
Domain Specific - a Binary Decision ?

Markus Voelter
independent/itemis
Ötztaler Strasse 38

70327 Stuttgart, Germany

voelter@acm.org

Bernhard Merkle
SICK AG

R&D Software Engineering
Erwin-Sick-Str.1

79183 Waldkirch, Germany
bernhard.merkle@gmail.com

ABSTRACT
It is often considered a binary decision whether something is
domain specific or not. Consequently, there are domain specific
languages (DSL) and general purpose languages (GPL), there are
domain specific and non-domain specific modeling tools, there
are domain specific and non-domain specific methodologies etc.
In this paper we argue, that domain specificity is not a hard
decision, but rather one extreme on a continuum. We also argue
that many systems can be more efficiently described with a mix of
domain specific and non-domain specific abstractions. This view
of the world has consequences for languages, tools and
methodologies, specifically the ability to modularize and compose
languages. Additionally we outline these consequences and
provide an extensive example based on embedded systems.

Keywords
domain specific language, programming, modeling, projectional
editor, language development, language composition, modular
language, language workbench, embedded systems.

1. INTRODUCTION
Traditionally, domain specific modeling (DSM) (or more
generally, the use of domain specific languages plus code
generation or interpretation) is considered the opposite of general
purpose based approaches. We all know the discussions and
"religious battles" we and others are continuously having with
people who advocate the use of general purpose languages for
describing software. However, we all agree that some general
purpose languages are extremely useful. We don't call them
modeling languages, we rather call them programming languages.
In many methodologies that proclaim to use domain specific
modeling, there is still the need to write code in general purpose
programming languages to express certain aspects of the system.
On the other hand, notations such as state machines, hierarchical
components, or data flow diagrams can hardly be called domain
specific. They are not as general purpose as a programming
language, but they are still very general compared to any
reasonable definition of "domain specific".

In this paper we argue that it is useful to be able to mix
domain-specific and general purpose aspects in a cojoint
environment. Specifically DSLs and GPLs can be seen as
collaborating languages in one tool called language workbench.
Also, programming and modeling should not be considered
different. This leads to the notion of modular modeling and
programming languages and the corresponding consequences for
tools.

This paper is structured as follows. An overview about the
domain terminology is given in Chapter 2. In Chapter 3 we

challenge the question about "modeling vs. programming" and
whether there should be a distinction at all between the two.
Chapter 4 describes the idea of modular languages as well as
various ways of combining them. A real world case study is
presented in Chapter 5: modular languages applied for developing
embedded applications. Chapter 6 shows consequences for tools
and finally Chapter 7 summarizes and concludes the paper.

2. WHAT IS A DOMAIN
To be able to discuss about the domain specificity of something,
we should first define what a domain is. We have taken the
following definitions:

• Domain (software engineering): a field of study that defines a
set of common requirements, terminology, and functionality
for any software program constructed to solve a problem in
that field

• Domain engineering: the reusing of domain knowledge in the
production of new software

• Domain knowledge: a specific expert knowledge valid for a
pre-selected area of activity, such as surgery

As programmers we often distinguish between business
domains and technical domains, with the rough distinction being
that business domains are what non-programmers care about and
technical domains are what programmers care about. However, if
you consider electrical engineers or scientists as non-
programmers, then the distinction blurs: in embedded systems for
example, state machines and block diagrams are what these
"domain experts" use for designing their systems, although
developers probably would not consider these languages to be
business-domain specific.

So let us consider a domain to be anything for which a specific
set of abstractions and notations is advantageous when describing
structure or behavior in that domain. It can be wide, narrow, deep,
shallow, business-oriented or technical.

Domains can also be hierarchical in that one domain is a
specialized (or: narrower) variant of another one. For example,
robot control is specialized compared to embedded systems in
general. The abstractions from embedded systems are also useful
in robot control, but there are more specialized abstractions that
make sense in addition. This is an important observation, because
this kind of relationship between domains should be represented
by the DSLs for domains.

