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ABSTRACT 
It is often considered a binary decision whether something is 
domain specific or not. Consequently, there are domain specific 
languages (DSL) and general purpose languages (GPL), there are 
domain specific and non-domain specific modeling tools, there 
are domain specific and non-domain specific methodologies etc. 
In this paper we argue, that domain specificity is not a hard 
decision, but rather one extreme on a continuum. We also argue 
that many systems can be more efficiently described with a mix of 
domain specific and non-domain specific abstractions. This view 
of the world has consequences for languages, tools and 
methodologies, specifically the ability to modularize and compose 
languages. Additionally we outline these consequences and 
provide an extensive example based on embedded systems. 
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1. INTRODUCTION 
Traditionally, domain specific modeling (DSM) (or more 
generally, the use of domain specific languages plus code 
generation or interpretation) is considered the opposite of general 
purpose based approaches. We all know the discussions and 
"religious battles" we and others are continuously having with 
people who advocate the use of general purpose languages for 
describing software. However, we all agree that some general 
purpose languages are extremely useful. We don't call them 
modeling languages, we rather call them programming languages. 
In many methodologies that proclaim to use domain specific 
modeling,  there is still the need to  write code in general purpose 
programming languages to express certain aspects of the system. 
On the other hand, notations such as state machines, hierarchical 
components, or data flow diagrams can hardly be called domain 
specific. They are not as general purpose as a programming 
language, but they are still very general compared to any 
reasonable definition of "domain specific". 

In this paper we argue that it is useful to be able to mix 
domain-specific and general purpose aspects in a cojoint 
environment. Specifically DSLs and GPLs can be seen as 
collaborating languages in one tool called language workbench. 
Also, programming and modeling should not be considered 
different. This leads to the notion of modular modeling and 
programming languages and the corresponding consequences for 
tools.  

This paper is structured as follows. An overview about the 
domain terminology is given in Chapter 2. In Chapter 3 we 

challenge the question about "modeling vs. programming" and 
whether there should be a distinction at all between the two. 
Chapter 4 describes the idea of modular languages as well as 
various ways of combining them. A real world case study is 
presented in Chapter 5: modular languages applied for developing 
embedded applications. Chapter 6 shows consequences for tools 
and finally Chapter 7 summarizes and concludes the paper. 

2. WHAT IS A DOMAIN 
To be able to discuss about the domain specificity of something, 
we should first define what a domain is. We have taken the 
following definitions: 

• Domain (software engineering): a field of study that defines a 
set of common requirements, terminology, and functionality 
for any software program constructed to solve a problem in 
that field 

• Domain engineering: the reusing of domain knowledge in the 
production of new software 

• Domain knowledge: a specific expert knowledge valid for a 
pre-selected area of activity, such as surgery 

As programmers we often distinguish between business 
domains and technical domains, with the rough distinction being 
that business domains are what non-programmers care about and 
technical domains are what programmers care about. However, if 
you consider electrical engineers or scientists as non-
programmers, then the distinction blurs: in embedded systems for 
example, state machines and block diagrams are what these 
"domain experts" use for designing their systems, although 
developers probably would not consider these languages to be 
business-domain specific. 

So let us consider a domain to be anything for which a specific 
set of abstractions and notations is advantageous when describing 
structure or behavior in that domain. It can be wide, narrow, deep, 
shallow, business-oriented or technical. 

Domains can also be hierarchical in that one domain is a 
specialized (or: narrower) variant of another one. For example, 
robot control is specialized compared to embedded systems in 
general. The abstractions from embedded systems are also useful 
in robot control, but there are more specialized abstractions that 
make sense in addition. This is an important observation, because 
this kind of relationship between domains should be represented 
by the DSLs for domains. 

