
Noname manuscript No.
(will be inserted by the editor)

Language and IDE Modularization, Extension and
Composition with MPS

Markus Voelter

Received: date / Accepted: date

Abstract Language modularization, extension and composition is an impor-
tant building block for working efficiently with DSLs. Historically, this has
been a challenge because many grammar formalisms are not closed under
composition, hence syntactic composition of languages is challenging. Com-
posing static and dynamic semantics can also be hard, at least in the general
case. Finally, a lot of existing work does not consider IDEs for the composed
and extended languages. In this paper, I will show how the projectional lan-
guage workbench JetBrains MPS solves most of these issues in a practically
usable way. The main part of the paper is an extensive example that shows
the various kinds of extension and modularization. The last section contains
an evaluation that identifies the strong and weak aspects of modularization,
composition and extension in MPS, and suggests a couple of improvements.

Keywords DSLs · language composition · language extension · JetBrains
MPS · Language Workbench

1 Introduction

1.1 Approach and Structure of the paper

Language modularization, extension and composition (LME&C) is an impor-
tant ingredient to the efficient use of DSLs, just like reuse in general is impor-
tant to software development. We discuss the need for LME&C in the context
of DSL design in [10], where we also introduce some of the terminology used
in this paper. Traditionally, LME&C, including the respective IDEs, has been

Markus Voelter
Oetztaler Strasse 38, Stuttgart, Germany
E-mail: voelter@acm.org

2 Markus Voelter

hard for various reasons, including limited composability of grammars, non-
modular IDEs as well as semantic interactions. Specifically, LME&C, requires
the following concerns to be considered:

– The concrete and the abstract syntax have to be combined. Depending on
the kind of composition, this requires the embedding of one syntax into
another one. This, in turn, requires modular grammars.

– The static semantics, i.e. the constraints and the type system have to be
integrated. For example in case of language extension, new types have to
be ”made valid” for existing operators.

– The execution semantics have to be combined as well. In practice, this
may mean mixing the code generated from the composed languages, or
composing the generators.

– Finally, the IDE that provides code completion, syntax coloring, static
checks and other relevant services has to be extended and composed as
well.

With JetBrains MPS two of these challenges — composability of concrete
syntax and modular IDEs — are a completely solved problem, as this paper
will show. Modular type systems are reasonably well supported. Semantic in-
teractions are hard to solve in general, but can be handled reasonably in many
relevant cases, as we show in this paper as well. However, as we will see, in
many cases, languages have to be designed explicitly for reuse, in order to make
them reusable. After-the-fact reuse, without considering it during the design
of the reusable language, is possible only in limited cases. However, this is true
for reuse in software generally.

The paper is structured as follows. In Section 1.3 we outline the various
kinds of LME&C as defined and explained in the [10] paper. Then we describe
how projectional editors work in general, and how MPS works specifically (Sec-
tion 2). Next we provide a brief overview over related tools and approaches to
illustrate how MPS is different (Section 3). Then we develop the core language
which acts as the basis for the extension and composition examples. We use
the simplest possible language, entities, for this task. This section (Section 4)
also serves as a very brief tutorial on language definition in MPS. The main
part of the paper, the implementation of the various extension and compo-
sition approaches is discussed in Section 5. Finally, Section 6 looks at what
works well and at what could be improved in MPS with regards to extension
and composition.

1.2 Additional Resources

The example code developed for this tutorial can be found at github.com:

https://github.com/markusvoelter/MPS-Language-Composition-Demos---For-MPS-2.0

Language and IDE Modularization, Extension and Composition with MPS 3

It is developed with MPS 2.0 M6 and should run with the final version of MPS
2.0 as well. At the point of this writing, MPS 2.0 had not yet been released
and hence I couldn’t test it.

A set of recorded demos (90 minutes in total) that walk through all the
example code is available on Youtube. The initial video is here:

http://www.youtube.com/watch?v=lNMRMZk8KBE.

The others are either suggested by Youtube, or you can find them by searching
for Language Modularization and Composition with MPS (Part X), where X
is between 1 and 8.

