Domain Specific - a Binary Decision ?

Markus Voelter

independent/itemis

Otztaler Strasse 38
70327 Stuttgart, Germany

voelter@acm.org

ABSTRACT

It is often considered a binary decision whethemething is

domain specific or not. Consequently, there are alnmspecific

languages (DSL) and general purpose languages (GiRirg are
domain specific and non-domain specific modelinglgp there

are domain specific and non-domain specific methagles etc.

In this paper we argue, that domain specificitynig a hard
decision, but rather one extreme on a continuum.al§e argue
that many systems can be more efficiently descritititla mix of

domain specific and non-domain specific abstrastidrhis view

of the world has consequences for languages, taold

methodologies, specifically the ability to moduta&riand compose
languages. Additionally we outline these conseqgegsnand

provide an extensive example based on embeddeshsyst

Keywords

domain specific language, programming, modelingjqational
editor, language development, language compositinadular
language, language workbench, embedded systems.

1. INTRODUCTION

Traditionally, domain specific modeling (DSM) (or one

generally, the use of domain specific languagess ptode
generation or interpretation) is considered theosfip of general
purpose based approaches. We all know the discisssaod

"religious battles" we and others are continuouslving with

people who advocate the use of general purposeudaeg for
describing software. However, we all agree that esayeneral
purpose languages are extremely useful. We doili't tieam

modeling languages, we rather call them programr@nguages.
In many methodologies that proclaim to use domgircsic

modeling, there is still the need to write codegéneral purpose
programming languages to express certain aspedtseafystem.
On the other hand, notations such as state magHirearchical

components, or data flow diagrams can hardly bie¢alomain

specific. They are not as general purpose as argroging

language, but they are still very general compatedany

reasonable definition of "domain specific".

In this paper we argue that it is useful to be aolemix
domain-specific and general purpose aspects in j@into
environment. Specificaly DSLs and GPLs can be sesn
collaborating languages in one tool called languagekbench.
Also, programming and modeling should not be caersid
different. This leads to the notion of modular maug and
programming languages and the corresponding corsegs for
tools.

This paper is structured as follows. An overviewowbthe
domain terminology is given in Chapter 2. In Chapsewe

Bernhard Merkle
SICK AG
R&D Software Engineering
Erwin-Sick-Str.1
79183 Waldkirch, Germany

bernhard.merkle@gmail.com

challenge the question about "modeling vs. programginand
whether there should be a distinction at all betwége two.
Chapter 4 describes the idea of modular languagewedl as
various ways of combining them. A real world casedyg is
presented in Chapter 5: modular languages apmiedeveloping
embedded applications. Chapter 6 shows consequémcésls
and finally Chapter 7 summarizes and concludepéper.

2. WHAT ISA DOMAIN

To be able to discuss about the domain specifafitypomething,
we should first define what a domain is. We havemathe
following definitions:

« Domain (software engineering): a field of studytttiefines a
set of common requirements, terminology, and fumetiity
for any software program constructed to solve dlem in
that field

¢« Domain engineering: the reusing of domain knowleidgte
production of new software

« Domain knowledge: a specific expert knowledge vétida
pre-selected area of activity, such as surgery

As programmers we often distinguish between busines
domains and technical domains, with the rough ritisthn being
that business domains are what non-programmersatemet and
technical domains are what programmers care abtowever, if
you consider electrical engineers or scientists @EN-
programmers, then the distinction blurs: in embedsiestems for
example, state machines and block diagrams are wieste
"domain experts" use for designing their systemishoagh
developers probably would not consider these lagemiao be
business-domain specific.

So let us consider a domain to be anything for ilhispecific
set of abstractions and notations is advantagebes wescribing
structure or behavior in that domain. It can beewigarrow, deep,
shallow, business-oriented or technical.

Domains can also be hierarchical in that one donisima
specialized (or: narrower) variant of another oRer example,
robot control is specialized compared to embeddetess in
general. The abstractions from embedded systemalsveuseful
in robot control, but there are more specializestralstions that
make sense in addition. This is an important olagi&m, because
this kind of relationship between domains shouldrdq@esented
by the DSLs for domains.