3. MODELING VS. PROGRAMMING
Historically there is (still) a somewhat "clear" distinction between
modeling and programming. Modeling is often associated with
graphical languages, domain specific (Entity-Relational for DBs)

or general purpose (e.g. UML). A code generator then produces
most of the artifacts automatically, yet the developer often has
also to manually implement certain artifacts. Sometimes he even
has to extend or complete the generated code, e.g. because the
modeling language does not support the concepts the developer
needs. Protected regions are a classical example of such a
undesirable situation. The scenario would in some sense be
comparable to manually extending or modifying generated
assembler code, produced from a high level programming
language. It will simply not scale.

With the advent of textual DSLs [11] and the associated IDE
support via textual language workbenches [10], the modeling
community is increasingly becoming aware of the benefits of
textual modeling. However the gap between modeling and
programming still exists in practice, especially regarding the tools
used for the two activities.

We do not think that it is really necessary (or even useful) to
distinguish between modeling and programming in the end.
Essentially modeling and programming should be the same. One
could even come up with the provoking statement that "we don't
want to model; we want to program"…

• at various levels of abstraction

• from different viewpoints

• all of these integrated

• with different degrees of domain specificity

• with suitable notations

• and with suitable expressiveness

• and always precise, tool processable and with IDE
support.

Some of the viewpoints for describing a system might be
suitable for usage by nonprogrammers, if we have these kinds of
people in our group of stakeholders. So in essence, we want a
development environment that allows us to mix and integrate
arbitrary languages and notations, independent of whether they
are domain specific or not. This explicitly includes programming
languages. The next paragraph elaborates on the meaning of the
term "integrating".

4. MODULAR LANGUAGES
Modular languages are languages that can be incrementally
extended. They integrate with other modules in the following
ways:
• referencing: language concepts from module A can refer to

language concepts from module B. Languages come with
their own notations and the programs written in these
languages are stored in their own partitions/models/diagrams.
However, references to program elements expressed with
other languages are possible and tool supported. Example
(see case study): the system model (a kind of makefile)
references modules defined as part of the "normal" C
programming language.

• cascading: concepts from module A are translated into
concepts from module B as a means of implementing A's
concepts. This way, more abstract languages can be cascaded
on top of more general languages, supporting incremental
addition of domain specific abstractions. An interesting base

case is where things are cascaded on top of existing
programming languages -- this is conceptually similar to
what's today typically called code generation. Example (see
case study): the robot control language being translated down
to a general purpose embedded systems language

• extension: module B extends module A in the sense that it
provides additional language concepts. B is a superset of A.
Example (see case study): tasks and state machines as
additional contents of modules, in addition to procedures

• embedding: concepts from module A can be embedded in
concepts from module B. Notations defined in A and B are
reused, even if the language modules are embedded. To make
this feasible, it must be possible to extend the languages as
well, since additional concepts that connect the embedded
concepts to the surrounding modules are required. Example
(see case study): boolean C expressions can be embedded as
guard conditions in state machines

• annotation: language A contributes additional properties to
existing concepts of a language B without invasively
modifying B. This is similar to introductions in AOP.
Example (see case study): the traceability and variability
expressions are implemented in this way.

• cross-cutting by translation: this last kind of integration is a
little bit different in that it does not add any language
concepts. Instead a module A (transparently) changes the
translation of concepts defined in a language B without
invasively changing B. Example (see case study): the safety
feature translates assignments in a way so that a runtime
value range check is performed.

Language modules can either be custom-built for a project,
platform or business domain (a.k.a. domain specific) or they can
be reused from a library of existing language modules (these are
most likely more general, hence applicable in many contexts).

5. CASE STUDY
This section contains an extensive case study that illustrates the
various ways of integrating language modules; these include
what's traditionally considered "programming" and what's
traditionally considered "modeling". The case study is from the
embedded systems domain. Let's start with some background.

