

MD*/DSL Best Practices

Update March 2011
Version 2.0, April, 2011

Markus Völter

(voelter@acm.org)

Introduction to the Update

I have written this article about best practices in Model Driven

Development and Domain Specific Languages during 2008. This is already

2.5 to 3 years ago, a long time in anything relating to computers. This

update looks at the original best practices paper and comments on what

has changed in the last 2.5 years. My comments are highlighted, so if you

have read the original paper, you can quickly glance over the paper to see

my comments.

Most of my comments, and my own evolution in thinking about DSLs and

model driven development, has been influenced by MPS (as well as, to

some extent, by the Intentional Domain Workbench and Spoofax). Modular

languages are possible, languages can be extended, and the distinction

between modeling and programming goes away almost completely. This

has far-reaching consequences for how model driven development can and

should be approached. You may want to read the following paper for a full

discussion of this idea:

 http://voelter.de/data/articles/FromProgrammingToModeling-1.2-final.pdf

… and the following paper is a nice illustration of what this can mean in

practice, based on extensive case study in embedded programming:

 http://voelter.de/data/pub/Voelter-Models2010-

 EmbeddedSystemsDevelopmentWithProjectionalLanguageWorkbenches.pdf

Original Introduction

In this article I describe best practices I learned over the years using DSLs

for developing software. Before we start, let me outline the context. I

exclusively cover external domain specific languages (DSLs), languages

that are custom-defined to describe aspects of a software system. These

languages can be textual or graphical, the models created with the

language can be used as input for code generation, validation, simulation

or interpretation. The DSLs can be intended for use by developers and

architects (covering mainly architectural/technical aspects of software

systems), but also by business users who are not classically considered

“developers”.

I explicitly exclude internal/embedded DSLs such as the ones built with

Ruby, Converge or Lisp. It also does not consider tools like MPS, where

you typically build DSLs by extending a Turing-complete base language

(Java, in case of MPS).

The article is a highly condensed collection of best practices. For each of

them, I could have written a couple of pages (in fact, many pages have

been written on these and other best practices, see [1,2,3]). However, in

spite of its brevity, this article reminds you of all the things you should

consider when (thinking about) starting an MD* project.

Some notes on terminology. I use MD* as a common moniker for MDD,

MDSD, MDE, MDA, MIC, LOP and all the other abbreviations for basically

the same approach. Models can be processed in many ways. They can be

validated, transformed, generated into code, or interpreted. I use “model

processing” (and the noun, “model processor”) to refer to all of these with

a single term. I use the term “metaware” to mean all the artifacts on the

meta level. Metaware includes DSLs, meta models, editors and of course,

model processors. In many cases, the overall model that describes a system

is separated into a number of “model units” which I call partitions (XML

files are an example). If I use the term “business” (in the context of business

user, business expert or business domain), I don’t specifically mean

business in the sense of financials/accounting/legal, but refer to all kinds

of application domains (in German: “fachliche Domänen”); they can

include scientists, mechanics, automotive or, of course, financials or

insurance. The term is used to contrast the programming/software domain

which deals with programmers, architects and analysts.

Each of the best practices is rated with a number of stars. The star rating is

based on a small survey I did among colleagues. As of now, 10 people have

replied, so the survey is not necessarily representative, but it is an

indication about the confidence into the best practice. Here is what the

stars mean:

 I don't think this works, I typically use a technique that

contradicts this one

 I haven't used this, but it sounds reasonable and I guess that is

how I'd do it if I had to something like this

 I have used this successfully, but I am not sure it is a general

best practice

 I have used this successfully a number of times, and I am sure it

is a best practice. Can't imagine not to use it.

The paper has three main sections. The first one, Designing DSLs, looks at

best practices to keep in mind as you design your languages. Section two,

Processing Models, looks at model checking interpretation and code

generation. Section three considers a couple of things you need to keep in

mind about process and organization. A final section looks at open issues

and challenges in MD* world.

Designing DSLs

Sources for the language

How do you find out what your DSL should express? What are the relevant

abstractions and notations? This is a non-trivial issue, in fact, it is the key

issue in MD*. It requires a lot of experience, thought and iteration.

However, there are several typical ways of how to get started.

If you’re building a technical DSL, the source for a language is often an

existing framework, library, architecture or architectural pattern. The

knowledge often already exists, and building the DSL is mainly about

formalizing the knowledge: defining a notation, putting it into a formal

language, and building generators to generate parts of the (potentially

complex) implementation code. In the process, you often also want to put

in place reasonable defaults for some of the framework features, thereby

increasing the level of abstraction and making framework use easier.

In case of business domain DSLs, you can often mine the existing (tacit)

knowledge of domain experts. In domains like insurance, science or

logistics, domain experts are absolutely capable of precisely expressing

domain knowledge. They do it all the time, often using Excel or Word.

They often have a “language” to express domain concerns, although it is

usually not formal, and there’s no tool support. In this context, your job is

to provide formality and tooling. Similar to domain knowledge, other

domain artifacts can also be exploited: for example, hardware structures or

device features are good candidates for abstractions in the respective

domains.

In both previous cases, it is pretty clear how the DSL is going to look like;

discussions are about details, notation, how to formalize things,

viewpoints, partitioning and the like (note that those things can be pretty

non-trivial, too!).

However, in the remaining third case, however, we are not so lucky. If no

domain knowledge is easily available, we have to do an actual domain

analysis, digging our way through requirements, stakeholder “war stories”

and existing applications.

For your first DSL, try to catch case one or two. Ideally, start with case one,

since the people who build the DSLs and supporting tools are often the

same ones as the domain experts – software architects and developers.

Limit Expressiveness

When building a DSL, make sure you’re not lured into building yet another

Turing-complete, general purpose language. In many cases, a purely

declarative language that “states facts” about a system is good enough.

Note the difference between configuration and customization. A

customization DSL provides a vocabulary which you can creatively

combine into sentences of potentially arbitrary complexity. A configuration

DSL consists of a well-defined set of parameters for which users can

specify values (think: feature models). Configuration languages is are more

limited, of course, since you cannot easily express instantiation and the

relationship between things. However, they are also typically less complex.

Hence, the more you can lean towards the configuration side, the easier it

usually is to build model processors. It is also simpler from the user’s

perspective, since the apparent complexity is limited.

Be aware of the difference between precision and algorithmic

completeness. Many domain experts are able to formally and precisely

specify facts about their domain (the “what” of a domain) while they are

not able to define (Turing-complete) algorithms to implement the system

(the “how”). It is your job as a developer to provide a formal language for

domain users to express facts, and then to implement generators and

interpreters to map those facts into executable algorithms that are true to

the knowledge they expressed. The DSL expresses the “what”, the model

processor adds the “how”.

If there’s a concern in your system for which 3GL code is the right

abstraction (i.e. you need the full expressive power of a Turing-complete

language with no significant semantic extensions), it is not necessarily a

good idea to try and define a DSL for the concern. It is often perfectly ok to

define (generate) a nice API against which developers can then write code

in a 3GL. You can also generate hooks into the generated code which users

can implement with 3GL code to realize some exceptional behavior. Keep

the purpose of the hooks well defined, and their number limited, though!

I would still agree, that being Turing complete is a possible sign for a DSL

on the wrong abstraction level. However, I don't think it is necessarily a

problem. I have built several DSLs in the meantime which are Turing

complete, you could consider them subsets of C, more or less, but they still

have so many domain specific extensions or particularities that they do

make sense as a DSL.