Note that this paper cannot be a complete MPS tutorial. MPS is very
deep and powerful, so we have to focus on those aspects that are essential for
LME&C. We refer to the LWC 11 MPS tutorial for a at detailed MPS tutorial:

http://code.google.com/p/mps-lwc11/wiki/GettingStarted

1.3 Types of Modularization

As we describe in the paper on DSL design dimensions [10], we distinguish
language combination, extension, reuse and embedding.

� Extension. A language B extends another language A if B contains ad-
ditional language concepts. This means that for programs written in B, all
concepts from A are available, plus those defined in B. Concepts in B may
specialize concepts in A. This means that in B programs, the specialized con-
cept can be used wherever A programs expect only the more general one,
effectively adapting the Liskov substitution principle to language concepts.
An extended language may also restrict the base language, so certain concepts
are not available in the sublanguge.

� Combination. If a domain is structured along different concerns, and these
concerns should be implemented using separate viewpoints, then it is often
useful to implement every concern as a separate DSL. When these DSL are
developed from scratch, as a group, then dependencies between the concerns
can be materialized as dependencies between the languages and the language
concepts. A language B may depend on language A because a concept in
language B references a concept in language A. The models remain separate,
only cross-references connect the two.

� Reuse. Reuse describes the case where a language has been developed
explicitly to be used in contexts not known at the time of development of
that language (this is in contrast to combination). So the language cannot
have dependencies to other languages. To make it fit in with a new context,
the reusable language has to be extended so it can reference concepts from
languages in that context.

4 Markus Voelter

� Embedding. Embedding is a special case of reuse, where the reused lan-
guage is syntactically embedded into languages from the context. If the host
language is designed with an awareness of the composed language, the host
language can simply depend on the composed language and embed concepts
from it. As in the case of language reuse, the composed language may have to
be extended to ”plug it into the context”. If both the host language and the
composed language have been designed independent of each other and should
be combined later, then both the host language and the composed language
will have to be extended.

In this paper we illustrate all of these approaches with MPS. At the center
is a simple entities language. We then build additional language to illustrate
LME&C. Fig. 1 illustrates these additional languages. The uispec language
illustrates combination with entities. relmapping is an example of reuse with
separated generated code. rbac illustrates reuse with intermixed generated
code. uispec validation demonstrates extension (of the uispec language) and
embedding with regards to the expressions language.

Fig. 1 entities is the central language. uispec defines UI forms for the entities. uis-
pec validation adds validation rules, and composes a reusable expressions language. relmap-
ping provides a reusable database mapping language, relmapping entities adapts it to the
entities language. rbac is a reusable language for specifying permissions; rbac entities adapts
this language to the entities language.

2 How MPS works

2.1 Projectional Editing

The term Language Workbench has been coined by Martin Fowler in 2005 [3].
In his article he defines it as a tool with the following characteristics:

1. Users can freely define languages which are fully integrated with each other.
2. The primary source of information is a persistent abstract representation.
3. A DSL is defined in three main parts: schema, editor(s), and generator(s).
4. Language users manipulate a DSL through a projectional editor.

Language and IDE Modularization, Extension and Composition with MPS 5

5. A language workbench can persist incomplete or contradictory information.

Note how points 2, 3 and 4 imply projectional editing. In the meantime,
Martin Fowler, and the community as a whole uses the term language work-
bench also for tools that use (modern) parsing techniques. MPS is a pro-
jectional editor. The most important characteristic of projectional editors is
that all text, symbols, and graphics are projected. Projectional editing is well-
known from graphical modeling tools (UML, ER, State Charts). The model
is stored independent of its concrete syntax, only the model structure is per-
sisted, often using XML or a database. For editing purposes this abstract syn-
tax is projected using graphical shapes. Users use mouse gestures and keyboard
actions tailored to graphical editing to modify the abstract model structure
directly. While the concrete syntax of the model does not have to be stored
because it is specified as part of language definition and hence known by
the projection engine, graphical modeling tools usually also store information
about the visual layout.