3. MODELING VS. PROGRAMMING

Historically there is (still) a somewhat "clear'stinction between
modeling and programming. Modeling is often asgedawith
graphical languages, domain specific (Entity-Relzdi for DBs)

or general purpose (e.g. UML). A code generaton theduces
most of the artifacts automatically, yet the depelooften has
also to manually implement certain artifacts. Somet he even
has to extend or complete the generated codebeapuse the
modeling language does not support the conceptsi¢hieloper

needs. Protected regions are a classical examplsuoh a

undesirable situation. The scenario would in sormaass be
comparable to manually extending or modifying gatesdt

assembler code, produced from a high level progiagm
language. It will simply not scale.

With the advent of textual DSLs [11] and the assi®d IDE
support via textual language workbenches [10], tinedeling
community is increasingly becoming aware of the dié of
textual modeling. However the gap between modelary
programming still exists in practice, especiallgaaling the tools
used for the two activities.

We do not think that it is really necessary (orrewseful) to
distinguish between modeling and programming in trel.
Essentially modeling and programming should besdmae. One
could even come up with the provoking statement 'tva don't
want to model; we want to program"...

e atvarious levels of abstraction

« from different viewpoints

« all of these integrated

« with different degrees of domain specificity
« with suitable notations

e and with suitable expressiveness

« and always precise, tool processable and with IDE

support.

Some of the viewpoints for describing a system migh
suitable for usage by nonprogrammers, if we haesdtkinds of
people in our group of stakeholders. So in essemeewant a
development environment that allows us to mix antkgrate
arbitrary languages and notations, independent tadther they
are domain specific or not. This explicitly incledprogramming
languages. The next paragraph elaborates on theimgeaf the
term "integrating".

4. MODULAR LANGUAGES

Modular languages are languages that can be inatafye
extended. They integrate with other modules in fibllowing
ways:

¢ referencing: language concepts from module A can refer to
language concepts from module B. Languages come wit

their own notations and the programs written inséhe
languages are stored in their own partitions/mddielgrams.
However, references to program elements expresstéd w
other languages are possible and tool supportedmfbe
(see case study): the system model (a kind of rilekef
references modules defined as part of the "norn@&l"
programming language.

e cascading: concepts from module A are translated into
concepts from module B as a means of implementitsg A
concepts. This way, more abstract languages caasmaded
on top of more general languages, supporting inentah
addition of domain specific abstractions. An ingtireg base

case is where things are cascaded on top of existin
programming languages -- this is conceptually similo
what's today typically called code generation. Eplan(see
case study): the robot control language being latet down

to a general purpose embedded systems language

¢« extension: module B extends module A in the sense that it
provides additional language concepts. B is a sepaf A.
Example (see case study): tasks and state machises
additional contents of modules, in addition to mahares

« embedding: concepts from module A can be embedded in
concepts from module B. Notations defined in A &dre
reused, even if the language modules are embeddadake
this feasible, it must be possible to extend tmglmges as
well, since additional concepts that connect théerded
concepts to the surrounding modules are requirgdmigle
(see case study): boolean C expressions can beddetbas
guard conditions in state machines

e annotation: language A contributes additional properties to
existing concepts of a language B without invasivel
modifying B. This is similar to introductions in AD
Example (see case study): the traceability andabdity
expressions are implemented in this way.

e cross-cutting by trandation: this last kind of integration is a
little bit different in that it does not add anyntuage
concepts. Instead a module A (transparently) chlarbe
translation of concepts defined in a language Bhouit
invasively changing B. Example (see case studg s#iety
feature translates assignments in a way so thatntinre
value range check is performed.

Language modules can either be custom-built foraept,
platform or business domain (a.k.a. domain spgoaificthey can
be reused from a library of existing language meslthese are
most likely more general, hence applicable in mamytexts).