Also, the ability to extend existing languages (such as it is possible with

MPS, Spoofax, and to some extent with Xtext2), makes it possible to build

domain specific languages as extensions of general-purpose languages. So

instead of generating a skeleton from the DSL and then embedding 3GL

code into it, one could instead develop a language extension, that inherits

for example expressions and/or statements from the general-purpose base

language. This makes a lot of sense: imagine the development of a

language for asynchronous, reactive programming. In this case it is very

useful to be able to inherit expressions from a general-purpose base

language.

Notation, Notation, Notation

When building DSLs, notation is extremely important. As the language

designer, you care mostly about the underlying meta model, and you

might not really care about the “nice syntax”. But from the (domain) user’s

perspective, the situation is exactly opposite!

Especially (but not exclusively) in business domains, you will only be

successful if and when you can tailor your notations to fit the domain –

there might even be existing notations. It is often hopeless to try and

convince domain users or experts about a “better notation” – just

implement what they have.Note that this might require textual and

graphical notations, Excel-like spreadsheets, form-based systems, or all of

them mixed. Today’s DSL tools have limitations in this respect. I am sure

the next couple of years of evolution in DSL tooling will address mainly

this issue. As of now, just be aware of the wide variability of notations, and

try to do as best as you can given the tooling that’s available.

The notation should make the expression of common concerns simple and

concise and provide sensible defaults. It is ok for less common concerns to

require a bit more verbosity in the notation.

When prototyping or sketching a DSL, it is often useful to start with the

notation, cross-checking it with the language users.

As of 2011, progress has been made regarding flexible combinations of

different kinds of notations. For example, prototypes have been built that

show the integration of Xtext DSLs into GMF and Graphiti editors, or with

the Papyrus UML tool. MPS supports symbolic notations to some extent

(fraction bars, sum symbols) and plans to support graphical notations, fully

integrated with the textual notations, in the 2.x sequence of releases.

Tabular notations are supported already today. There are plans for

building a generic tabular notation for EMF-based meta models. While as

of March 2011 there is not yet a solution that does all we want, progress is

being made.

Graphical vs. Textual Notation

Things that are described graphically are easier to comprehend than textual

descriptions, right? Not really. What is most important regarding

comprehensibility is the alignment of the concepts that need to be

conveyed with the abstractions in the language. A well-designed textual

notation can go a long way. Of course, for certain kinds of information, a

graphical notation is better: relationships between entities, the

timing/sequence of events or some kind of signal/data flow. On the

contrary, rendering expressions graphically is a dead end (note how a

graphical formula editor is somewhat of a hybrid with the way it displays

fractions, matrices, integrals and the like.)

When deciding about a suitable notation, you might want to consider the

following two forces: in most (but not all!) tool environments, editors for

textual notations (incl. code completion, syntax highlighting and the like)

are much easier to build and evolve than really user-friendly and scalable

graphical editors. Textual models also integrate more easily with existing

source code management and build infrastructures.

Also, instead of using full-blown graphical editing, you might want to

consider textual editing plus graphical visualization (see below)

In environments where usable graphical editors are a lot work to build, I

recommend first stabilizing the concepts and abstractions of the language

with very simple editors (textual, tree, generic box/line) and then investing

into a polished graphical editor.

Finally, in many systems some viewpoints will be graphical, others textual.

Sometimes you will even want to mix the two forms of syntax: consider a

state machine (graphical) with embedded guard expressions (textual). This

can be tricky with today’s tooling.

DSL Semantics (unrated)

It is not enough to define the abstractions and the notations for a DSL, you

also have to define the meaning of those abstractions – the language

semantics.

In some sense, the semantics of a language takes into account more

knowledge about the domain than what is expressed in the language: the

language only allows users to express things that are particular to the

specific system/application/instance they describe with the model. The

semantics, however, also takes into account the knowledge about all the

stuff in the domain that is identical for every system/application/instance

in that domain.

Technically it is the job of the generator, interpreter and platform to bridge

this gap. However, from the perspective of the language user (who might

not know specifically what a model processor does) the semantics are tacit

knowledge about “how the language works” and it has to be explained as

“the meaning of the language”.

There are various ways of defining semantics formally, none of them being

sufficiently pragmatic (as of 2011) to be useful in mainstream DSL practice.

Consequently, the meaning of a language is defined in two ways: it is

explained in prose and with examples towards the language users and it is

tied down towards the execution platform using the code generator (which

is, strictly speaking, a form of operational semantics definition, since the

generator maps the language concepts to the concepts of a target language

whose semantics are known) or the interpreter.

Viewpoints

A software system usually cannot be described with one notation for all

relevant aspects. Also, the development process requires different aspects

to be described by different roles at different times, as you want to be sure

to have a clean separation of concerns. Hence it is important to identify the

set of viewpoints relevant for describing the different concerns of a system,

and provide notations and abstractions for each.

In some system that means that you’ll define separate DSLs for each

viewpoint. In other systems you’ll define one language that has a number

of sections, one for each viewpoint.

Whichever approach your tooling supports, viewpoints need to be

connected to other viewpoints to be able to describe the overall system.

Make sure those “connection points” are explicitly defined and limited in

number. Also, make sure the direction of dependency is clear between the

viewpoints – strict layering with unidirectional dependencies is highly

recommended.Note how this is similar to the modularization of software

systems, the same rules apply: strong coherence internally, few interfaces

externally and generally as little coupling as possible.

The viewpoint discussion has to be amended with the advent of real

language modularization with tools like Spoofax and MPS. Instead of

defining various viewpoints for the different concerns of the DSL, these can

be represented as separate language modules. Specifically with MPS where

the same model can be projected in different ways (and thereby perhaps

showing different subsets/viewpoints) a completely new approach for

handling concerns and viewpoints is possible. MPS also supports

annotations where it is possible to store and show additional data in

existing models without the original language having to be aware of the

additional data. So for example, a model describing data structures can use

these annotations to annotate UI or persistence concerns instead of

separating them out into viewpoints. Because MPS is projectional, it is

possible to show the program with or without these annotations,

customizing it for the various stakeholders.

Partitioning

Like everything in software, DSLs editors and model processors don’t scale

arbitrarily – something you tend to forget when starting a project from a

small prototype. In most scenarios, it is important to partition the overall

model into separate “model units”.

Partitions have consequences in many respects. They are often the unit for

checkin/checkout or locking. Also, references within a partition are often

direct references, whereas cross-partition references might be implemented

via proxies, (tool-enforced) name-references or generally, lazy-loading.

Partition-local constraints are often checked in real-time in the editor,

global constraints might only be checked upon request, maybe as part of an

overall “build” process.

Also, it often makes sense to ensure that each partition is processable

separately. Alternatively, it is possible to explicitly specify the set of

partitions that should be processed in a given processor run (or at least a

search path, a set of directories, to find the partitions, like an include path

in C compilers). You might even consider a separate build step to combine

the results created from the separate processing steps of the various

partitions (like a C compiler: it compiles every file separately into an object

file, and then the linker handles overall symbol/reference resolution and

binding).

In many tools, partitioning is not completely transparent. You might have

to include partitions explicitly and/or you have to make sure you don’t

accidentally create unintended dependencies on other partitions. Hence, it

is important to consider partitioning early in the DSL/generator

development process and design your metaware accordingly.

The design of a workable partitioning strategy is part of language design!

Things to keep in mind in this context are: which partition changes as a

consequence of specific changes of the model (changing an element name

might require changes to all by-name references to that element in other

partitions), where are links stored (are they always stored in the model that

logically “points to” another one)?, and if not, how/where/when to control

reference/link storage.