3. MODELING VS. PROGRAMMING 
Historically there is (still) a somewhat "clear" distinction between 
modeling and programming. Modeling is often associated with 
graphical languages, domain specific (Entity-Relational for DBs) 



or general purpose (e.g. UML). A code generator then produces 
most of the artifacts automatically, yet the developer often has 
also to manually implement certain artifacts. Sometimes he even 
has to extend or complete the generated code, e.g. because the 
modeling language does not support the concepts the developer 
needs. Protected regions are a classical example of such a 
undesirable situation. The scenario would in some sense be 
comparable to manually extending or modifying generated 
assembler code, produced from a high level programming 
language. It will simply not scale.  

With the advent of textual DSLs [11] and the associated IDE 
support via textual language workbenches [10], the modeling 
community is increasingly becoming aware of the benefits of 
textual modeling. However the gap between modeling and 
programming still exists in practice, especially regarding the tools 
used for the two activities.  

We do not think that it is really necessary (or even useful) to 
distinguish between modeling and programming in the end. 
Essentially modeling and programming should be the same. One 
could even come up with the provoking statement that "we don't 
want to model; we want to program"… 

• at various levels of abstraction 

• from different viewpoints 

• all of these integrated 

• with different degrees of domain specificity 

• with suitable notations 

• and with suitable expressiveness 

• and always precise, tool processable and with IDE 
support. 

Some of the viewpoints for describing a system might be 
suitable for usage by nonprogrammers, if we have these kinds of 
people in our group of stakeholders. So in essence, we want a 
development environment that allows us to mix and integrate 
arbitrary languages and notations, independent of whether they 
are domain specific or not. This explicitly includes programming 
languages. The next paragraph elaborates on the meaning of the 
term "integrating". 

4. MODULAR LANGUAGES 
Modular languages are languages that can be incrementally 
extended. They integrate with other modules in the following 
ways:  
• referencing: language concepts from module A can refer to 

language concepts from module B. Languages come with 
their own notations and the programs written in these 
languages are stored in their own partitions/models/diagrams. 
However, references to program elements expressed with 
other languages are possible and tool supported. Example 
(see case study): the system model (a kind of makefile) 
references modules defined as part of the "normal" C 
programming language. 

• cascading: concepts from module A are translated into 
concepts from module B as a means of implementing A's 
concepts. This way, more abstract languages can be cascaded 
on top of more general languages, supporting incremental 
addition of domain specific abstractions. An interesting base 

case is where things are cascaded on top of existing 
programming languages -- this is conceptually similar to 
what's today typically called code generation. Example (see 
case study): the robot control language being translated down 
to a general purpose embedded systems language 

• extension: module B extends module A in the sense that it 
provides additional language concepts. B is a superset of A. 
Example (see case study): tasks and state machines as 
additional contents of modules, in addition to procedures 

• embedding: concepts from module A can be embedded in 
concepts from module B. Notations defined in A and B are 
reused, even if the language modules are embedded. To make 
this feasible, it must be possible to extend the languages as 
well, since additional concepts that connect the embedded 
concepts to the surrounding modules are required. Example 
(see case study): boolean C expressions can be embedded as 
guard conditions in state machines 

• annotation: language A contributes additional properties to 
existing concepts of a language B without invasively 
modifying B. This is similar to introductions in AOP. 
Example (see case study): the traceability and variability 
expressions are implemented in this way. 

• cross-cutting by translation: this last kind of integration is a 
little bit different in that it does not add any language 
concepts. Instead a module A (transparently) changes the 
translation of concepts defined in a language B without 
invasively changing B. Example (see case study): the safety 
feature translates assignments in a way so that a runtime 
value range check is performed. 

Language modules can either be custom-built for a project, 
platform or business domain (a.k.a. domain specific) or they can 
be reused from a library of existing language modules (these are 
most likely more general, hence applicable in many contexts). 

5. CASE STUDY 
This section contains an extensive case study that illustrates the 
various ways of integrating language modules; these include 
what's traditionally considered "programming" and what's 
traditionally considered "modeling". The case study is from the 
embedded systems domain. Let's start with some background. 