Projectional editing can also be used for textual syntax. However, since
the projection looks like text, users expect interaction patterns and gestures
known from ”real text” to work. For a projectional editor to be useful, it has
to ”simulate” interaction patterns known from real text. MPS achieves this
quite well. How it does that is beyond the scope of this paper. The following
is a list of benefits of the approach projectional editing:

– No grammar or parser is required. Editing directly changes the underlying
structure. Projectional editors can handle unparsable code. Language com-
position is easily possible, because it cannot result in ambiguous grammars
[1].

– Notations are more flexible than ASCII/ANSI/Unicode. Graphical, semi-
graphical and textual notations can be mixed and combined. For example,
a graphical tool for editing state machines can embed a textual expression
language for editing the guard conditions on transitions.

– Because projectional languages by definition need an IDE for editing (it
has to do the projection!), language definition and extension always implies
IDE definition and extension. The IDE will provide code completion, error
checking and syntax highlighting for all languages, even when they are
composed.

– Because the model is stored independent of its concrete notation, it is
possible to represent the same model in different ways simply by provid-
ing several projections. Different viewpoints of the overall program can be
stored in one model, but editing can still be viewpoint-specific. It is also
possible to store out-of-band data, i.e. annotations on the core model/pro-
gram. Examples of this include documentation, pointers to requirements
(traceability) or feature dependencies in the context of product lines.

As a side effect, language workbenches deliver on the promise of removing
the difference between what is traditionally considered programming and what
is traditionally considered modeling. This distinction is arbitrary anyway: as

6 Markus Voelter

software developers we want to express different concerns of software systems
with abstractions and notations suitable to that particular concern (graphical,
textual, symbolic), formally enough for automatic processing or translation,
and with good IDE support. Projectional language workbenches deliver on
this goal.

2.2 JetBrains MPS

JetBrains Meta Programming System is an open source projectional language
workbench, so all the statements on projectional editing made earlier apply to
MPS. Defining a language includes (a) defining the language concepts (abstract
syntax), (b) defining the editor for the concepts and (c) defining a generator
(compiler). For a language whose programs should be processed with a text-
oriented tools (such as existing compilers or interpreters) the generator outputs
text. For higher-level languages assimilation is used: the generator transforms
a program expressed in LD (a language for the domain D, see [?] for details
on hierarchical domains and languages, and the LD notation) into a program
at LD−1 (a program at a lower domain). In this case, the generators are not
text generators, they transform between abstract syntax trees (this process is
explained in more detail below).

Editing the tree as opposed to real text needs some getting used to. Without
specific customization, every program element has to be selected from a drop-
down list to be ”instantiated”. However, MPS provides editor customizations
to enable editing that resembles modern IDEs that use automatically expand-
ing code templates. This makes editing quite convenient and productive in all
but the most exceptional cases. We will show in section 4 how to actually build
a language woth MPS.

2.3 Real-World use of MPS

Web Development JetBrains’s YouTrack issue tracking system is an interac-
tive web application with many UI features known from desktop applications.
YouTrack is the first JetBrains product that was developed completely with
MPS. The effort for building the necessary MPS-based languages will be re-
paid by future applications that build on the same web platform architecture
and hence use the same set of languages. Language extension is used to add
product-specifics to these languages.

Web development involves many languages. In the browser, HTML, CSS,
JavaScript and SVG are used. All these languages embed one another. On the
Java-based server side, a set of descriptive languages is used, together with
query languages (EQL, HBQL, SQL), template languages (JSP, Velocity) and
of course the Java programming language at the core. JetBrains decided to
wrap these platform-specific implementation languages with a set of Java lan-
guage extensions. For the sake of the example, we focus on describing the

Language and IDE Modularization, Extension and Composition with MPS 7

extensions used in the Java-based backend. The most notable of the languages
used in YouTrack are dnq and webr. dnq is a Java language extension for
working with persistent data and queries. Almost all modern web applications
store data in a database. However, database manipulation is not very well
supported in general purpose languages such as Java. Developers use object
relational mapping frameworks such as Hibernate, JDO or JPA to alleviate this
problem. These frameworks basically map database rows to Java classes. How-
ever, because authors of these frameworks cannot change the Java language,
the integration is limited, hampering developer productivity. For example:

– Entity relations which are inherently bidirectional cant be easily expressed
in Java. Consider a program which models organizational structure, con-
sisting of Departments and Employees. When an Employee is added to a
Department, both, the references in Employee and Department must be
updated consistently.