Partitions are really about physically partitioning the overall model. They

can be aligned with the logical model structure (think namespace) or

viewpoints, but they don’t have to. For example, a partition that describes

the Billing subsystem, might contain elements in several (nested)

namespaces and cover several viewpoints (data structure, process, UI

definition).

Evolution

Another important aspect that is often forgotten when initiating a MD*

project is the need for language evolution. If you change the language,

make sure that you also have a way of adapting model processors as well

as existing models.

Doing this requires any or all of the following: a strict configuration

management discipline, versioning information in the models to trigger

compatible model processors, keeping track of the changes as a sequence of

change operations, or model migration tools to transform models based on

the old language into the new language.

Whether model migration is a challenge or not depends quite a bit on the

tooling. There are tools that make model evolution a very smooth, but

many environments don’t. Consider this when deciding about the tooling

you want to use! Note that in case of textual DSLs, model migration can be

achieved via regular expressions and grep (at least as a fallback).

It is always a good idea to minimize DSL changes that break existing

models. Backward-compatibility and deprecation are techniques well

worth keeping in mind in MD*-land. Note that you might be able to

instrument your model processor to collect statistics on how deprecated

language features continue to be used. Once no more instances show up in

models, you can safely remove the deprecated language feature.

Using a set of well-isolated viewpoint-specific DSLs prevents rippling

effects on the overall model in case something changes in one DSL.

The fallacy of generic languages

Predefined, generic languages and generators are tempting – especially if

you want to describe technical aspects of your system. After all, you can

model everything with UML, can’t you? Just add a bunch of stereotypes

and tagged values…

Be careful. Using predefined languages makes you spend most of your

time thinking about how your domain concepts can be shoehorned into the

existing language. Also, you’re being sidetracked by abstractions and

notations from the existing language. Of course, some generic languages

provide facilities for adaptation, like UML’s profiles. Still, at least in

practical tool reality, UML shines through all the time. You’ll have to add a

lot of constraints that prevent users from using UML features that don’t

make sense in your domain. Also, your language will often look like UML,

since the practical reality of customizing UML tools is far from sufficient

(remember: Notation, Notation, Notation!). Finally, your model processor

will have to deal with the complex and big meta model of UML – profiles

always add, they never remove anything.

In practice, in most cases it is much better to define your own DSL.

Initially, it seems like a bit more work, but rather soon it becomes much

more efficient However, make sure you don’t reinvent the exact same

wheels for which standard already exists. For example, there’s not much

need to reinvent state charts (for state-based behavior) and sequence

diagrams (to describe scenarios or text cases) – UML does a pretty good job

with these. Also, for small, incremental deviations from a useful UML

notation, profiles are a good choice.

So, if a suitable generic language exists, either use the existing language, or

make sure your own implementation is compatible as far as possible (duck

modeling: if it looks like a state machine and it behaves like a state

machine, it is a state machine1)

With the advent of meaningful language extension and modularization,

this discussion looks a bit different today. I would still agree that it's not

useful to reinvent existing wheels and it is clearly still more useful to build

your own DSL instead of extending UML. This is mainly, because the UML

does not provide meaningful extension mechanisms. This is different for

tools such as MPS. It comes with a built-in version of Java that can be

extended in almost any way imaginable: new keywords, new types, new

constraints, new notations, new generators. So, if your DSL is intended to

be integrated with a base language that is available in MPS or similar tools,

then defining your DSL as a language extension might make sense. Notice,

that this approach usually does not make sense for DSLs that are expected

to be used by non-programmers. However, it is often still useful to reuse

parts of the base language, or include smaller language modules (for

example, a module for expressions) into your own DSL, avoiding the need

to re-implement these typically rather similar parts of a language.

1 Thanks to Achim Demelt for this 

Learn from 3GLs

Above we discussed the fact that a DSL is not a general purpose language

in disguise. However, there is still a lot we can learn from existing

formalisms and languages.

Here are four examples. Most languages need some notion of scoping: for a

given reference on a model element, only a subset of the type-compatible

model elements constitute valid targets for the reference.

Specialization is a concept that can be applied not just to classes in OO, but

also to state machines, or specifications for insurance contracts.

Also, the notion of namespaces is found in many DSLs to organize the

naming scheme for model elements.

Finally, many DSLs contain the notion of instantiation – being able to

express that some concept is an instance of another concept, effectively

introducing in-language type systems. As part of your constraint checks,

you might have to do actual type computations and type checks.

To become a good DSL designer, it is useful to have broad knowledge

about existing programming language paradigms. Please read the book

Concepts, Techniques and Models of Computer Programming by Peter Van Roy

and Seif Haridi.

One particular thing we can learn from 3GLs is how type systems work.

Tools like MPS and to some extent Xtext and Spoofax now provide means

for implementing nontrivial typing rules and the corresponding checks.

Who are the first class citizens?

There are two different styles of language design: one advocates big

languages with first class support for many different domain concepts. The

other advocates minimal languages with few but powerful primitive

features, from which bigger features are constructed by combination and

made available via libraries (this is somewhat similar to the Microkernel

pattern).

Here are some things to keep in mind when building DSLs. Make sure your

language design is consistent in the sense that you stick to one of the two

approaches throughout. Using the second approach is more complicated

and requires considerable effort in finding what those basic primitive

features are. Especially in business domain DSLs, the second approach

often fails because business users are not used to working with few,

powerful, orthogonal concepts.

In DSLs that address domains with well identifiable or well known

concepts, make sure you make those concepts the first class citizens, and

use appropriate notations. For example, in a DSL for programming mobile

phones, make sure make sure you have native language elements all the

input elements (left button, right button, 0..9 keys, joystick). Don’t try to

abstract this into generic “input devices”.You can combine the two

approaches, however, make sure your languages retain a feeling of

consistency and integrity.

Libraries

A topic related to the previous best practice is the use of libraries. Libraries

are collections of instances of your DSL, intended for reuse, typically stored

in a separate model partition.

Libraries help reusing model data – this is obvious. For example, in a DSL

that is used to describe data structures, it is often useful to put reusable

data structures (date, time, address) into a library for others to use

(libraries are a form of partitioning).

However, libraries can also be used as a way to limit language complexity.

Consider the above mentioned data structure DSL: instead of hard coding

the primitive types int, string and bool, you can just implement a primitive

type construct and make int, string and bool instances of that type. This

allows users to add new primitive types by changing the model as opposed

to changing the language – this is much less hassle!

However, if you use the library approach, make sure the model processors

don’t make assumptions about the structure of some of the higher-level

constructs, but instead are really only based on the basic primitive features.

In case of our example, the mapping of the primitive types to the target

language (e.g. Java) may need to be part of the model, otherwise you’d

have to change the generator when adding a new primitive type by

changing the library.

Libraries are a way for language users to add new abstractions of which the

original language designer was not aware. The trade-off is, that you cannot

extend the concrete syntax or static checks or the IDE. Once again, modular

languages and language extension change the picture. So instead of

providing users a way to define libraries, users (or a couple of developers

helping them) may develop their own project specific language extensions

in a modular way. This has the advantage of adaptive notations and static

checks plus tool support.

Teamwork Support

An important aspect of your DSL tooling is support for versioning,

tagging, branching, locking, comparing and merging – all aspects of

working collaboratively on models. Make sure the tools you use support all

of these – using the languages’ concrete syntax, nobody is willing to handle

these issues on an abstract syntax/meta model/tree level!

When working with business experts, repository-based systems are often

very capable of addressing these issues. However, when targeting

developers, the models (and the meta ware) have to interoperate with the

rest of the development tools. Specifically, you need to integrate with

existing source code control systems (CVS, SVN, Git and the like).