5.1 Embedded Software Development 
Traditional embedded system development approaches use a 
variety of tools for various aspects of the system, making tool 
integration a major headache. One of these tools is the C 
programming language. Some of the specific problems of 
embedded software development include the limited capability for 
meaningful abstraction in C and "dangerous" features of the 
language (leading to coding conventions such as Misra-C [1]), the 
proprietary and closed nature of modeling tools, the integration of 
models and code, traceability to requirements [2], long build 
times as well as the consistent implementation of product line 
variability [3]. 

To address these issues, we propose a modular modeling and 
programming language  based on C that supports higher-level 
abstractions and system-specific extensions supported via a 
projectional language workbench. The proposed language uses C 
as its core and adds several useful extensions, including a module 



system with visibility rules, physical quantities (as opposed to just 
ints and floats), first-class state machines, dataflow ports, 
mathematical notations, memory mapping and bit fields, as well 
as first-class support for various inter-process communication 
approaches. These additional abstractions are transformed down 
to C for eventual compilation. Our proof-of-concept is 
implemented with JetBrains MPS for the language parts and the 
Lego Minstorms kit for embedded systems.. 

5.2 JetBrains MPS 
JetBrains’ Meta Programming System is an open source 
projectional language workbench [4]. This means that users don't 
edit ASCII text that is then parsed, but each editing operation 
directly changes the tree structure of the underlying program. 
Since we deal with a projectional editor there is no parser 
involved and different projections (textual, graphical, and tabular) 
are possible. Lastly the generator is defined to emit text (for a 
low-level language) or it transforms higher-level code into code 
expressed in lower level languages.. 

Editing the tree as opposed to “real text” needs some getting 
used to. Without specific adaptations, every program element has 
to be selected from a drop-down list and "instantiated". However, 
MPS provides editor customizations to enable editing that 
resembles modern IDEs that use automatically expanding code 
templates. In some cases though, the tree shines through: 
Consider changing a statement like int i = j+k ; to int i = (j+k)*2 ; 
you cannot simply move the cursor to the left of j and insert a left 
parenthesis. Rather, you have to select the + operator (the root 
node of the expression on the right) and use a Surround with 
Parens refactoring.  

We now briefly illustrate how a language is defined in MPS. A 
more extensive description can be found in [5]. MPS, like other 
language workbenches, comes with a set of DSLs for language 
definition, a separate DSL for each language aspect. Language 
aspects include structure, editor, type system, generator as well as 
support for features such as quick fixes or refactorings.  

Defining a new language starts with the language structure 
(aka meta model). This is very much like object oriented 
programming since language elements are represented as concepts 
that have properties, children and references to other concepts. 
The second step is the editor for the language concepts. An editor 
defines how the syntax for the concepts should look like - it 
constitutes the projection rules. Figure 1 is an example. 

Next is the definition of the type system. For example, the type 
property of a LocalVariableDeclaration must be compatible with 
the type of its init expression. For the type system definition as 
well as further customization the reader is referred to [5]. 

We already alluded to the relationship between object oriented 
programming and language definition in MPS. This analogy also 
holds for language extension and specialization. Concepts can 
extend other concepts, and subconcepts can be used 
polymorphically.  

Languages also define translation rules to lower-level 
languages or to text. MPS includes an incremental translation 
engine that reduces program code as long as translation rules are 
available for the program elements. At the end, text generators 
output regular program text that can be fed into a compiler. 

 

Figure 1. Defining an editor for a local variable 
declaration statement (as in int i = 2*2;) 

5.3 The Modular Embedded Language 
As a proof of concept, we are currently building a first cut of a 
modular embedded language (MEL) based on JetBrains MPS. We 
use Lego Mindstorms [6] as the target platform together with the 
OSEK [7] operating system. C and OSEK are widely  used in 
automotive systems, so the technologies used in the proof-of-
concept are relevant in real systems. The  current  baseline 
showcase is a simple line follower robot. It uses a single light 
sensor to follow a thick black line and keeps track of that line by 
changing the left and right motor speeds to turn along with the 
line. The following sections describe some of the features of the 
current MEL.  