5. CASE STUDY

This section contains an extensive case studyilthatrates the
various ways of integrating language modules; thiestude
what's traditionally considered "programming" andhatis
traditionally considered "modeling". The case stuslyfrom the
embedded systems domain. Let's start with somegbagkd.

5.1 Embedded Software Development

Traditional embedded system development approacises a
variety of tools for various aspects of the systemaking tool
integration a major headache. One of these toolshés C
programming language. Some of the specific probleofis
embedded software development include the limitgzhbility for
meaningful abstraction in C and "dangerous" featuoé the
language (leading to coding conventions such asaMis[1]), the
proprietary and closed nature of modeling tools, itliegration of
models and code, traceability to requirements [@hg build
times as well as the consistent implementation rofipct line
variability [3].

To address these issues, we propose a modular impaeld
programming language based on C that supportsehighkel
abstractions and system-specific extensions sugghortia a
projectional language workbench. The proposed laggwses C
as its core and adds several useful extensionsiding a module

system with visibility rules, physical quantitiess(opposed to just
ints and floats), first-class state machines, dataflow ports,
mathematical notations, memory mapping and bitdgebhs well
as first-class support for various inter-processnmonication
approaches. These additional abstractions arefdramsd down

to C for eventual compilation. Our proof-of-conceps$
implemented with JetBrains MPS for the languagespand the
Lego Minstorms kit for embedded systems..

5.2 JetBrains MPS

JetBrains’ Meta Programming System
projectional language workbench [4]. This means tis&rs don't
edit ASCII text that is then parsed, but each editbperation
directly changes the tree structure of the undeglyprogram.
Since we deal with a projectional editor there & parser
involved and different projections (textual, gragaij and tabular)
are possible. Lastly the generator is defined tdt éext (for a
low-level language) or it transforms higher-levelde into code
expressed in lower level languages..

Editing the tree as opposed to “real text” neednesgetting
used to. Without specific adaptations, every progedement has
to be selected from a drop-down list and "instaeda However,
MPS provides editor customizations to enable eglitihat
resembles modern IDEs that use automatically expgndode
templates. In some cases though, the tree shinenigt
Consider changing a statement likei = j+k; tointi = (j+k)*2;
you cannot simply move the cursor to the leff ahd insert a left
parenthesis. Rather, you have to select+theperator (the root
node of the expression on the right) and usBuaround with
Parensrefactoring.

We now briefly illustrate how a language is definedPS. A
more extensive description can be found in [5]. MB& other
language workbenches, comes with a set of DSLdafoguage
definition, a separate DSL for each language aspesiguage
aspects include structure, editor, type systemerggor as well as
support for features such as quick fixes or refauys.

Defining a new language starts with the languagecsttre
(aka meta model). This is very much like objectented
programming since language elements are represastedncepts
that have properties, children and references berotoncepts.
The second step is the editor for the languageegacAn editor
defines how the syntax for the concepts should lblod - it
constitutes the projection rules. Figure 1 is aangxe.

Next is the definition of the type system. For epénthe type
property of aLocalVariableDeclaratiormust be compatible with

the type of itsinit expression. For the type system definition as

well as further customization the reader is refitee[5].

We already alluded to the relationship betweenathjeented
programming and language definition in MPS. Thialagy also
holds for language extension and specializationno8pts can

extend other concepts, and subconcepts can be
polymorphically.
Languages also define translation rules to loweetlle

languages or to text. MPS includes an incrememtaistation
engine that reduces program code as long as ttamslales are
available for the program elements. At the endt tgmanerators
output regular program text that can be fed intorapiler.

is an open sourc

editoxr for concept hncalVarid:leDeclaratinn
node cell layout:

[- % type %|{ name } ? = 7% init | % ; -]

Figure 1. Defining an editor for a local variable
declaration statement (as in int i = 2*2;)

5.3 TheModular Embedded L anguage

As a proof of concept, we are currently buildingrat cut of a
modular embedded language (MEL) based on JetBKiRS. We
use Lego Mindstorms [6] as the target platform tbhgewith the
OSEK [7] operating system. C and OSEK are widelgeduin

automotive systems, so the technologies used inptbef-of-

concept are relevant in real systems. The currdrgseline
showcase is a simple line follower robot. It usesirgle light

sensor to follow a thick black line and keeps tratkhat line by
changing the left and right motor speeds to tuonglwith the
line. The following sections describe some of thatdires of the
current MEL.