Moreover, if your system is specified via models as well as manually

written 3GL code, it must be possible to tag, compare and version both

kinds of artifacts together to prevent running into CM hell. A tool specific

repository can be a problem in such a scenario if it does not provide means

to integrate with the repository for code artifacts.

Textual DSLs have a clear advantage here, since, regarding the concerns we

discussed here, the models are just text (at least if they are stored as actual

text files, and the textual notation is not a projection of underlying

structured data).

For business users, pessimistic locking (and consequently no need for

comparing and merging) might be easier to understand. In general, the

decision between a pessimistic and optimistic approach should be based on

the process and the collaboration use cases.

Note that good partitioning can make teamwork support much easier; the

partition becomes the unit for comparison, merging or locking.

Tooling Matters!

Defining languages and notations is not enough per se – you have to

provide good tool support for them, too.

DSL editors need to be able to support teamwork (see above), navigation,

overviews, searching, quick-find, find-references, show usage, maybe even

refactoring. For textual DSLs, your editors have to provide code

completion, syntax highlighting and the like to make sure developers (who

are used to powerful IDEs for their “regular” language) are willing to work

with DSLs.

The same is true for the “meta developers”. Make sure your environment

provides a good experience for writing transformations and code

generators, for example, by providing meta model-aware editors for these

artifacts.

To increase usability, DSL editors need to be able to cope with wrong or

incomplete models as they are entered by the users. Ideally, it should even

be possible to persist them. Of course, as long as models are wrong or

incomplete they cannot be processed any further. In the context of textual

languages, this might mean that you design a somewhat “looser”, more

tolerant grammar, and enforce correctness via constraints.

You also have to make sure the model processors are able to run as part of

the nightly build (outside of the editor or tool) to integrate them into

existing build environments.

Here I would like to mentione the usefulness of in-IDE interpreters.

Recently I have built several DSLs where users can use an interpreter for

the DSL programs directly in the IDE to run unit tests or to simulate the

execution of the model. This is especially useful for DSLs that are intended

to be used for non-programmers, or for DSLs that have nontrivial execution

semantics (asynchrony for example). Tools like these can be decisive

regarding the acceptance of the DSL by the end-users.

Processing Models

Interpretation vs. Code Generation (unrated)

When thinking about executing models, most people inherently tend

towards code generation. However, interpretation is also a valid option.

An interpreter is a (meta-)program that reads the model and executes code

(calculations, communication, UI rendering) as it queries or traverses the

model.

There’s a whole bunch of tradeoffs between interpretation and code

generation. Let’s first look at the advantages of code generation.

Code generation is perceived to be simpler, because the resulting code can

be inspected. The templates can even be “extracted” from manually coded

example applications. Generated code is also easier to debug than an

interpreter (you need to use conditional breakpoints all the time).

Generated code can be tailored more closely to the task at hand, and can

hence be smaller and/or more efficient than an interpreter. This is

especially relevant for resource-constrained environments. Finally, a code

generator can work with any target platform/language, there are no

changes to the target platform required (if you want to interpret, you need

to run an interpreter on the target platform). More generally, using code

generation, the overall MD* approach leaves no traces whatsoever in the

resulting system.

Interpretation also has a number of advantages: changes in the model don’t

require an explicit regeneration/rebuild/retest/redeploy step, significantly

shortening the turnaround time, and in some scenarios, the overall change

management process. It is even possible for models to be changed from

within the running application, and take effect immediately. Also, since no

artifacts are generated, the build times can be much reduced. Depending

on the specific case, an interpreter and the model can be smaller than

generating the code.

As can be learned from programming languages, there are also potential

combinations between interpretation. You can generate a lower-level

representation of the model (often XML) that is subsequently interpreted

(analogy: Java or CLR byte code), maybe by a previously existing

interpreter. It is also conceivable to transparently generate code from

within the interpreter to optimize performance (think just in time

compilation, Hotspot VM). However, I have never seen this approach used

in practice in the context of MD*.

I have already mentioned the usefulness of interpreters that run the

programs directly in the IDE in the Tooling Matters best practice. These

interpreters can be used to to let users play with and test the DSL programs

without any code generation or build step involved, providing feedback

about errors directly in the program. This is useful even in cases where the

original requirements only called for the generator.

Rich Domain-Specific Platform (unrated/)

Code generation is a powerful tool, and a necessary ingredient to the

success of model-driven development and external DSLs. However, make

sure you don’t generate unnecessary code.

It is always a good idea to work with a manually implemented, rich

domain specific platform. It typically consists of middleware, frameworks,

drivers, libraries and utilities that are taken advantage of by the generated

code.

In the extreme case, the generator just generates code to

populate/configure the frameworks (which might already exist, or which

you have to grow together with the generator) or provides statically typed

facades around otherwise dynamic data structures. Don’t go too far

towards this end, however: in cases where you need to consider resource or

timing constraints, or when the target platform is predetermined and

perhaps limited, code generation does open up a new set of options and it

is often a very good option (after all, it’s basically the same as compilation,

and that’s a proven and important technique).

Checks first and separate

In all but the most trivial cases, the structures defined by the meta model

do not express the whole truth about models. Constraints – basically

Boolean expressions with error messages attached – are required to

validate models. It is essential that those constraints are treated as first

class citizens and have their own phase during model processing.

For example, putting the constraint checks into the generator templates is

bad, since it makes templates overly complicated. Also, if you have several

different sets of templates (e.g. for different target languages) you’d have

to put the constraints into each of them. There’s usually no point in even

starting up a code generator if the constraint checks don’t succeed. If the

model is wrong, the generated code will be wrong.

Keep in mind that it is often useful to check different constraints on

different parts of the overall model at different times in the model

processing chain. One example is checking certain constraints after a

transformation. As another example you typically want to execute

partition-local constraints interactively (e.g. when saving the partition in

the editor) while global constraints should maybe be executed only on

demand, because they typically take much longer to evaluate.

Check constraints as early in the processing chain as possible. The more

domain-specific the model and the constraints are, the more

understandable a failed constraint will be to the user. Check as many

constraints as you possibly can, try to make sure that if the model

validates, the resulting system is correct (this is not always possible, see

runtime errors in 3GL languages, but you should strive to be as good as

possible).

If you use incremental model refinement with model transformations (see

Cascading below), check constraints at every level, but make sure

constraints of a lower level never fail for any correct input from a higher

level model – the user will not understand it.

Finally make sure you can express constraints of different severity, such as

warnings and errors. Errors will typically stop the next step in the model

processing chain, warnings typically won’t.

Don’t modify generated code

In many systems, some parts will still be expressed using code of the target

language. Consequently, you have to integrate generated code and

manually written code. Most tools provide what’s called protected regions,

marked up sections of the generated files into which you can insert

manually written code that will not be overwritten when the files are

regenerated.

It is often a bad idea to use them. You’ll run into all kinds of problems:

generated code is not a throw-away product anymore, you have to check it

in, and you’ll run into all kinds of funny situations with your CM system.

Also, often you will accumulate a “sediment” of code that has been

generated from model elements that are no longer in the model (if you

don’t use protected regions, you can delete the whole generated source

directory from time to time, cleaning up the sediment).

Instead, add extension points into the generated code, using the

composition features provided by your target language. You can e.g.

generate a base class with abstract methods (requiring the user to

implement them in a manually written subclass) or with empty callback

methods which the user can use to customize in a subclass (for example, in

user interfaces, you can return a position object for a widget, the default

method returns null, default to the generic layout algorithm). You can

delegate, implement interfaces, use #include, use reflection tricks, AOP or

take a look at the well-known design patterns for inspiration. Some

languages provide partial classes, where a class definition can be split over

a generated file and a manually written file.