– Relational databases optimize queries very aggressively. In order to ac-
complish these optimizations, queries should be expressed in SQL. How-
ever, its much more natural to use the programming language for querying
database, especially if the query language were integrated with the host
language and its type system. To enable this, the programming language
must be extended with query constructs and these must be translated into
SQL when the program is compiled.

The dnq language supports the expression of relations in a more natu-
ral way: unidirectional and bidirectional relationships can be declared, distin-
guishing between composition and references. Programmers can access them
in a way similar to accessing fields in Java. dnq also includes a collections
language, a language which supports the manipulation of collections in a way
similar to .NETs LINQ. For example, t supports code such as the following:

aColl.where({it=> it.val < 20 && it.val > 10}).select({it=> it*it});

This code is more declarative than procedural collection manipulation code
which allows MPS to optimize such queries to the database.

The webr language is used for request handling in web applications. In
web frameworks this tasks is typically accomplished by controller classes and
HTML templates. To configure HTTP request handling, frameworks often use
XML based descriptors. In order to process the HTML templates, template
engines are used. Examples include JSP, Velocity or FreeMarker. webr sup-
ports this through Java language extension. Its template language combines
XML and Java, relatively similar to JSP at first glance. However, based on
MPS’ ability to extend languages, webr provides much more freedom of what
templates can contain. For example, in many template engines, its impossible
to add new constructs to the template language. In JSP it is possible using
extension tags but the XML based syntax is quite verbose. In webr templates,
developers can choose whatever syntax they like by defining a suitable lan-
guage extension. An example used in YouTrack is a UI components language
that is not limited to XML syntax. webr also provides first-class support for

8 Markus Voelter

controllers. For example, controllers can declare actions and attach them di-
rectly to events of UI components. Parameters are specified in special entities
called template controllers. webr is well integrated with dnq, so for example, it
is possible to use a persistent entities as a parameter to a page. The database
transaction is automatically managed during request processing.

Embedded Development Embedded systems are becoming more and more soft-
ware intensive and the software becomes bigger and more complex. Traditional
embedded system development approaches use a variety of tools for various
aspects of the system, making tool integration a major headache. Some of
the specific problems of embedded software development include the limited
capability for meaningful abstraction in C, some of C’s ”dangerous” features
(leading to various coding conventions such as Misra-C), the proprietary and
closed nature of modeling tools, the integration of models and code, traceabil-
ity to requirements, long build times as well as management of product line
variability. To address these issues, we propose an alternative approach based
on the incremental extension of C. We have implemented a proof-of-concept
language (http://mbeddr.com) that contains a set of language extensions rele-
vant to this embedded development. A larger-scale research project is starting
in July 2011 to continue the development of this approach.

For the proof-of-concept, the mbeddr project uses Lego mindstorms as the
target platform together with the Osek operating system to ensure real-world
relevance. The current showcase is a line follower robot. It uses a single light
sensor to follow (one side of) a thick black line by changing the speed of mo-
tors that drive the two wheels. The current state of the prototype contains
language modules for components, tasks, state machines, bit-level data struc-
tures, physical quantities, documentation annotations, as well a core module
with basically all of C. There is a clearly defined dependency structure be-
tween those languages, with the core language at the root. We have also added
a DSL for simplified control of the two-wheeled robot using commands such
as accelerate, turn left, or stop. The implementation of this DSL is a model
transformation down to the basic embedded languages: we generate tasks, pro-
cedures and state machines, which are then (automatically) transformed down
to actual C and are compiled by GCC for the Osek target.