Core Language. The core of the MEL is a implementation of
the C programming language. It supports variabtesistants,
enums, structs, functions, most of C's statememdsexpressions
as well as the type system including pointers.eladtof header
files, the language provides the concept of a neaddbdules are
like namespaces and contain variables, typedefsictst and
functions - all the elements that can be declaretbp level in C
programs. Module contents can be exported. Modtdasdeclare
dependencies to other modules which makes theiortegh
contents visible to depending module.

Figure 2 shows a screenshot of the basic line@tqrogram
implemented with MEL. It contains a modutein that uses three
external APl modules. It contains constants as vl a
statemachinewhich manages the two phases of the program:
initialization andrunning The cyclicrun task is responsible for
reading the sensor and adjusting motor speeds.délled every
two system ticks. What theun task actually does is state-
dependent by virtue of thstateswitch if the linefollower state
machine is in theunning state it reads the light sensor and
updates the motor settings. This state is entesedignalling
linefollower:initialized at the end of thénitialize block. Finally,
the module contains thepdateMotorSettingfunction which
actually drives the motors.

Let us look at some of the features available & MEL and
relate them to the various language composition hargisms
outlined above.

Tasks. Tasks capture behaviour that should be executed at
specific times, currentlgt startupandcyclic are supported. Tasks

usedre like functions, but they have no argumentsranceturn type.

Tasks are an example of extension in that new kiofls
IModuleContentsare defined.IModuleContentis an interface
defined by the core language to type everything ttem be
embedded into modules. Tasks are also an examplaschding
in that the tasks are translated to C functionghimrest of this
paper we will not mention cascading explicitly ifewsimple
generate C code".

Statemachines. The MEL contains a language module for state
machines. It supports the declaration of state mash(with

states, events, transitions, guard conditions dkageentry and
exit actions), a statement to fire events intaatéestnachine as well
as astateswitchstatement to create switchlike construct for
implementing state-dependent behavior in taskamctfons.

doc This module

represents the code for the line follower lego robot. It has a coupl

module main safe imports OsekKernel, EcAPI, BitLevelUtilies {

constant int WHITE = 500;
constant int BLACK = 700;
constant int SLOW = 20;
constant int FAST = 40;

doc Statema

statemachine linefoll. {
event initialized;
initial state initializing (
initialized [true] -> running
}
state running {

}
2

initialize {
acrobot_set_light_sensor_active (SENSOR_PORT_T::NXT_PORT_S1);
event linefollower:initialized

)

terminate {
{bumper &&!debugOutput) ecrobot_set_light_sensor_inactive (SENSOR_PORT T::NXT_PORT_S1);

}

doc This is the cyclic task that is called every lms to do the actual cont
task run cyclic prio = 1 every = 2 {
stateswitch linefollower
state running
int32 light = 0;
light = ecrobot_get_light_sensor (SENSOR_PORT_T::NXT_PORT_S1);
if (light < (WHITE + BLACK) / 2) {
updateMotorSettings (SLOW, FAST);
} else {
updateMotorsettings (FAST, SLOW)
}
default

tors based on t

void updateMotorSettings(int left, int right) {
lefr, 1);
nxt_motor_set_speed (MOTOR_PORT_T: :NXT_PORT_B, right, 1);

]

nxt_motor_set_speed (MOTOR_PORT_T: :NXT_PORT_C,

Figure 2: Code for the simple line follower robot
expressed with the MEL

State machines are another example of extensioate St
machines implement tHdModuleConteninterface so they can be
put into modules. Thevent...keyword and thestateswitchare
subtypes of the core languag8ttementoncepts, making sure
they can be used in statement context. State melaire also an
example of embedding, since corglgpressionsan be embedded
into guards in transitions. Extension is used wvjgle additional
kinds of expressions to refer to the argumentsefts.

