange }
}

component InfoScreen {
 consumes flights { init = all update = every(60) }
}

We define data structures and replicated items. Components can then
publish or consume those replicated data structures. We state that the
publisher publishes the replicated data whenever something changes in the

local data structure. However, the InfoScreen only needs an update every 60
seconds (as well as a full load of data when it is started up).

Data replication is much more concise compared to a description based on
messages. We can automatically derive the kinds of messages needed for
full update, incremental update and invalidation. The description also
much more clearly reflects the actual architectural intent: it expresses better
what we want to do (replicate data) compared to a lower level description
of how we want to do it (sending messages).

While replication is a core concept for data, there’s of course still a need for
messages, not just as an implementation detail, but also as a way to express
architectural intent. It is useful to add more semantics to an interface, for
example, defining valid sequencing of messages. A well-known way to do
that is to use protocol state machines.

Here is an example that expresses that you can only report positions and
problems once the aircraft is registered. In other words, the first thing an
aircraft has to do is register itself.

interface IAircraftStatus {
 oneway message registerAircraft(aircraft: ID)
 oneway message unregisterAircraft(aircraft: ID)
 oneway message reportPosition(aircraft: ID, pos: Position)
 request-reply message reportProblem {
 request (aircraft: ID, problem: Problem, comment: String)
 reply (repairProcedure: ID)
 }
 protocol initial = new {
 state new {
 registerAircraft => registered
 }
 state registered {
 unregisterAircraft => new
 reportPosition
 reportProblem
 }
 }
}

Initially, the protocol state machine is in the new state. The only valid
message is registerAircraft. Once this is received, we transition into the
registered state. In registered, you can either unregisterAircraft and go back
to new, or receive a reportProblem or reportPosition message in which case
you’ll remain in the registered state.

We mentioned above that the system is distributed geographically. This
means it is not feasible to update all part of the systems (e.g. all InfoScreens
or all AircraftModules) in one swoop. As a consequence, there might be
several versions of the same component running in the system. To make
this feasible, many non-trivial things need to be put in place in the runtime.
But the basic requirement is this: you have to be able to mark up versions
of components, and you have to be able to check then for compatibility
with old versions.

The following piece of code expresses that the DelayCalculatorV2 is a new
implementation of DelayCalculator. newImplOf means that no externally
visible aspects change. This is why no ports and stuff are declared. For all

intents and purposes, it’s the same thing. Just maybe a couple of bugs are
fixed.

component DelayCalculator {
 publishes flights { publication = onchange }
}
newImplOf component DelayCalculator: DelayCalculatorV2

If you really want to evolve a component (i.e. change its external signature
you can write it like this:

component DelayCalculator {
 publishes flights { publication = onchange }
}
newVersionOf component DelayCalculator: DelayCalculatorV3 {
 publishes flights { publication = onchange }
 provides somethingElse: ISomething
}

The keyword is newVersionOf, and now you can provide additional features
(like the somethingElse port) and you remove required ports. You cannot
add additional required ports or remove any of the provided ports since
that would destroy the “plug in compatibility”. Constraints make sure that
these rules are enforced on model level.

What we did in a nutshell
The approach shown above proposes the definition of a formal language
for a system’s conceptual architecture. You develop the language as the
understanding of your architecture grows, in realtime: the example above
has been built during a two-day architecture exploration workshop. The
language therefore always resembles the complete understanding about
your architecture in a clear and unambiguous way.

We were able to separate what we wanted the system to do from how it
would achieve it: all the technology discussions were now merely an
implementation detail of the conceptual descriptions given here (albeit of
course, a very important implementation detail). We also had a clear and
unambiguous definition of what the different terms meant. The nebulous
concept of component has a formal, well-defined meaning in the context of
this system.

As we enhance the language, we also describe the application architecture
using that language. We are building Architecture DSLs.

DSLs can be used to specify any aspect of a software system. The big hype
is around using a DSL to describe the business functionality (for example,
calculation rules in an insurance system). While this is a very worthwhile
use of DSLs, it is also worthwhile to use DSLs to describe software
architecture.

Benefits
All involved will have clear understanding of the concepts used to describe
the system, there is an unambiguous vocabulary to describe applications.

Models can be analyzed and used as a basis for code generation (see
below). The architecture is freed from implementation details, or in other
words: conceptual architecture and technology decisions are decoupled,
making both easier to evolve. We can define a clear programming model
based on the conceptual architecture. Last but not least, the architect(s) can
contribute directly to the project, by building (or helping to build) the
languages and related tools – an artifact that the rest of the team can
actually use. In a very real sense, this could be called executable
architecture.

Why textual?
Textual DSLs have several advantages. Here are some of them:

• Languages as well as editors are easier to build compared to
custom graphical editors (although the validity of this statement
depends on the tooling used)

• Textual artifacts integrate much better with existing developer
tooling than repository-based models. You can use well-known
diff/merge tools, and it is much easier to version/tag/branch
models and code together. Generally, the tooling is more lightweight.