3 Related Tools and Approaches

MPS is not the only projectional workbench and projectional workbenches are
not the only approach to language modularity and composition. For example,
the Intentional Domain Workbench (IDW) [8] is another projectional editor
that has been used in real projects. An impressive presentation about its capa-
bilities can be found in this InfoQ presentation titled ”Domain Expert DSL”
(http://bit.ly/10BsWa). IDW is conceptually very similar to MPS, although
quite different in many details. We will not provide more details here, partly

Language and IDE Modularization, Extension and Composition with MPS 9

because Intentional Software is very sensitive about publishing information
about details of their technology.

MetaEdit+ (http://metacase.com) is an example of a purely graphical
language workbench (tables and forms can also be used). Languages are defined
via meta models, constraints, code generators and graphical symbols associ-
ated with the meta-model. Language concepts can be represented by different
symbols in different diagrams types and elements from several languages can
be used in one diagram. Elements from language A can reference elements
in language B. This is not surprising since graphical language workbenches
are (and have always been) projectional. Since this paper focuses mostly on
textual language, we include MetaEdit+ here only for completeness.

Eclipse Xtext (http://eclipse.org/Xtext) supports the creation of ex-
tremely powerful text editors (with code completion, error checking and syn-
tax coloring) from an enhanced EBNF-like grammar definition. It also gen-
erates a meta-model that represents the abstract syntax of the grammar
as well as a parser that parses sentences of the language and builds an in-
stance of the meta-model. Since it uses Eclipse EMF as the basis for its meta
models, it can be used together with any EMF-based model transformation
and code generation tool (examples include Xpand, ATL, and Acceleo, all
at http://eclipse.org/modeling). Language combination is easily possible;
Code completion for references into other models as well as cross-model and
cross-language consistency checks in the editor are supported out of the box.
Language reuse, extension and embedding are quite limited, though. It is pos-
sible to make a language extend one other language. Concepts from the base
language can be used in the sub language and it is possible to redefine gram-
mar rules defined in the base language. Creating new subtypes (in terms of
the meta-model) of language elements in the base language is also possible.
However, it is not possible to define different representations of the same el-
ement (except the concrete syntax of the reference) and it is not possible to
embed arbitrary languages or language modules. This is mainly because the
underlying parser technology is antlr (http://antlr.org) which is a classical
two phase LL(*) parser which has problems with grammar composition [2].
While single inheritance is useful, and many interesting DSLs can be built
with Xtext, single inheritance language extension is not enough in practice;
it would be like object-oriented programming with only inheritance and no
delegation or traits.

SDF [5] (http://strategoxt.org/Sdf), developed by the University of
Delft, uses scannerless parsers. Consequently, languages can be embedded
within each other. Code generators are implemented via term rewriting on the
abstract syntax, but rendered in the concrete syntax! Currently SDF is mainly
a set of command-line tools, but IDE support (with automatically generated
eclipse editors) is in progress as part of Spoofax [6]
(http://strategoxt.org/Spoofax).

Monticore(http://monticore.org) is another parser based language en-
gineering environment that generates parsers, meta-models, and editors based
on extended grammar. Currently, the group at RWTH works on modularizing

10 Markus Voelter

languages [7]. Languages can extend each other and can be embedded within
each other. An important idea is the ability to not have to regenerate the
parsers or any of the related tools after a combined language has been defined.

FURCAS (http://www.furcas.org/) is a tool that is developed by SAP
and the FZI Karlsruhe. FURCAS stores models in an abstract structure. How-
ever, for editing it ”projects” the model into plain ASCII. So when editing the
model, users actually edit ASCII text. Consequently, syntax definition also
includes a definition of indentation and white space conventions, otherwise
the projection could not work. Second, a lot of effort has to be put into a
retaining object identity [4]. If an abstract structure is projected into text,
and then for example something is moved around and saved back into the
abstract structure, it has to be made sure the objects (identified by UUIDs)
aren’t deleted and re-created but really just moved. This is important to make
sure that references between models which are based on the UUID’s and not
(qualified) names remain valid. By using scannerless parsers it is possible to
combine different languages, however a combined grammar has to be defined
and the parser has to be regenerated to be able to use the composed language.
As a consequence of the projectional approach is possible to define several syn-
taxes for the same abstract structure or define views and subsets for a model.
FURCAS also generates IDE-like editors (based on Eclipse).