Note that by the end of 2010 we will most likelypport a
graphical notation for state machines. Howeverpfasow, we
also support tabular notations as shown in Figure 3

PR NIRRTl initializing paused running crash

initialized true running

bumped true crash
blocked true paused
unblocked true runningtrue crash

Figure 3: Editing the state machine as a table embedded
in the program code

A special kind of integer. Working with the sonar sensor to
detect obstructions in the robot's path requiresraming over
repeated measurements because the sensor is usitjvee This
is useful for many sensors, so an extension ofype system to
provide averaging variables is included. Figure hbves the
declaration of a variable with avgtype: the base type ist, the
number of elements over which to average is 10 ¢l
initialization value is 250. From this declaratiothe
transformation produces two more variables: amglbuffer that
remembers the last 10 measurements and an indethatt buffer
to determine where the next value is stored. Thepefator (see
B) inserts a new measurement into to the buffdcutating the
new average and assigning it to the variable ofléfieof the
operator. The variable can be read just like ahgmovtariable (see
C). This is another example of extension. We'vduihed this
example to illustrate that we not only can exteloig™'things such
as tasks, but also more intricate aspects sudeaype system.

A {sonar} var avg(int, 10) currentSonar = 250; ‘
B {sonar} task sonartask cyclic prio = 2 every = 100 {
currentSonar =/ ecx:ol:ot_get_sonar_sensor{SEHSOP._PC
{debugOutput} debugInt(2, "somaxr:", currentSonar);
}
{sonar} if (currentSonar < 150) {
event linefollower:blocked
terminate;
}

Figure 4: Averaging Variables

Safety. Oneaspect of safety is making sure that values are not
assigned to variables that cannot hold these vakmsexample,

if a programmer assigns a value touamt8, the value must not be
larger than 255. To enforce this, coding guidelimésmany
organizations require the use of safe utility fimes (such as
mul32(...)) instead of the built-in operators. The MEL sugipo
such an approach transparently. A module can sifelynarked
as safe all assignments and initializations are wrappeth va
checkSizeNN(...function call that logs an error if the value is
outside the permitted range. An alternative impletaigon would
transparently replace built-in operators with ddfeary functions
such asnul32

This is an example of cross-cutting by translatidn. change
in the notation is necessary, but when translatiregmodels to
low-level C code, the translation of existing captsas performed
differently.

Components. Component-based development is widespread in
software engineering in general, and in embeddedesys in
particular. Components are the "smallest architadfurelevant
building block". They encapsulate behavior and erpall
system-relevant characteristics declaratively. he tproof-of-
concept, a language module is available to expissfaces,
components and component implementations

This is another example of extension of coursecesin
components and interfaces can be embedded into lesodu
However, embedding is also used since existings@nts can be
used in the body of component "methods".

A domain specific language. All the MEL facilities described so
far address embedded software development in defibiexe was

nothing in the languages that is specific to mobileots that can
drive and turn, such as our line follower.

Consider now the role of a robot vendor who sallsots with
two wheels that can drive a predefined route. Eagstomer
wants a different predefined route. The vendor thadevelop a
different route-driving program for each custont@f.course this
can be achieved with tasks, state machines, vasgaland
functions. But it would be better if a domain sfiedanguage for
defining routes was available. Figure 5 shows aample
program written in such a language.

module impl imports <<imports>> {

int speed(int wval) {
return 2 * val;

}

robot script stopAndGo
block main
accelerate to 12 + speed(12) within 3000
block newBlock on bump stop
drive on for 2000
turn left for 200
{long} block driveMore
accelerate to 80 within 2000
turn right for 3000
decelerate to 0 within 3000
stop

}
Figure5: A robot routing script embedded in a module

This is an example of cascading languages: on ftapgeneral
purpose language (Embedded/C/OSEK/Mindstorms), mato
specific language (robot routing) is cascaded. ddreain specific
constructs are translated down to the more gengugbose
constructs for execution. Embedding is also ubediever, since
existing core expressions can be still used witbbot scripts, for
example to calculate the target speed of the aateleommand.