In the rare case where the target format does not support modularization

and composition you can put the manual code literally into the model (or

an external file) and have the generator paste it into the generated artifact,

avoiding the need to modify it.

Separating generated and manually written code also has its drawbacks.

For example, if you change the model and hence get different generated

code, the manually written code is not automatically refactored

accordingly (could be done in theory, but I haven’t see it in practice). Also,

the approach can result in an increased number of implementation artifacts

(a generated base class and a manually written subclass), possibly

increasing compilation time.

As tools become better, additional approaches might become feasible.

However, as of now, the approach advocated here results in the lowest

amount of headache.

Note that a similar problem can arise if you modify models resulting from

a model-to-model transformation; which is why we don’t recommend

doing this.

Here we clearly have to mention the ability of tools like MPS, Spoofax and

to some extent, Xtext2 two built DSLs as extensions of general-purpose

languages. In this case, there is no need for integrating manually written

code into generated code, because you can always embed the low-level

code into the model itself, because your DSL is an extension of the general-

purpose language, or reuses parts from the general-purpose language.

Consider the classical case of guard conditions: in the old days, you might

have generated an abstract method that represented, as a black box, the

guard condition for a given transition. Developers then implemented this

method in a way that returns true if the transition should fire. With more

modern tools you can directly put the guard condition (typically a simple

Boolean expression) into the state machine model. The necessary

expression language can be inherited from a general-purpose base

language or included from a reusable, modularized expression language).

Control manually written code

Based on the previous best practices, the following can easily happen: the

generator generates an abstract class from some model element. The

developer is expected to subclass the generated class and implement a

couple of abstract methods. The manually written subclass needs to

conform to a specific naming convention. The generator, however, just

generates the base class and stops. How do you remind developers to

create a subclass?

Of course, if the constructor of the concrete subclass is called from another

location of the generated code, and/or if the abstract methods are invoked,

you’ll get compiler errors. By their nature, they are on the abstraction level

of the implementation code, however. It is not always obvious what the

developer has to do in terms of the model or domain.

To solve this issue, make sure there is there a way to make those

conventions and idioms interactive. One way to do this is to generate

checks/constraints against the code base and have them evaluated by the

IDE. If one fails, an error message is reported to the developer. As soon as

the developer implements the manual code in the required way, the error

message goes away.

Another way to achieve this goal in some circumstances is to generate code

that is never executed, but coerces the IDE into providing a quick fix that

creates the missing artifact. For example, if you expect users to manually

write a subclass of a generated class, generate a statement such as if (false) {

GeneratedBaseClass x = new ManualSubclass() }.

If everything (model, "code"), lives in the same tool, even in the same

model (in the sense of data structure), this problem goes away. Code and

model become the same thing.

Care about generated code

As we saw above, generated code is a throw-away artifact, a bit like object

files in a C compiler. Well, not quite! When integrating with generated

code, you will have to read the generated code, understand it (to some

extent), and you will also have to debug it at some point.

Hence, make sure generated code is documented, uses good names for

identifiers, and is indented correctly. All of this is relatively easy to

achieve, as you have all the information you need when writing the code

generator!

Making generated code adhere to the same standards as manually written

code also helps to diffuse some of the skepticism against code generation

that is still widespread in some organizations.

Note that in very mature environments where you generate 100% of the

implementation code, the generated code is never seen by a meta ware

user. In this case (and only in this case) the statements made here don’t

apply.

Make the code true to the model

In many cases, you will implement constraints that validate the model in

order to ensure some property of the resulting system. For example, you

might check dependencies between components in an architecture model

to ensure components can be exchanged in the actual system.

Of course this only works if the manually written code does not introduce

dependencies that are not present in the model. In that case the “green

light” from the constraint check does not help much.

To ensure that promises made by the models are kept by the code, use the

following two approaches. First, generate code that does not allow

violation of model promises. For example, don’t expose a factory that

allows components to look up and use any other component (creating

dependencies), but rather use dependency injection to supply objects for

the valid dependencies expressed in the model. Second, use architecture

analysis tools (dependency checkers) to validate manually written code.

You can easily generate the check rules for those architecture analysis tools

from the models.

Once again, in tools like MPS everything is a model. You can simply add

the additional constraint checks to your DSL, which might or might not

extend the general-purpose language. The separation between model,

generated code, and manually written code no longer exists.

Viewpoint-aware processing

Viewpoints, as introduced above, are not just relevant for modeling. They

are also important when processing models. You might want to check

constraints separately for different viewpoint models. Some viewpoints

might be better suited for interpretation instead of code generation. When

generating code, you might want to consider generating in phases, based

on the viewpoints.

For example, you should have separate code generators for the type

viewpoint (once generated, developers can write manual code against the

generated APIs) and the deployment viewpoint (from which you generate

code that maps the API/manual code onto an execution platform), and

finally interpret the state machine models within generated code by

delegating to an existing state machine interpreter framework. Note that if

you fail to have separate generators per viewpoint, you introduce

viewpoint dependencies “through the back door”, effectively creating a

monolith again.

Note that there’s also a separation vs. model partitions, each partition

should be processable separately. If partitions and viewpoints align, this

makes things especially easy.

Overall Configuration Viewpoint (unrated)

If you use viewpoints and partitions extensively, you will possibly end up

with a large set of models – separate resources, that all contain parts of the

overall system. For reasons of scalability and/or process, you often don’t

want to generate code for the whole system and/or for all viewpoints.

Also, many systems can generate code for a number of target languages or

environments.

In short, when running the model processor, there are often quite a number

of options to specify: validate the whole model, but only with this subset of

constraints; generate all the code needed for implementing the business

logic for only this subsystem; or generate the deployment code for the

whole system, targeting the production environment.

It is a good idea to have a separate model that captures this configuration.

In some sense, it ties together the “scope of concern” for the model

processor. By handling this “compiler configuration” as a model, too, you

get all the benefits of modeling also for this concern, making it much more

tractable than putting all of that into properties files or XML configuration

files.

Care about templates

Code generation templates will be one of your central assets. They contain

the knowledge of how to map domain concepts expressed in DSLs to

implementation code.

Over time, they have a tendency to grow and become non-trivial. To keep

the complexity in check, make sure you use well-known modularization

techniques: break templates down into smaller templates that call each

other, extract complex expressions into functions called by the templates

and use AO to factor out cross-cutting template behavior.

Sometimes I notice that people forget about these proven techniques as

soon as they go to the meta level . Even worse, some of the tool builders

seem to have forgotten those techniques when they built the generator

tools! Make sure, when choosing a generator tool, it allows you to use those

techniques for code generation templates.

Here’s a specific tip: indent your templates in a way that makes sense for

the template, not for the generated code. You can always run a beautifier

over the generated files (at least as long as you’re generating code for a

language whose block structure is not based on indentation!)

Finally, by generating code against meaningful frameworks, the overall

amount of template code required is reduced, improving maintainability of

templates simply by having fewer of them.

M2M transformations to simplify generators

As mentioned above, generators tend to become complicated. Another way

of simplifying them is to use intermediate model-to-model

transformations. Two examples:

Consider the case of a state machine where you want to be able to add an

“emergency stop” feature, i.e. a new transition from each existing state to a

new STOP state. Don’t handle this in the generator templates. Rather, write

a model transformation script that preprocesses the state machine model

and adds all the new transitions and the new STOP state. Once done, you

can run the existing generator unchanged. You have effectively

modularized the emergency stop concern into the transformation.