Note that while parser-based approach are becoming more flexible (as il-
lustrated by some of the tools mentioned in this section), they will not be able
to work with non-parseable code, inlined tables or diagrams or annotations.

For a general overview of language workbenches, please refer to the Lan-
guage Workbench Competition at http://languageworkbenches.net. Par-
ticipating tools have to implement a standardized language and document the
implementation strategy. This serves as a good tutorial of the tool, and makes
them comparable. As of June 2010, the site contains 13 submissions.

4 Implementing a DSL with MPS

This section illustrates the definition of a language with JetBrains MPS. Like
other language workbenches, MPS comes with a set of DSLs for language
definition, a separate DSL for each language aspect. Language aspects include
structure, editor, type systems, generators as well as things like quick fixes or
refactorings. MPS is bootstrapped, so these DSLs are built with MPS itself.

At the center of the language extensions we will build later, we use a simple
entities language. Here is an example model. Modules are so-called root nodes.
They live as top level elements in models. Referring back to the terminology
introduced in the DSL design paper [?], root nodes (and their descendants)
are considered fragments, while the models are partitions (actually, they are
XML files).

Language and IDE Modularization, Extension and Composition with MPS 11

module company

entity Employee {

id : int

name : string

role : string

worksAt : Department

freelancer : boolean

}

entity Department {

id : int

description : string

}

� Structure and Syntax. Language definition starts with the abstract syntax.
In MPS, this is defined via so-called concepts. Fig. 2 shows a UML diagram of
the structure of the entities language. Each box represents a language concept.

Fig. 2 The abstract syntax of the entities language. Entities have attributes, those have
types and names. EntityType extends Type and references Entity. This ”adapts” entities to
types (cf. the Adapter pattern). Concepts like EntityType which have exactly one reference
are called smart references and are treated specially by the IDE in code completion.

The following code shows the definition of the Entity concept1. Entity
extends BaseConcept, the root concept, similar to java.lang.Object in Java. It
implements the INamedConcept interface to inherit a name field. It declares
a list of children of type Attribute in the attributes role. A concept may also
have references to other concepts (as opposed to children).

concept Entity extends BaseConcept implements INamedConcept

is root:

true

properties:

<< ... >>

children:

Attribute attributes 0..n specializes: <none>

references:

<< ... >>

1 This is not the complete definition, concepts can have more characteristics. This is
simplified to show the essentials.

12 Markus Voelter

Editors in MPS are based on cells. Cells are the smallest unit relevant for
projection. Defining an editor hence consists of arranging cells and defining
their content. Different cell types are available to compose editors. Fig. 3 ex-
plains the editor for Entity. The editors for the other concepts are defined
similarly.

Fig. 3 The editor for Entity. The outermost cell is a vertical list. In the first line, we use
a horizontal list that contains the ”keyword” entity, the value of the name property and an
opening curly brace. In the second line we use indentation and a vertical arrangements of
the contents of the attributes collection. Finally, the third line contains the closing curly.

� Type System. The MPS type system engine uses unification. Language
developers specify type equations and the unification engine tries to assign
values to the type variables so that all equations are satisfied. This is similar
to what we know from math. Consider

(1) 2 * x == 10

(2) x + x == 10

(3) x + y == 2 * x + 5

This set of equations can be solved by x := 5, y := 10. The MPS type
system engine works the same way, but the domain is types instead of integers.
Type equations also don’t just contain equations (:==:), but also equations
with subtyping and other relationships.