Requirements traceability and product line variability. MEL

also supports traceability to requirements as veall feature
annotations to express product line variabilitybifrary program
elements can be annotated with traces to requirsmen
expressions that determine the dependency of teimest to
configuration features. Figure 6 shows this: thecdg) trace

annotations are the requirements traces, the (elk@essions in
curly braces are feature dependencies.

These are examples of annotation, where a lang(idge
feature dependencies language or the tracing lgeguaan
annotate additional data to elements from othemguages,
without changing these other languages. Note hardi 5
contains a feature dependency annotation for DSle.co

6. CONSEQUENCESFOR TOOLS

The distinction into programming and modeling toalsd further,
into domain specific and non-domain specific mautglitools
should be questioned. Sure, we should be ablefioedeur own
domain specific languages since this ability isc@lfor effective
software development. However, general-purposetioos be
they programming languages, simple expression kgeg)
component languages or state machines should elswdilable.
This also implies that the tools must be flexibh@egh to be able

to use both graphical and textual notations ancechthem since
textual state machines or graphical programminguages are
unwieldy in general.

trace Cyclic, Efficient
doc This is the cyclic task that is called every Ims to do the actual control of the
task run cyclie prioc = 1 every = 2
trace TwoPhases
stateswitch linefollower
state running
{bumper) int8 bump = 0;
{bumper} bump - ecrobot_get_touch_sensor (SENSOR_PORT_T::NXT_PORT_$3) ;
{bumper} if (bump = 1) {
{debugOutput &&!bumper} { debugString(3, "bump:", "BUMP!"); }
event linefollower:bumped
terminate;
¥
{sonar &£& debugOutput} if (currentScnar < 150) {
event linefollower:blocked
terminate;
}
trace Init
int32 light = 0;
light = ecrobot_get_light_sensor (SENSOR_PORT_T: :NXT_PORT_S1) ;
if (light < (WHITE + BLACK) / 2) {
trace ConsistentSetting ;
updateMotorSettings (SLOW, FAST)

else {
trace ConsistentSetting
updateMotorSettings (FAST, SLOW!
¥
{debugOutput} trace OptionalOutputlkjlkililkj
{ debugInt(4, "light:", light); }
{sonaz} state paused
trace Calibration
updateMotorSettings (0, 0);
trace Init
if (currentSonar < 255)
event linefollower:unblocked
}
{bumper} state crash
updateMotorSettings (0, 0);
default
<noop>;

Figure 6: a program with trace (green) and feature
dependency (blue) annotations

In the rest of this section we briefly mention & fether tools
(in addition to MPS, which we've illustrated in toase study)
that are able to implement this approach.

6.1 Intentional Software Domain Workbench

Charles Simonyi has been working for Microsoft Resk on a
project called Intentional Programming. His compamgntional
Software is now continuing this research and isdpatizing the
system as the Intentional Domain Workbench. Intevati has not
published a lot about what they are doing, but mler of things
are known based on several publications such as [8]

Like JetBrains, Intentional also uses a projectiapproach. It
is similar in concept, but quite different in détdihe layouting
and rendering engine it more powerful than the wsed by MPS.
The authors have seen examples where for exampbaitci
diagrams or fraction bars are used as part of (athke normal) C
programs. Other examples include insurance matliesnaiixed
with "normal” programs. So the ability to mix ana@tch notations
seems to be quite sophisticated.

6.2 SDF, Stratego and Spoofax

These tools are developed by Eelco Visser and tospgat the
TU Delft. SDF is a way to define grammars and laugs,
Stratego is a term rewriting tool used for transfgtand Spoofax
is an IDE framework based on SDF [9].

Traditional parsers use two phases: in phase otteaeacter
stream is broken into the tokens defined by thguage. In phase
two the parser consumes the tokens, checks the tedéguence

for conformance to the grammar and builds and ASihce
tokens are defined without any context, ambiguitias arise if
grammars are combined that define different tokenshe same
sequence of characters

SDF in contrast has no separate tokenization pfidseparser
directly consumes the character stream, everytligngontext-
aware. If language modules are combined, thereneaer be a
problem with overlapping token definitions. Langeag
composition is therefore no problem.