5.1 Embedded Software Development
Traditional embedded system development approaches use a
variety of tools for various aspects of the system, making tool
integration a major headache. One of these tools is the C
programming language. Some of the specific problems of
embedded software development include the limited capability for
meaningful abstraction in C and "dangerous" features of the
language (leading to coding conventions such as Misra-C [1]), the
proprietary and closed nature of modeling tools, the integration of
models and code, traceability to requirements [2], long build
times as well as the consistent implementation of product line
variability [3].

To address these issues, we propose a modular modeling and
programming language based on C that supports higher-level
abstractions and system-specific extensions supported via a
projectional language workbench. The proposed language uses C
as its core and adds several useful extensions, including a module

system with visibility rules, physical quantities (as opposed to just
ints and floats), first-class state machines, dataflow ports,
mathematical notations, memory mapping and bit fields, as well
as first-class support for various inter-process communication
approaches. These additional abstractions are transformed down
to C for eventual compilation. Our proof-of-concept is
implemented with JetBrains MPS for the language parts and the
Lego Minstorms kit for embedded systems..

5.2 JetBrains MPS
JetBrains’ Meta Programming System is an open source
projectional language workbench [4]. This means that users don't
edit ASCII text that is then parsed, but each editing operation
directly changes the tree structure of the underlying program.
Since we deal with a projectional editor there is no parser
involved and different projections (textual, graphical, and tabular)
are possible. Lastly the generator is defined to emit text (for a
low-level language) or it transforms higher-level code into code
expressed in lower level languages..

Editing the tree as opposed to “real text” needs some getting
used to. Without specific adaptations, every program element has
to be selected from a drop-down list and "instantiated". However,
MPS provides editor customizations to enable editing that
resembles modern IDEs that use automatically expanding code
templates. In some cases though, the tree shines through:
Consider changing a statement like int i = j+k ; to int i = (j+k)*2 ;
you cannot simply move the cursor to the left of j and insert a left
parenthesis. Rather, you have to select the + operator (the root
node of the expression on the right) and use a Surround with
Parens refactoring.

We now briefly illustrate how a language is defined in MPS. A
more extensive description can be found in [5]. MPS, like other
language workbenches, comes with a set of DSLs for language
definition, a separate DSL for each language aspect. Language
aspects include structure, editor, type system, generator as well as
support for features such as quick fixes or refactorings.

Defining a new language starts with the language structure
(aka meta model). This is very much like object oriented
programming since language elements are represented as concepts
that have properties, children and references to other concepts.
The second step is the editor for the language concepts. An editor
defines how the syntax for the concepts should look like - it
constitutes the projection rules. Figure 1 is an example.

Next is the definition of the type system. For example, the type
property of a LocalVariableDeclaration must be compatible with
the type of its init expression. For the type system definition as
well as further customization the reader is referred to [5].

We already alluded to the relationship between object oriented
programming and language definition in MPS. This analogy also
holds for language extension and specialization. Concepts can
extend other concepts, and subconcepts can be used
polymorphically.

Languages also define translation rules to lower-level
languages or to text. MPS includes an incremental translation
engine that reduces program code as long as translation rules are
available for the program elements. At the end, text generators
output regular program text that can be fed into a compiler.

Figure 1. Defining an editor for a local variable
declaration statement (as in int i = 2*2;)

5.3 The Modular Embedded Language
As a proof of concept, we are currently building a first cut of a
modular embedded language (MEL) based on JetBrains MPS. We
use Lego Mindstorms [6] as the target platform together with the
OSEK [7] operating system. C and OSEK are widely used in
automotive systems, so the technologies used in the proof-of-
concept are relevant in real systems. The current baseline
showcase is a simple line follower robot. It uses a single light
sensor to follow a thick black line and keeps track of that line by
changing the left and right motor speeds to turn along with the
line. The following sections describe some of the features of the
current MEL.