For the entities language, we specify two simple typing rules. The first one
specifies that the type of the primitives (int, string) is a clone of themselves:

rule typeof_Type {

applicable for concept = Type as type

overrides false

do {

typeof(type) :==: type.copy;

}

}
The only other typing rule is an equation that defines the type of the

attribute as a whole to be the type of the attribute’s type property, defined as
typeof(attribute) :==: typeof(attribute.type);.

� Generator. From entity models we generate Java Beans. Since Java is
available in MPS as the BaseLanguage, the generation is actually a model-to-
model transformation: from the entities model we generate a Java model. MPS

Language and IDE Modularization, Extension and Composition with MPS 13

supports several kinds of transformations. The default case is the template-
based transformation which uses the concrete syntax of the target language to
specify model-to-model transformations. Alternatively, one can use the node
API to manually construct the target tree. Finally the textgen DSL is available
to generate ASCII text (at the end of the transformation chain). Throughout
this paper we use the template based approach.

Template-based generators in MPS consist of two main building blocks:
mapping configurations and templates. Mapping configurations define which
elements are processed with which templates. For the entities language, we
need a root mapping rule and reduction rules. Root mapping rules can be
used to create new top level artifacts from existing top level artifacts (they
map fragments to other fragments). In our case we generate a Java class from
an entity. Reduction rules are in-place transformations. Whenever the engine
encounters an instance of the specified source concept somewhere in a model
tree, it removes that source node and replace it with the result of the associated
template. In our case we have to reduce the various types (int, string, etc.) to
their Java counterparts. Fig. 4 shows a part of the mapping configuration for
the entities language.

Fig. 4 The mapping configuration for the entities language. The root mapping rule for En-
tity specifies that instances of Entity should be transformed with the map Entity template.
The reduction rules use inline templates. For example, the IntType is replaced with the Java
int and the EntityRefType is reduced to a reference to the class generated from the target
entity. The arrow-dollar-symbol is a so-called reference macro. It contains code (not shown)
that ”rewires” the reference to Double to a reference to the class generated from the target
entity.

MPS templates work differently from normal text generation templates
such as for example Xpand, Jet or StringTemplate, since they are actually

14 Markus Voelter

model-to-model transformations. Developers first write a structurally correct
example model using the target language. Then so called macros are used
to change the example model to reflect the input from which we generate.
Fig. 5 shows the map Entity template. It generates a complete Java class —
notice the complete structure of a Java class is present, because that is how
BaseLanguage defines the editor for a Java class. We then generate a field for
each entity Attribute. To do this we first create a prototype field in the class
(private int aField;). Then we use macros to ”transform” this prototype
into an instance for each entity attribute. We first attach a LOOP macro to
the whole field. It contains an expression node.attributes; where node refers
to the input Entity. This code is entered in the Inspector window and is not
shown in the screenshot. We then use a COPY SRC macro to transform the
type. COPY SRC copies the input node (the inspector specifies the current
attribute’s type as the input here) and applies reduction rules. So instances of
the types defines as part of the entities language are transformed into a Java
type using the reduction rules defined in the mapping configuration. Finally
we use a property macro (the dollar sign) to change the name property of the
field we generate from the dummy value aField to the name of the attribute
we currently transform (once again via an expression in the inspector).

Fig. 5 The template for creating a Java class from an entity. The running text explains the
details.

Language and IDE Modularization, Extension and Composition with MPS 15

5 Implementing Language Extensions with MPS

5.1 Language Combination

� Structure and Syntax. We define a language uispec for defining user inter-
face forms based on the entities. Fig. 6 shows the abstract syntax and below
is an example model. Note how the form is another, separate fragment. It is a
dependent fragment, since it references elements from another fragment (ex-
pressed in the entities language). Both fragments are homogeneous since they
consist of sentences expressed in a single language.

form CompanyStructure

uses Department

uses Employee

field Name: textfield(30) -> Employee.name

field Role: combobox(Boss, TeamMember) -> Employee.role

field Freelancer: checkbox -> Employee.freelancer

field Office: textfield(20) -> Department.description

Fig. 6 The abstract syntax of the uispec language. Dotted lines represent classes from an-
other language (here: the entities language). A Form contains EntityReferences that connect
to an entities model. A form also contains Fields, each referring to an Attribute from an
Entity and containing a Widget.