Second example: consider a DSL that describes hierarchical component

architectures (where components are assembled from interconnected

instances of other components). Most component runtime platforms don’t

support such hierarchical components, so you need to “flatten” the

structure for execution. Instead of trying to do this in the code generator,

you should consider an M2M step to do it, and then write a simpler

generator that works with a flattened, non-hierarchical model.

Generally, in the case where some language features are built on top of

others (see Who are the first class citizens above) you can reduce the higher-

level constructs to their constituent lower-level constructs, and then only

provide code generators for those.

Note that for the kind of model transformations discussed here,

unidirectional transformations (and hence, simpler, unidirectional

transformation languages) are perfectly good enough. Bidirectional

transformations are only useful in rare cases not covered in this paper.

M2M transformations for simulation (unrated)

Another important use case for model-to-model transformations is the

integration of domain DSLs with existing general-purpose formalisms for

which suitable validation or proofing tools exist.

For example, by transforming a specific behavior description to a state

machine, you can use existing tools to automatically generate test

sequences for the respective behavior. As another example consider the

description of behavior for a concurrent, distributed system. By

transforming it into petri nets and using suitable tools, you can make

statements about reachability and liveliness of you behavior. As a third

example, simulation environments are often used to verify timing or

resource consumption for a specific system.

To be able to extrapolate system characteristics proven/simulated for the

version of the system in the generic formalism to your original system

description, you have to make sure that the simulated system is

semantically equivalent to the final system being executed. So,

theoretically, you have to prove that the transformations model/simulation

and model/code are correct. This is very hard to actually prove, but by

using a sufficient number of tests, you can show the correctness well

enough for most practical purposes.

Allow for adaptations

MD* benefits from the economies of scale. If you can write a

DSL/generator once and then (re-)use it on many projects or systems, you

will win big. However, as we all know, reuse is hard, because every

project/system has some specifics that are not covered by the reuse

candidate.

Hence, make sure you provide means for implementing unexpected

variability in a non-invasive way.

For example, developers should be able to annotate model elements with

additional information that can be used in tailored generators (e.g. store

name/value pairs in a hash map for each element). Also, make sure code

generation templates can be customized non-invasively to support

generation of slightly-different code. This can be achieved, for example,

using generator AO (the ability to contribute advice into existing generator

templates) or a combination of factories and polymorphism.

Note that allowing for adaptations in all locations results in all template

code being API code in the sense that developers might rely on the

structure for their adaptations. As a tradeoff, you might want to mark up

certain templates as “public API” or “private – don’t rely on it”.

Once again, I have to mention that one way of allowing for adaptations is

the ability to extend languages. Users, or their supporting developers, can

simply built a language extension for an existing DSL, adding their own

abstractions to the language. Tools like MPS allow this extension in a way

where the language extensions feel just as integrated into the original

language as the original language itself.

Cascading

Many publications advocate the idea of starting the MD* approach by

defining a PIM and then transforming it into less abstract, more platform-

specific PSMs, and finally to code. In my experience, it is better to start

from the bottom: first define a DSL that resembles your system’s software

architecture (used to describe applications), and build a generator that

automates the grunt work with the implementation technologies. The

abstractions used in the DSL are architectural concepts of your target

architecture.

In subsequent steps, build on top of that stable basis abstractions that are

more business-domain specific. You can then use M2M transformations to

map some aspects of those more abstract concepts to existing abstractions

of your architectural language, “feeding” them into the existing generator

chain. For those aspects that cannot be mapped to lower level architectural

abstractions provide specific generators that generate code that acts as

“business logic implementation” from the architectural generator’s

viewpoint (replacing some of the code that had to be manually written

before).

Note that you should never ever modify the intermediate stage models.

They are transitive and are typically not even stored (unless for debugging

purposes). They serve as a “data extension format” between the various

stages of your cascaded meta ware. If you need to put additional

information into the result model, use an annotation model.

In MPS, cascading is the way to go. You will often built intermediate

languages to simplify generators or to be able to reuse the front-end or the

backend. Specifically, if you build DSLs as language extensions, then the

generator for that DSL will generate code of the original language,

effectively cascading the DSL on top of the base language. Of course this

can be done more than once: the DSL can be built as an extension of yet

another DSL that is an extension of a general-purpose language, each

cascading to the level below upon translation.Notice, how as a side effect,

the distinction between code generation and model to model

transformation goes away. If the code is represented as a model (e.g. Java

or C in MPS), then the code generator is simply a model transformation

that creates a model of the general-purpose language as its output. Tools

like MPS allow users to use the concrete syntax of the target language

inside the transformation, making them feel like code generation templates.

Annotation Models

When working with model-to-model transformations you can run into

some of the same problems as with code generation in that sometimes, it

seems necessary to mark up the result of a transformation step manually

before it is further processed. Actually changing the model after it has been

created via a transformation would be an approach similar to protected

regions – with similar challenges.

The better solution is to create a separate model – an annotation model –

that references the elements in the intermediate model for which it

specifies additional model data (effectively an additional viewpoint). The

downstream processor would process the model created via the upstream

model-to-model transformation and the annotation model in conjunction,

understanding the semantics of the annotation model’s relationship to the

original model.

For example, if you create a relational data model from an object oriented

data model, you might automatically derive database table names from the

name of the class in the OO model. If you need to “change” some of those

names, use an annotation model that specifies an alternate name. The

downstream processor knows that the name in the annotation model

overrides the name in the original model.

An alternative, but very related approach is to use the annotation model

directly during the model-to-model transformation. In case of our example,

the annotation would annotate and reference the OO model, and the

transformer would take the table name specified in the annotation model

into account.

Projectional editors, specifically MPS, support annotations. These are

additional model elements added as children to the concepts of existing

languages, without these existing languages being aware of these

additional children. This allows arbitrary additional data to be stored in

arbitrary models. The language with which the original model has been

created, does not have to be aware of the annotations. So instead of putting

additional information that controls the transformation into annotation

models, you can simply use in line annotations. The model can be shown

with or without annotations.

Classify Behavior

There’s a tendency to use action semantic languages (ASLs) to describe

system behavior on model level. However, the abstraction level of ASLs is

not fundamentally different from a 3GL. Implementing functionality

against a clean API is almost as good although it is, of course,

implementation language specific and leads to the problem of integrating

generated and manually written code. Action languages stay on the model

level and hence alleviate this problem. They can also be integrated more

easily into model refactoring and global constraint checking.

To become more efficient with implementing behavior, classify behavior

into different kinds such as state-based or business-rule based, and provide

specific DSLs for those classes of behavior. In many cases you can even

generate the behavior based on a very limited set of configuration

parameters.

Also, business domain specific DSLs should be used for suitable classes of

behavior; as an example consider a temporal expression language for

insurance contract specification.

In some sense, manually written code is just a suitable implementation

language for some kind of behaviors, for which there’s no more efficient

way to express it.

While I still recommend to try to classify the behavior and find

computational models that are suitable to the problem at hand, language

extension and language modularization has changed the story regarding

action semantics languages. Those still don't play any role in practice. But

you can embed 3GL code in your model, with tool support and all, if your

DSL extends a general-purpose base language, as is possible for example

with MPS. Alternatively, if an existing expression language or "object

instantiation language" is available as a reusable language module, then

you can of course embed concepts from these languages in your own DSL.

Notice that this approach might not be suitable if you're DSL users are non-

programmers.

Don’t forget testing

Just like in any aspect of software, testing is an important ingredient. In

MD*, testing comes in different flavors, though. Here are some thoughts.