Core Language. The core of the MEL is a implementation of
the C programming language. It supports variables, constants,
enums, structs, functions, most of C's statements and expressions
as well as the type system including pointers. Instead of header
files, the language provides the concept of a module. Modules are
like namespaces and contain variables, typedefs, structs and
functions - all the elements that can be declared on top level in C
programs. Module contents can be exported. Modules can declare
dependencies to other modules which makes their exported
contents visible to depending module.

Figure 2 shows a screenshot of the basic line follower program
implemented with MEL. It contains a module main that uses three
external API modules. It contains constants as well as a
statemachine which manages the two phases of the program:
initialization and running. The cyclic run task is responsible for
reading the sensor and adjusting motor speeds. It is called every
two system ticks. What the run task actually does is state-
dependent by virtue of the stateswitch; if the linefollower state
machine is in the running state it reads the light sensor and
updates the motor settings. This state is entered by signalling
linefollower:initialized at the end of the initialize block. Finally,
the module contains the updateMotorSettings function which
actually drives the motors.

Let us look at some of the features available in the MEL and
relate them to the various language composition mechanisms
outlined above.

Tasks. Tasks capture behaviour that should be executed at
specific times, currently at startup and cyclic are supported. Tasks
are like functions, but they have no arguments and no return type.

Tasks are an example of extension in that new kinds of
IModuleContents are defined. IModuleContent is an interface
defined by the core language to type everything that can be
embedded into modules. Tasks are also an example of cascading
in that the tasks are translated to C functions; in the rest of this
paper we will not mention cascading explicitly if we "simple
generate C code".

Statemachines. The MEL contains a language module for state
machines. It supports the declaration of state machines (with

states, events, transitions, guard conditions as well as entry and
exit actions), a statement to fire events into a state machine as well
as a stateswitch statement to create a switch-like construct for
implementing state-dependent behavior in tasks or functions.

Figure 2: Code for the simple line follower robot
expressed with the MEL

State machines are another example of extension: State
machines implement the IModuleContent interface so they can be
put into modules. The event… keyword and the stateswitch are
subtypes of the core language's Statement concepts, making sure
they can be used in statement context. State machines are also an
example of embedding, since core's Expressions can be embedded
into guards in transitions. Extension is used to provide additional
kinds of expressions to refer to the arguments of events.

Note that by the end of 2010 we will most likely support a
graphical notation for state machines. However, as of now, we
also support tabular notations as shown in Figure 3.

Figure 3: Editing the state machine as a table embedded
in the program code

A special kind of integer. Working with the sonar sensor to
detect obstructions in the robot's path requires averaging over
repeated measurements because the sensor is very sensitive. This
is useful for many sensors, so an extension of the type system to
provide averaging variables is included. Figure 4 shows the
declaration of a variable with an avg type: the base type is int, the
number of elements over which to average is 10 and the
initialization value is 250. From this declaration the
transformation produces two more variables: a rolling buffer that
remembers the last 10 measurements and an index into that buffer
to determine where the next value is stored. The =/ operator (see
B) inserts a new measurement into to the buffer, calculating the
new average and assigning it to the variable of the left of the
operator. The variable can be read just like any other variable (see
C). This is another example of extension. We've included this
example to illustrate that we not only can extend "big" things such
as tasks, but also more intricate aspects such as the type system.

Figure 4: Averaging Variables

Safety. One aspect of safety is making sure that values are not
assigned to variables that cannot hold these values. For example,
if a programmer assigns a value to an uint8, the value must not be
larger than 255. To enforce this, coding guidelines of many
organizations require the use of safe utility functions (such as
mul32(…)) instead of the built-in operators. The MEL supports
such an approach transparently. A module can simply be marked
as safe: all assignments and initializations are wrapped with a
checkSizeNN(…) function call that logs an error if the value is
outside the permitted range. An alternative implementation would
transparently replace built-in operators with safe library functions
such as mul32.