• Model evolution (i.e. adaptation of models when the DSL evolves
over time) is much simpler. While you can use the standard
approach – a model-to-model transformation from the old to the
new version – you can always use search/replace or grep as a
fallback, technologies familiar to everybody.

Where a graphical notation is useful to see relationships between architectural
elements, you can use tools like Graphviz [GV] or Prefuse [PF]. Since the
model contains all the relevant data, you can easily transform the model into a
format those tools can process. The following is an example of a graphviz-
generated diagram. It shows namespaces, components, interfaces and datatypes as
well as their relationships. It has been created by transforming the textual
model into a dot file, graphviz’ way of describing graphs.

Tooling
There are several tools available that support the definition of DSLs –
textual or graphical. What those tools have in common is support for the
definition of abstract and concrete syntax, as well as for user-friendly
editors. In the textual category, you might want to look at Eclipse/TMF
Xtext/openArchitectureWare [oAW] the Microsoft Oslo [OSLO] toolkit
Jetbrains MPS [MPS], or Intentional’s Domain Workbench [IDW]. In the
graphical world, take a look at MetaEdit+ [ME].

For reasons of space, the detailed discussion of how to use these tools is
out of the scope of this article.

Validating the Model
We need validation rules that constrain the model even further than what
we can express with the language grammar. Examples include name-
uniqueness, type checks or versioning constraints. To implement such
constraints, two preconditions are necessary. The constraint itself must be
describable via a formal algorithm (expressed, for example in OCL). And
the data needed to evaluate the algorithm must be available in the model.
For example, if you want to verify whether a certain deployment scheme is
feasible, you might have to put the available network bandwidth and the
timing/frequency of messages as well as the size of primitive data types
into the model (maybe in a separate file). While capturing this data sounds
like a burden, this is actually an advantage: it is core architectural
knowledge.

Generating Code
The primary benefit of developing and using the architecture DSL is to
better understand concepts by removing any ambiguity and defining them
formally. It helps you understand the system and get rid of unwanted
technology dependencies. However, ultimately we are not interested in
correct models, but in correct running systems. To make this possible, we
use code generation. It simplifies and constrains application
implementation..

• We generate an API against which the implementation is coded.
That API can be non-trivial, for example taking into account the
various messaging paradigms or data replication. The generated
API allows components to be implemented in a way that does not
depend on specific technologies (it does depend on a specific
programming language, though). The generated API hides those
from the component implementation code.

• We also generate the code that is necessary to run the components
(incl. their technology-neutral implementation) on a suitable
middleware infrastructure . We call this layer of code the
technology mapping code (or glue code). It typically also contains
configuration files for the target platform(s). Sometimes this
requires additional “mix in models” that specify configuration
details for the platform. As an additional benefit, the generators
capture best practices in working with the selected technologies.

It is of course feasible to generate APIs for several target languages
(supporting component implementation in various languages) and/or
generating glue code for several target platforms (supporting the execution
of the same component on different middleware platforms, for example for
local testing). This nicely supports potential multi-platform requirements,
and also provides a way to scale or evolve the infrastructure over time.

Component Implementation
By default, component implementation code is written manually against
the generated API code, using well-known composition techniques such as
inheritance, delegation or partial classes.

However, there are other alternatives for component implementation that
do not use a 3GL, but instead use formalisms that are specific to certain
classes of behavior: state machines, business rules or workflows. You can
also define and use a domain-specific language for certain classes of
functionality in a specific business domain. Note how this connects the
dots to business DSLs mentioned earlier.

Be aware that the discussion in this section is only really relevant for
application-specific behavior, not for all implementation code. Large
amounts of implementation code are related to the technical infrastructure
– remoting, persistence, workflow – of an application. It can be derived
from the architectural models, and generated automatically.

Standards, ADLs and UML
Describing architecture with formal languages is not a new idea. Various
communities recommend using Architecture Description Languages
(ADLs, for example [ADL1, ADL2, ADL3, and ADL4]) or the Unified
Modeling Language (UML) to this end. However, all of those approaches
advocate using existing, generic languages for specifying architecture,
although some of them, including the UML, can be customized to some
degree.

However this completely misses my point! I have not experienced much
benefit in shoehorning your architecture description into the (typically
very limited) constructs provided by predefined languages – one of the
core activities of the approach explained is this paper is the process of
actually building your own language to capture your system’s conceptual
architecture.

So: are standards important? And if so, where?

In order to use any architecture modeling language successfully, people
first and foremost have to understand the architectural concepts they are
dealing with. Even if UML is used, people will still have to understand the
architectural concepts and map them to the language – in case of UML that
often requires an architecture-specific profile. Is a profiled UML still
standard?

Note that I do not propose to ignore standards altogether. The tools are
built on MOF/EMOF, which is an OMG standard, just like the UML. It is
just on a different meta level.

Of course you can use the approach explained above with UML profiles. I
have done this in several projects. It works, but not as well by far as the
approach explained in this paper. There are several reasons, some of them
are:

• Instead of thinking about architectural concepts, working with UML
makes you think more about how to use UML’s existing constructs
to express your architectural intentions. That is the wrong focus!