First of all, constraint checks are a form of test, a bit similar to compiler

checks in classical programming, albeit easily customizable and domain

specific. When testing a code generator, don’t test for the syntax of the

generated code, rather compile the code and write unit tests against it. This

tests the generated code’s semantics as opposed to its syntactic structure.

You can also test model transformations by writing constraint checks

against the concrete data in the models that result from a transformation.

When building a generator, always keep a test model around that uses all

features of the language, and write tests against this model (be aware of the

coverage issue!). Building and maintaining this model and the

corresponding tests is the job of those developers who build the generator,

not of the generator users!

Assuming the generator is well tested and mature (see previous

paragraph), then there’s no need to write tests that verify the generated

code in projects that use the generator. However, it is usually still useful to

write tests against the overall system built via MD* - to make sure the

model semantics is as expected, and to make sure them manually written

code sections behave correctly.

When generating the system as well as the test, make sure you don’t derive

both from the same model. This might lead to a situation where a faulty

test is run against a faulty system resulting in a succeeding test!

Two things I want to add. As I mentioned above, one way of testing DSLs

is to provide an interpreter directly in the IDE that people can use to play

with the models, as well as a language viewpoint that allows language

users to express unit tests for the behavior they have expressed in their

models. Notice how this is almost only useful if your model describes

behavior, something that is becoming more and more mainstream as tools

become more mature.The second aspect is related. DSLs become more and

more complex, using sophisticated expression languages and the

associated type systems. Getting these type systems right is a whole

different story from just implementing a couple of constraints. I have found

regression testing to be an essential ingredient for consistently

implementing type systems, even as type system frameworks simplify the

task. Type system implementations are inherently recursive, and getting

them right requires testing. For example the Xtext type system framework

provides explicit support for testing constraints and type system rules.

Process and Organization

Iterate!

Some people use MD* as an excuse to do waterfall again. They spend

months and months developing languages, tools, and frameworks.

Needless to say, this is not a very successful approach. You need to iterate

when developing the metaware.

Start by developing some deep understanding of a small part of the domain

for which you build the DSL. Then build a little bit of language, build a

little bit of generator and develop a small example model to verify what

you just did. Ideally, implement all aspects of the metaware for each new

domain requirement before focusing on new requirements.

Especially newbies to MD* tend to get languages and meta models wrong

because they are not used to “think meta”. You can avoid this pitfall by

immediately trying out your new language feature by building an example

model and developing a compatible generator.

Co-evolve concepts and language

In cases where you do a real domain analysis, i.e. when you have to find

out which concepts the language shall contain, make sure you evolve the

language in real time as you discuss the concepts.

Defining a language requires formalization. It requires becoming very clear

– formal! – about the concepts that go into the language. In fact, building

the language, because of the need for formalization, helps you become

clear about the concepts in the first place. Language construction acts as a

catalyst for understanding the domain!

I recommend actually building a language in real time as you analyze your

domain: over the last two years I have been doing this with textual editors

in the domain of software architecture, with extremely good results. As we

define, evolve and verify a system’s architecture with the team, I build the

architecture DSL in real time.

To make this feasible, your toolkit needs to be lightweight enough so

support language evolution during domain analysis workshops.

Turnaround time should be minimal to avoid overhead (the more a tool

uses interpretation to work with the DSL, the better). You also have to

tackle the Evolution issue (see above). Textual languages, with models

stored as text files, are a good option here. Model migration can be done

mostly via global search and replace.

Documentation is still necessary

Building DSLs and model processors is not enough to make MD*

successful. You have to communicate to the users how the DSL and the

processors work. Specifically, here’s what you have to document: the

language structure and syntax, how to use the editors and the generators,

how and where to write manual code and how to integrate it as well as

platform/framework decisions (if applicable).

Please keep in mind that there are other media than paper. Screencasts,

videos that show flipchart discussions, or even a regular podcast that talks

about how the tools change are good choices, too.

And please keep in mind that hardly anybody reads reference

documentation. If you want to be successful, make sure the majority of

your documentation is example-driven or task-based.

When selecting MD* tools, make sure that the meta ware artifacts (meta

models, templates, transformations, etc.) as well as your models support

comments in a meaningful and scalable way.

Reviews

A DSL limits the user’s freedom in some respect: they can only express

things that are within the limits of DSLs. Specifically, low-level

implementation decisions are not under a DSL user’s control because they

are handled by the model processor.

However, even with the nicest DSL, users can still make mistakes, the DSL

users can still misuse the DSL (the more expressive the DSL, the bigger this

risk).

So, as part of your development process, make sure you do regular model

reviews. This is critical – but not limited - especially to the adoption phase

when people are still learning the language and the overall approach.

Two notes: reviews are easier on DSL level than on code level. Since DSL

“programs” are more concise than their equivalent specification in 3GL

code, reviews become more efficient.

Also, if you notice recurring mistakes, things that people do in a “wrong”

way regularly, you can either add a constraint check that detects the

problem automatically, or (maybe even better) consider this as input to

your language designers: maybe what the users expect is actually correct,

and the language needs to be adapted.

Let people do what they are good at

MD* offers a chance to let everybody do what they are good at. There are

several clearly defined roles, or tasks, that need to be done. Let met point

out two, specifically.

Experts in a specific target technology (say, EJB on JBoss) can dig deep into

the details of how to efficiently implement, configure and operate a JBoss

application server. They can spend a lot of time testing, digging and

tuning. Once they found out what works best, they can put their

knowledge into generator templates, efficiently spreading the knowledge

across the team. For the latter task, they will collaborate with generator

experts and language designer – our second example role.

The language designer works with domain experts to define abstractions,

notations and constraints to accurately capture domain knowledge. The

language designer also works with the architect and the platform experts in

defining code generators or interpreters. For the role of the language

designer, be aware that there needs to be some kind of predisposition in

the people who do it: not everybody is good at “thinking meta”, some

people are simply more skewed towards concrete work. Make sure you use

“meta people” to do the “meta work”.

There’s also a flip side here: you have to make sure you actually do have

people on your team who are good at language design, know about the

domain and understand target platforms. Otherwise the MD* approach

will not deliver on its promises.

Domain Users Programming?

We already alluded to the fact that domain users aren’t programmers, but

are still able to formally and precisely describe domain knowledge. Can

they actually do this alone?

In many domains, usually those that have a scientific or mathematical

touch, they can. In other domains you might want to shoot for a somewhat

lesser goal. Instead of expecting domain users and experts to

independently specify domain knowledge, you might want to pair a

developer and a domain expert. The developer can help the domain expert

to be precise enough to “feed” the DSL. Because the notation is free of

implementation clutter, the domain expert feels much more at home than

when staring at 3GL source code.

Initially, you might even want to reduce your aspirations to the point

where the developer does the DSL coding based on discussions with

domain experts, but then showing them the resulting model and asking

confirming or disproving questions about it. Putting knowledge into

formal models helps you point out decisions that need to be made, or

language extensions that might be necessary.

If you’re not able to teach a business domain DSL to the domain users, it

might not necessarily be the domain users’ fault. Maybe your language

isn’t really suitable to the domain. If you encounter this problem, take it as

a warning sign and take a close look at your language.

As mentioned above, tools like in-IDE unit tests or simulation engines can

make a huge difference regarding the acceptance of the DSL approach with

end-users.

Domain Users vs. Domain Experts (unrated)

When building business DSLs, people from the domain can play two

different roles. They can participate in the domain analysis and the

definition of the DSL itself. On the other hand, they can use the DSL to

express specific domain knowledge.