 
Core Language.   The core of the MEL is a implementation of 
the C programming language. It supports variables, constants, 
enums, structs, functions, most of C's statements and expressions 
as well as the type system including pointers. Instead of header 
files, the language provides the concept of a module. Modules are 
like namespaces and contain variables, typedefs, structs and 
functions - all the elements that can be declared on top level in C 
programs. Module contents can be exported. Modules can declare 
dependencies to other modules which makes their exported 
contents visible to depending module.  

Figure 2 shows a screenshot of the basic line follower program 
implemented with MEL. It contains a module main that uses three 
external API modules. It contains constants as well as a 
statemachine which manages the two phases of the program: 
initialization and running. The cyclic run task is responsible for 
reading the sensor and adjusting motor speeds. It is called every 
two system ticks. What the run task actually does is state-
dependent by virtue of the stateswitch; if the linefollower state 
machine  is in the running state it reads the light sensor and 
updates the motor settings. This state is entered by signalling 
linefollower:initialized at the end of the initialize block. Finally, 
the module contains the updateMotorSettings function which 
actually drives the motors. 

Let us look at some of the features available in the MEL and 
relate them to the various language composition mechanisms 
outlined above. 

 
Tasks.  Tasks capture behaviour that should be executed at 
specific times, currently at startup and cyclic are supported. Tasks 
are like functions, but they have no arguments and no return type.  

Tasks are an example of extension in that new kinds of 
IModuleContents are defined. IModuleContent is an interface 
defined by the core language to type everything that can be 
embedded into modules. Tasks are also an example of cascading 
in that the tasks are translated to C functions; in the rest of this 
paper we will not mention cascading explicitly if we "simple 
generate C code". 

 
Statemachines.  The  MEL contains a language module for state 
machines. It supports the declaration of state machines (with 



states, events, transitions, guard conditions as well as entry and 
exit actions), a statement to fire events into a state machine as well 
as a stateswitch statement to create a switch-like construct for 
implementing state-dependent behavior in tasks or functions.  

 

 

 

Figure 2: Code for the simple line follower robot 
expressed with the MEL 

State machines are another example of extension: State 
machines implement the IModuleContent interface so they can be 
put into modules. The event… keyword and the stateswitch are 
subtypes of the core language's Statement concepts, making sure 
they can be used in statement context. State machines are also an 
example of embedding, since core's Expressions can be embedded 
into guards in transitions. Extension is used to provide additional 
kinds of expressions to refer to the arguments of events. 

Note that by the end of 2010 we will most likely support a 
graphical notation for state machines. However, as of now, we 
also support tabular notations as shown in Figure 3. 

 

Figure 3: Editing the state machine as a table embedded 
in the program code 

A special kind of integer.   Working with the sonar sensor to 
detect obstructions in the robot's path requires averaging over 
repeated measurements because the sensor is very sensitive. This 
is useful for many sensors, so an extension of the type system to 
provide averaging variables is included. Figure 4 shows the 
declaration of a variable with an avg type: the base type is int, the 
number of elements over which to average is 10 and the 
initialization value is 250. From this declaration the 
transformation produces two more variables: a rolling buffer that 
remembers the last 10 measurements and an index into that buffer 
to determine where the next value is stored. The =/ operator (see 
B) inserts a new measurement into to the buffer, calculating the 
new average and assigning it to the variable of the left of the 
operator. The variable can be read just like any other variable (see 
C). This is another example of extension. We've included this 
example to illustrate that we not only can extend "big" things such 
as tasks, but also more intricate aspects such as the type system. 