Stratego is a term rewriting framework based on SDmaps
terms (think: tree fragments) of one tree to teofrsn output tree.
As a consequence of how Stratego is built, it issfime to use the
concrete syntax of the source and target languabesa defining
term rewriting rules: a rewriting rule looks likaekt pattern
mapping". However, what really happens is that @ehto model
transformation is executed, where source and tamgmtel are
written down in their respective concrete syntaxes.

SDF is scalable and can handle non-trivial langsizge. Java,

XML, and HTML have been implemented based on SDF.

Additionally a set of languages called WebDSL[12swncreated
that showcase the idea of using different languagelules to
address different aspects of developing web agipdics.

Eelco's group now develops Eclipse-based toolirrg SDF
and Stratego (Spoofax), providing editor supparthfoilding and
using SDF-based languages and Stratego-basedomauasibns.

6.3 Eclipse Modeling and Xtext

The Eclipse Modeling Project provides a wide ran§éools for
developing domain specific languages,
transformations. As part of Eclipse Modeling, thdH Xtext [10]
project supports textual domain specific languadess easily
possible to define textual DSL including the neeeggooling
(scanner, parser, model read/write/emit support,ntasy
highlighting, code completion, and constraint checkbut
currently no debugger). Because of the underlyirgrser
technology language modularization and compositsolimited -
a language can inherit (and reuse and redefineeptsmiérom) one
base language. Direct integration with common G&b.(Java, C
or C++) is not supported. However, using the séedal

JavaVMMetamodelit is easily possible to reference and navigate

to Java types in the Eclipse workspace. Severadroftlipse-
based textual modeling frameworks are availableangtes
include TEF, TCS, EMFText . Xtext has created aofdbuzz and
is used widely. It is very mature and scales beyardal
languages. Xtext and TCS are self hosted and usedther
Eclipse projects (e.g. B3 builds on Xtext and ATLTCS).

generatorsd an

7. SUMMARY

An environment that unifies "programming” and "miiaig’,
while allowing us to modularize, compose, mix anxtead
languages at different abstraction levels and wdifferent
notations is very promising. Cross-cutting concesny have to
be implemented once and can be handled consisténtil
languages. Tool integration issues, and the clggdlerof
integrating models and code will be a thing of fhest. The
discussion about "domain specific or not" becomeslevant,
we'll just talk about suitable and not-so-suitaslestractions and
notations. If abstractions are not suitable, we baild and
integrate additional language abstractions. Webeaid our own,
or use languages from a library. Finally domainegigp can be
integrated into the process where it makes sense.

We (the authors) really want to work in such a dbtlet's
make it happen!

REFERENCES

[1] MISRA Group, Misra-C, http:/iwww.misra-c2.com/

[2] Jarke. M., Requirements tracing, CommunicatioA®¥ Volume
41, Issue 12, 1998, pages 32 - 36

[3] Eisenecker, U., Czarnecki, K., Generative Progrargmddison-
Wesley, 2000

[4] JetBrains, Meta Programming System, http://jetlsraiom/mps

[5] Voelter, M., Solomatov, K., Language Modularizateamd
Composition with Projectional Language Workbendhestrated w/
MPS, submitted to SLE 2010

[6] Lego, Mindstorms, http://mindstorms.lego.com
[7] Sourceforge.net, nxtOSEK, http://lejos-OSEK.sourogs.net/

[8] Intentional Software, Intentional Domain Workbench,
http://intentsoft.com/technology/IS_OOPSLA_2006_grapdf

[9] http://strategoxt.org/Spoofax
[10] http://mww.eclipse.org/Xtext/

[11] F.Jouault, J.Bezevin, TCS: a DSL for the specificaof textual
concrete syntaxes in model engineering, GPCE 2006

[12] http://webdsl.org