It is useful to distinguish these two roles explicitly. The first role (language

definition) must be filled by a domain expert. These are people who have

typically been working in the domain for a long time, maybe in different

roles, who have a deep understanding of the relevant concepts and they are

able to express them precisely, and maybe formally.

The second group of people are the domain users. They are of course

familiar with the domain, but they are typically not as experienced as the

domain experts

This distinction is relevant because you typically work with the domain

experts when defining the language, but you want the domain users to

actually work with the language. If the experts are too far ahead of the

users, the users might not be able to “follow” along, and you will not be

able to roll out the language to the actual target audience.

Hence, make sure that when defining the language, you actually cross-

check with real domain users whether they are able to work with the

language.

Metaware as a product

The language, constraints, interpreters and generators are usually

developed by one (smaller) group of people and used by another (larger)

group of people. To make this work, consider the metaware a product

developed by one group for use by another. Make sure there’s a well

defined release schedule, development happens in short increments,

requirements and issues are reported and tracked, errors are fixed

reasonably quickly, there is ample documentation (examples, examples,

examples!) and there’s support staff available to help with problems and

the unavoidable learning curve. These things are critical for acceptance.

A specific best practice is to exchange people: from time to time, make

application developers part of the generator team to appreciate the

challenges of “meta”, and make meta people participate in actual

application development to make sure they understand if and how their

metaware suits the people who do the real application development.

Compatible Organization

Done right, MD* requires a lot of cross-project work. In many settings the

same metaware will be used in several projects or contexts. While this is of

course a big plus, it also requires, that the organization is able to organize,

staff, schedule and pay for cross-cutting work. A strictly project-focused

organization has a very hard time finding resources for these kinds of

activities. MD* is very hard to do effectively in such environments.

Make sure that the organizational structure, and the way project cost is

handled, is compatible with cross-cutting activities. You might want to take

a look at the Open Source communities to get inspirations of how to do

this.

Forget Published Case Studies

Many “new” approaches to software development are advertised via

published case studies. While they are somewhat useful to showcase

examples, they are not enough to make a real decision. DSLs are by

definition domain specific – seeing how other people use them might not be

very relevant to your situation. Some case studies even publish numbers

like “we generate 90% of the code”. That’s of course useless. Because if

modeling is 10 times more work than coding, the total effort is the same.

Also, those numbers don’t address lifecycle cost and quality.

The only real way to find out whether DSLs and MD* are good for you is to

do a prototype. Make sure you use an agile approach and lightweight tools

and ensure that 4 person weeks are enough to achieve in a meaningful

result (possibly using external help if the team is new to building

metaware). Look for a small, but representative example that can be

extrapolated to your real system. Be sure, when looking at the resulting

numbers, to add some overhead for lifecycle cost – there is non-linearity

involved when extrapolating from a 4 week prototype to using the

approach strategically. But doing a prototype still gives you much more

insight than reading a case study.

Open Issues

Before we conclude this paper, here is a set of challenges, or open issues,

for which the community and the tool vendors have to find satisfactory

solutions. Note that for most of the issues there’s some (proposed)

implementation somewhere. But it’s not generally part of industry-strength

tools, or even an agreed-to best practice.

Mixing Notations is still a problem. There’s no tooling available to easily

build DSLs that for example embed textual notations in graphical models

(with complete editor support for both), or to build DSLs that use formula-

editor-like, semi-graphical syntax. Intentional Software moving in that

direction, but Intentional's tooling is not generally available.

MPS already has support for symbolic and tabular notations. Graphical

notations are expected as part of the 2.x releases. Prototypes have been

built that showcase Xtext integration with GMF or Graphiti. So we are

making progress.

Language Modularity and Composition is also a challenge in some

environments. Especially in textual languages that operate based on parser

technology, combining parsers is non-trivial. Systems like Intentional’s and

Jetbrains’ MPS, that store (textual) models as structured meta data have an

advantage here. Also, systems like MetaEdit+ can handle language

modularization quite well.

MPS can do language modularization and composition in a meaningful

way, including type systems and constraints. Also, SDF2 and Spoofax

provide language modularization and composition for parser-based

systems.

Metaware Refactoring is not supported in most systems, although there’s

no specific reason why it couldn’t. In my view it’s just one of those things

that needs to be done. Not conceptual challenges here.

MPS supports the implementation of refactoring's for any arbitrary DSL.

Model/Code Refactoring is not quite that trivial. What I mean here is that

if you have manually written code that depends on code that is generated

form a model, and if you then change the model (and hence the generated

code), what happens to the manually written code? Currently, nothing.

Ideally, the manually written code is automatically changed in a way that

keeps it current with regard to the changed model.

Since in MPS model and code are not separated, it is possible to build

refactorings that address both. Many of the challenges of model/code

refactoring go away completely if both are represented the same way as

stored in one integral tree.

Automatic Model Migration is also not a solved issue. What do you do

with your models if your language changes? Discard them, not being able

to open them anymore? Open them in the new editor, but flag the places

where the old model is incompatible with the new language?

Automatically try to migrate? All those options exists, and while the first

alternative is clearly unacceptable, I am not sure how a general best

practice would look like.

Model Debugging, i.e. debugging a running system on model level is also

not generally available. While you can always hand-construct specific

solutions (such as debugging a state chart on an embedded device), there’s

no tooling available to generally support the implementation of such

debuggers.

MPS comes with a framework for building debuggers for your DSLs. While

this is not as mature and polished as the rest of MPS, it is usable and shows

how something like that can be built. There are also rumors that Xtext will

address DSL debugging after the 2.x release.

Interpretation and Code Generation are often seen as two alternatives, not

as a continuum. What you maybe really want is an interpreter, where you

can selectively use code generation for the parts for which interpretation is

too slow – some kind of partial evaluation. There’s research, but there’s

nothing generally available.

Handling large or many models is also a non trivial issue. How do you

scale the infrastructure? How do you do impact analysis if something

changes? How to you navigate large or many models? How do you

efficiently search and find? How do incrementally visualize them?

While the general statement is still true, the mainstream tools are

improving regarding scalability all the time and the situation as we have it

now in 2011 is clearly good enough for all but the most scary cases, such as

loading hundreds of megabytes of AUTOSAR models.

Finally, Cartridges is a term that get quite a bit of airplay, but it’s not clear

to me what it really is. A cartridge is generally described as a “generator

module”, but how do you combine them? How do you define the interfaces

of such modules? How do you handle the situation where to cartridges

have implicit dependencies through the code they generate?

Maybe the way to go is to use cascading and language extension as

exemplified MPS. This fulfills many of the original promises of cartridges.

So, there’s a lot of challenges to work on – let’s get started 

Acknowledgements

Thanks to Steve Cook, Axel Uhl, Jos Warmer, Sven Efftinge, Bernd Kolb,

Achim Demelt, Arno Haase, Juha Pekka Tolvanen, Jean Bezivin, and Peter

Friese for feedback on prior versions of this article – the feedback really did

help in making the article much better! I also want to thank the people who

voted in response to my survey: all of the above, plus Jeff Pinkston, Boris

Holzer, Gabi Taentzer, Miguel Garcia, Hajo Eichler, Jorn Bettin, Karsten

Thoms, Keith Short, Anneke Kleppe and Markus Hermannsdörfer.

References

[1] Kelly, Tolvanen, Domain Specific Modeling, Wiley, 2008

[2] Voelter, Stahl, Model Driven Software Development, Wiley, 2006

[3] Markus Voelter, Patterns for Model-Driven Development,

http://www.voelter.de/data/pub/MDDPatterns.pdf

http://www.voelter.de/data/pub/MDDPatterns.pdf