This is an example of cross-cutting by translation. No change
in the notation is necessary, but when translating the models to
low-level C code, the translation of existing concepts is performed
differently.

Components. Component-based development is widespread in
software engineering in general, and in embedded systems in
particular. Components are the "smallest architecturally relevant
building block". They encapsulate behavior and expose all
system-relevant characteristics declaratively. In the proof-of-
concept, a language module is available to express interfaces,
components and component implementations

This is another example of extension of course, since
components and interfaces can be embedded into modules.
However, embedding is also used since existing statements can be
used in the body of component "methods".

A domain specific language. All the MEL facilities described so
far address embedded software development in general. There was

nothing in the languages that is specific to mobile robots that can
drive and turn, such as our line follower.

Consider now the role of a robot vendor who sells robots with
two wheels that can drive a predefined route. Each customer
wants a different predefined route. The vendor has to develop a
different route-driving program for each customer. Of course this
can be achieved with tasks, state machines, variables and
functions. But it would be better if a domain specific language for
defining routes was available. Figure 5 shows an example
program written in such a language.

Figure 5: A robot routing script embedded in a module

This is an example of cascading languages: on top of a general
purpose language (Embedded/C/OSEK/Mindstorms), a domain
specific language (robot routing) is cascaded. The domain specific
constructs are translated down to the more general purpose
constructs for execution. Embedding is also used, however, since
existing core expressions can be still used within robot scripts, for
example to calculate the target speed of the accelerate command.

Requirements traceability and product line variability. MEL
also supports traceability to requirements as well as feature
annotations to express product line variability. Arbitrary program
elements can be annotated with traces to requirements or
expressions that determine the dependency of this element to
configuration features. Figure 6 shows this: the (green) trace
annotations are the requirements traces, the (blue) expressions in
curly braces are feature dependencies.

These are examples of annotation, where a language (the
feature dependencies language or the tracing language) can
annotate additional data to elements from other languages,
without changing these other languages. Note how figure 5
contains a feature dependency annotation for DSL code.

6. CONSEQUENCES FOR TOOLS
The distinction into programming and modeling tools, and further,
into domain specific and non-domain specific modeling tools
should be questioned. Sure, we should be able to define our own
domain specific languages since this ability is crucial for effective
software development. However, general-purpose notations, be
they programming languages, simple expression languages,
component languages or state machines should also be available.
This also implies that the tools must be flexible enough to be able

to use both graphical and textual notations and mixed them since
textual state machines or graphical programming languages are
unwieldy in general.

Figure 6: a program with trace (green) and feature
dependency (blue) annotations

In the rest of this section we briefly mention a few other tools
(in addition to MPS, which we've illustrated in the case study)
that are able to implement this approach.

6.1 Intentional Software Domain Workbench
Charles Simonyi has been working for Microsoft Research on a
project called Intentional Programming. His company Intentional
Software is now continuing this research and is productizing the
system as the Intentional Domain Workbench. Intentional has not
published a lot about what they are doing, but a number of things
are known based on several publications such as [8].

Like JetBrains, Intentional also uses a projectional approach. It
is similar in concept, but quite different in detail. The layouting
and rendering engine it more powerful than the one used by MPS.
The authors have seen examples where for example circuit
diagrams or fraction bars are used as part of (otherwise normal) C
programs. Other examples include insurance mathematics mixed
with "normal" programs. So the ability to mix and match notations
seems to be quite sophisticated.

6.2 SDF, Stratego and Spoofax
These tools are developed by Eelco Visser and his group at the
TU Delft. SDF is a way to define grammars and languages,
Stratego is a term rewriting tool used for translation, and Spoofax
is an IDE framework based on SDF [9].

Traditional parsers use two phases: in phase one a character
stream is broken into the tokens defined by the language. In phase
two the parser consumes the tokens, checks the token sequence

for conformance to the grammar and builds and AST. Since
tokens are defined without any context, ambiguities can arise if
grammars are combined that define different tokens for the same
sequence of characters

SDF in contrast has no separate tokenization phase. The parser
directly consumes the character stream, everything is context-
aware. If language modules are combined, there can never be a
problem with overlapping token definitions. Language
composition is therefore no problem.