 

Figure 4: Averaging Variables 

Safety.   One aspect of safety is making sure that values are not 
assigned to variables that cannot hold these values. For example, 
if a programmer assigns a value to an uint8, the value must not be 
larger than 255. To enforce this, coding guidelines of many 
organizations require the use of safe utility functions (such as 
mul32(…) ) instead of the built-in operators. The MEL supports 
such an approach transparently. A module can simply be marked 
as safe: all assignments and initializations are wrapped with a 
checkSizeNN(…) function call that logs an error if the value is 
outside the permitted range. An alternative implementation would 
transparently replace built-in operators with safe library functions 
such as mul32.  

This is an example of cross-cutting by translation. No change 
in the notation is necessary, but when translating the models to 
low-level C code, the translation of existing concepts is performed 
differently. 

 
Components.   Component-based development is widespread in 
software engineering in general, and in embedded systems in 
particular. Components are the "smallest architecturally relevant 
building block". They encapsulate behavior and expose all 
system-relevant characteristics declaratively. In the proof-of-
concept, a language module is available to express interfaces, 
components and component implementations  

This is another example of extension of course, since 
components and interfaces can be embedded into modules. 
However, embedding is also used since existing statements can be 
used in the body of component "methods". 

 
A domain specific language.   All the MEL facilities described so 
far address embedded software development in general. There was 



nothing in the languages that is specific to mobile robots that can 
drive and turn, such as our line follower. 

Consider now the role of a robot vendor who sells robots with 
two wheels that can drive a predefined route. Each customer 
wants a different predefined route. The vendor has to develop a 
different route-driving program for each customer. Of course this 
can be achieved with tasks, state machines, variables and 
functions. But it would be better if a domain specific language for 
defining routes was available. Figure 5 shows an example 
program written in such a language. 

 

Figure 5: A robot routing script embedded in a module 

This is an example of cascading languages: on top of a general 
purpose language (Embedded/C/OSEK/Mindstorms), a domain 
specific language (robot routing) is cascaded. The domain specific 
constructs are translated down to the more general purpose 
constructs for execution.  Embedding is also used, however, since 
existing core expressions can be still used within robot scripts, for 
example to calculate the target speed of the accelerate command. 

 
Requirements traceability and product line variability.   MEL 
also supports traceability to requirements as well as feature 
annotations to express product line variability. Arbitrary program 
elements can be annotated with traces to requirements or 
expressions that determine the dependency of this element to 
configuration features. Figure 6 shows this: the (green) trace 
annotations are the requirements traces, the (blue) expressions in 
curly braces are feature dependencies.  

These are examples of annotation, where a language (the 
feature dependencies language or the tracing language) can 
annotate additional data to elements from other languages, 
without changing these other languages. Note how figure 5 
contains a feature dependency annotation for DSL code. 

6. CONSEQUENCES FOR TOOLS 
The distinction into programming and modeling tools, and further, 
into domain specific and non-domain specific modeling tools 
should be questioned. Sure, we should be able to define our own 
domain specific languages since this ability is crucial for effective 
software development. However, general-purpose notations, be 
they programming languages, simple expression languages, 
component languages or state machines should also be available. 
This also implies that the tools must be flexible enough to be able 

to use both graphical and textual notations and mixed them since 
textual state machines or graphical programming languages are 
unwieldy in general. 

 

Figure 6: a program with trace (green) and feature 
dependency (blue) annotations 

In the rest of this section we briefly mention a few other tools 
(in addition to MPS, which we've illustrated in the case study) 
that are able to implement this approach.  

6.1 Intentional Software Domain Workbench  
Charles Simonyi has been working for Microsoft Research on a 
project called Intentional Programming. His company Intentional 
Software is now continuing this research and is productizing the 
system as the Intentional Domain Workbench. Intentional has not 
published a lot about what they are doing, but a number of things 
are known based on several publications such as [8]. 