• Customizing UML tools (beyond different colors or icons for
stereotyped elements) is restricted, cumbersome and tool-specific
(i.e. non-standard). A lot of effort must be spent to make profiled
UML look and feel as if it was a DSL. And of course, you still have
to deal with the complex UML meta model when processing the
models…

• UML tools typically don’t integrate very well with existing
development infrastructure (editors, CVS/SVN, diff/merge). That is
a huge problem now models play the role of source code (as
opposed to being “analysis pictures”). Tool integration issues can
make developer acceptance very challenging.

A few words on Process and People
Define the language iteratively. Build example models all the time, and
keep a reference model (one the uses all parts of the language) current at
times. Interleave language definition and generator construction, to verify
you have all the data in the models you need for generating meaningful
code.

Don’t just define a nice language, but also a user-friendly editor for the
application developers who will have to use the language. Although
language and editor definition with the modern tools mentioned above is
quite straight forward and much simpler that what you might know from
lex/yacc or antlr, make sure the developers who define the language can
“think meta”; for some people this can be a challenge.

Please document how to use the language, editor and code generator based
on examples and walk-throughs. Nobody reads “reference manuals”. In the
documentation, also explain the architectural concepts expressed via the
language. People will not understand the language unless they understand
what the language describes! And please set aside some time for taking
into account feedback (bugs, improvements) from the language users.
Throwing something like a custom language “over the fence” and then not
supporting it is a death sentence for the approach!

This paper does not contain a consistent methodology. I believe that

• a good idea proven in real projects (as suggested in this in this
article)

• together with general software development common sense (such as
iterative/incremental development and testing)

• as well as (architectural) experience (which I expect you to bring to
the table)

• and of course learning how to use the language engineering tools

is enough to apply this approach successfully in the real world.

Challenges
The approach of course does have a couple of challenges. Let me point out
some of them.

Although the tools for defining DSLs, editors and code generators are
becoming better, there is some overhead involved in building the language
tools. I don’t count the analytical part of distilling the architectural
concepts and defining the language as overhead, since you’ll have to do
that in some form anyway. But the construction of the tools is additional
work. In my experience it pays off in most settings, but it is an initial
investment that needs to be done.

Convincing developers and especially management to abandon the use of
standards (UML, ADLs) for architecture description can be a challenge. To
overcome it I like to do a small, but meaningful prototype and show the
benefits of being in control of your language and not being constrained by
a predefined language.

Another challenge is the fact that the semantics of the DSL are usually not
formally specified. Typically you write documentation that explains the
meaning of language constructs. The code generator also serves as a
vehicle for semantics definition, since it maps the language constructs to
executable concepts in a target language with known semantics. However,
if you generate towards several languages, then you need one central
semantics definition against which you validate the various
implementations. In practice, such a definition is not feasible. To overcome
this, you write tests.

Finally, if you have many related, but not identical systems there will be
common parts between several architecture DSLs. Consequently, you
might want to modularize your DSL into several combinable language
modules. This “base language” can then be extended with the concepts that
are specific to the system in question. However, because of limitations in
today’s language engineering tools, such an approach is still a bit of a
challenge. I have written about my prototypical implementations here
[FAM]. Tools like MPS [MPS] mandate another try, though.

Summary
The article describes how to use DSLs to describe architecture. I want to
reemphasize the importance of defining the language specifically for your
context, together with the architecture team as the architecture is built – a
generic approach does not reap the same benefits. Also, experience with
my customers shows one thing consistently: once familiar with the
capabilities of today’s tools, the approach is considered much more feasible
compared to what they had initially thought.

References
[GV] Graphviz Visualozation Toolkit, http://graphviz.net

[PF] Prefuse Visualozation Toolkit, http://prefuse.org

[FAM] Markus Voelter, A family of Languages for Architecture
Description, DSM Workshop, OOPSLA 2008, and
http://www.voelter.de/data/pub/DSM2008.pdf

[oAW] openArchitectureWare, http://openarchitectureware.org

[OSLO] Microsoft, Oslo Initiative,
http://msdn.microsoft.com/en-us/oslo/default.aspx

[MPS] Jetbrains MPS, http://jetbrains.com/MPS

[ME] Metacase, MetaEdit+, http://www.metacase.com

[AD] Carnegie Mellon University, Software Engineering Institute,
http://www.sei.cmu.edu/architecture/published_definitions.h
tml

[ADL1] Carnegie Mellon University, ACME,
http://www-2.cs.cmu.edu/~acme/

[ADL2] EAST ADL, http://en.wikipedia.org/wiki/EAST-ADL

[ADL3] University of California, Irvine, xADL,
http://www.isr.uci.edu/projects/xarchuci/

[ADL4] Institute for Software Intensive Systems, Vanderbilt University,
CoSMIC, http://www.dre.vanderbilt.edu/CoSMIC/

[CRC] Beck, Cunningham, A Laboratory For Teaching Object-Oriented
Thinking, http://c2.com/doc/oopsla89/paper.html

[IDW] Intentional Software, Intentional Domain Workbench,
http://www.intentsoft.com