Stratego is a term rewriting framework based on SDF. It maps
terms (think: tree fragments) of one tree to terms of an output tree.
As a consequence of how Stratego is built, it is possible to use the
concrete syntax of the source and target languages when defining
term rewriting rules: a rewriting rule looks like "text pattern
mapping". However, what really happens is that a model to model
transformation is executed, where source and target model are
written down in their respective concrete syntaxes.

SDF is scalable and can handle non-trivial languages e.g. Java,
XML, and HTML have been implemented based on SDF.
Additionally a set of languages called WebDSL[12] was created
that showcase the idea of using different language modules to
address different aspects of developing web applications.

Eelco's group now develops Eclipse-based tooling for SDF
and Stratego (Spoofax), providing editor support for building and
using SDF-based languages and Stratego-based transformations.

6.3 Eclipse Modeling and Xtext
The Eclipse Modeling Project provides a wide range of tools for
developing domain specific languages, generators and
transformations. As part of Eclipse Modeling, the TMF Xtext [10]
project supports textual domain specific languages. It is easily
possible to define textual DSL including the necessary tooling
(scanner, parser, model read/write/emit support, syntax
highlighting, code completion, and constraint checks, but
currently no debugger). Because of the underlying parser
technology language modularization and composition is limited -
a language can inherit (and reuse and redefine concepts from) one
base language. Direct integration with common GPL (e.g. Java, C
or C++) is not supported. However, using the so-called
JavaVMMetamodel, it is easily possible to reference and navigate
to Java types in the Eclipse workspace. Several other Eclipse-
based textual modeling frameworks are available, examples
include TEF, TCS, EMFText . Xtext has created a lot of buzz and
is used widely. It is very mature and scales beyond trivial
languages. Xtext and TCS are self hosted and used in other
Eclipse projects (e.g. B3 builds on Xtext and ATL on TCS).

7. SUMMARY
An environment that unifies "programming" and "modeling",
while allowing us to modularize, compose, mix and extend
languages at different abstraction levels and with different
notations is very promising. Cross-cutting concerns only have to
be implemented once and can be handled consistently in all
languages. Tool integration issues, and the challenge of
integrating models and code will be a thing of the past. The
discussion about "domain specific or not" becomes irrelevant,
we'll just talk about suitable and not-so-suitable abstractions and
notations. If abstractions are not suitable, we can build and
integrate additional language abstractions. We can build our own,
or use languages from a library. Finally domain experts can be
integrated into the process where it makes sense.

We (the authors) really want to work in such a world! Let's
make it happen!

8. REFERENCES
[1] MISRA Group, Misra-C, http://www.misra-c2.com/

[2] Jarke. M. , Requirements tracing, Communication of ACM Volume
41, Issue 12, 1998, pages 32 - 36

[3] Eisenecker, U., Czarnecki, K., Generative Programming, Addison-
Wesley, 2000

[4] JetBrains, Meta Programming System, http://jetbrains.com/mps

[5] Voelter, M., Solomatov, K., Language Modularization and
Composition with Projectional Language Workbenches illustrated w/
MPS, submitted to SLE 2010

[6] Lego, Mindstorms, http://mindstorms.lego.com

[7] Sourceforge.net, nxtOSEK, http://lejos-OSEK.sourceforge.net/

[8] Intentional Software, Intentional Domain Workbench,
http://intentsoft.com/technology/IS_OOPSLA_2006_paper.pdf

[9] http://strategoxt.org/Spoofax

[10] http://www.eclipse.org/Xtext/

[11] F.Jouault, J.Bezevin, TCS: a DSL for the specification of textual
concrete syntaxes in model engineering, GPCE 2006

[12] http://webdsl.org