Like JetBrains, Intentional also uses a projectional approach. It 
is similar in concept, but quite different in detail. The layouting 
and rendering engine it more powerful than the one used by MPS. 
The authors have seen examples where for example circuit 
diagrams or fraction bars are used as part of (otherwise normal) C 
programs. Other examples include insurance mathematics mixed 
with "normal" programs. So the ability to mix and match notations 
seems to be quite sophisticated. 

6.2 SDF, Stratego and Spoofax 
These tools are developed by Eelco Visser and his group at the 
TU Delft. SDF is a way to define grammars and languages, 
Stratego is a term rewriting tool used for translation, and Spoofax 
is an IDE framework based on SDF [9].  

Traditional parsers use two phases: in phase one a character 
stream is broken into the tokens defined by the language. In phase 
two the parser consumes the tokens, checks the token sequence 



for conformance to the grammar and builds and AST. Since 
tokens are defined without any context, ambiguities can arise if 
grammars are combined that define different tokens for the same 
sequence of characters 

SDF in contrast has no separate tokenization phase. The parser 
directly consumes the character stream, everything is context-
aware. If language modules are combined, there can never be a 
problem with overlapping token definitions. Language 
composition is therefore no problem. 

Stratego is a term rewriting framework based on SDF. It maps 
terms (think: tree fragments) of one tree to terms of an output tree. 
As a consequence of how Stratego is built, it is possible to use the 
concrete syntax of the source and target languages when defining 
term rewriting rules: a rewriting rule looks like "text pattern 
mapping". However, what really happens is that a model to model 
transformation is executed, where source and target model are 
written down in their respective concrete syntaxes. 

SDF is scalable and can handle non-trivial languages e.g. Java, 
XML, and HTML have been implemented based on SDF. 
Additionally a set of languages called WebDSL[12] was created 
that showcase the idea of using different language modules to 
address different aspects of developing  web applications. 

Eelco's group now develops Eclipse-based tooling for SDF  
and Stratego (Spoofax), providing editor support for building and 
using SDF-based languages and Stratego-based transformations.  

6.3 Eclipse Modeling and Xtext 
The Eclipse Modeling Project provides a wide range of tools for 
developing domain specific languages, generators and 
transformations. As part of Eclipse Modeling, the TMF Xtext [10] 
project supports textual domain specific languages. It is easily 
possible to define textual DSL including the necessary tooling 
(scanner, parser, model read/write/emit support, syntax 
highlighting, code completion, and constraint checks, but 
currently no debugger). Because of the underlying parser 
technology language modularization and composition is limited - 
a language can inherit (and reuse and redefine concepts from) one 
base language. Direct integration with common GPL (e.g. Java, C 
or C++) is not supported. However, using the so-called 
JavaVMMetamodel, it is easily possible to reference and navigate 
to Java types in the Eclipse workspace. Several other Eclipse-
based textual modeling frameworks are available, examples 
include TEF, TCS, EMFText . Xtext has created a lot of buzz and 
is used widely. It is very mature and scales beyond trivial 
languages. Xtext and TCS are self hosted and used in other 
Eclipse projects (e.g. B3 builds on Xtext and ATL on TCS). 

7. SUMMARY 
An environment that unifies "programming" and "modeling", 
while allowing us to modularize, compose, mix and extend 
languages at different abstraction levels and with different 
notations is very promising. Cross-cutting concerns only have to 
be implemented once and can be handled consistently in all 
languages. Tool integration issues, and the challenge of 
integrating models and code will be a thing of the past. The 
discussion about "domain specific or not" becomes irrelevant, 
we'll just talk about suitable and not-so-suitable abstractions and 
notations. If abstractions are not suitable, we can build and 
integrate additional language abstractions. We can build our own, 
or use languages from a library. Finally domain experts can be 
integrated into the process where it makes sense. 

We (the authors) really want to work in such a world! Let's 
make it happen! 
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