16 Markus Voelter

The uispec language extends2 the entities language. This means, that con-
cepts from the entities language can be used in the definition of language
concepts in the uispec language. A Form owns a number of EntityReferences,
which in turn reference the Entity concept. Also, Fields refer to the Attribute
that shall be edited via the field. Here is the definition of the Field concept.
It owns a Widget and refers to an Attribute.

concept Field extends BaseConcept implements <none>

properties:

label : string

children:

Widget widget 0..1 specializes: <none>

references:

Attribute attribute 0..1 specializes: <none>

� Type System. There are limitations regarding which widget can be used
with which attribute type. This typing rule is defined in the uispec language
and references types from the entities language. The following is the code for
the type check. We use a non-typesystem rule to illustrate how constraints can
be written that do not use the inference engine introduced above.

non type system rule checkTypes {

applicable for concept = Field as field

overrides false

do {

if (field.widget.isInstanceOf(CheckBoxWidget)

&& !(field.attribute.type.isInstanceOf(BooleanType))) {

error "checkbox can only be used with booleans" -> field.widget;

}

if (field.widget.isInstanceOf(ComboWidget)

&& !(field.attribute.type.isInstanceOf(StringType))) {

error "combobox can only be used with strings" -> field.widget;

} } }

� Generation. The defining characteristic of language combination is that
the two languages only reference each other, and the instance fragments are
dependent, but homogeneous. No syntactic integration is necessary in this
case. In this example, the generated code exhibits the same separation. From
the form definition, we generate a Java class that uses Java Swing to build
the form. It uses the beans generated from the entities. The classes are in-
stantiated, and the setters are called. The generators are separate but they
are dependent, they share information. Specifically, the forms generator knows
about the names of the generated entity classes, as well as the names of the
setters and getters. This is implemented by defining a couple of behaviour
methods on the Attribute concept that are called from both generators (the
colon represents the node cast operator and binds tightly; the code below casts
the attribute’s parent to Entity and then accesses the name property).

2 MPS uses the term ”extension” whenever the definition of one language uses or referes
to concepts defined in another language. This is not necessarily an example of language
extension as defined in this paper.

Language and IDE Modularization, Extension and Composition with MPS 17

concept behavior Attribute {

public string qname() {

this.parent : Entity.name + "." + this.name;

}

public string setterName() {

"set" + this.name.substring(0, 1).toUpperCase() + this.name.substring(1);

}

public string getterName() {

"get" + this.name.substring(0, 1).toUpperCase() + this.name.substring(1);

}

}

The original entities fragment is still sufficient for the transformation that
generates the Java Bean. The form fragment is not sufficient for generating
the UI, it needs the entity fragment. This is not surprising since dependent
fragments can never be sufficient for a transformation, the transitive closure
of all dependencies has to be made available.

5.2 Language Extension

We will revisit language extension later for more meaningful examples of ex-
tension. For now, we extend the MPS base language with expression blocks
and placeholders. These concepts make writing generators that generate base
language code much simpler. Fig. 7 shows an Example. We use a screenshot
instead of text because we use non-textual notations (the big brackets) and
color.

� Structure and Syntax. An expression block is a block that can be used
where an Expression is expected [1]. The block can contain any number of
statements; yield can be used to ”return values” from within the block. So,
in some sense, an expression block is an ”inlined method”, or a closure that
is defined and called directly. The optional name property of an expression
block is then used as the method name. The generator of the expression block
transforms it into just this structure:

okButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent p0) {

Employee aEmployee = new Employee();

aEmployee.setName(retrieve_name(aEmployee, widget0));

}

public String retrieve_name(Employee aEmployee, JComponent widget0) {

String newValue = ((JTextField) widget0).getText();

return newValue;

}

}

The jetbrains.mps.baselanguage.exprblocks language extends MPS’ Base-
Language. The expression block is used in places where the base language
expects an Expression. This is why an BlockExpression extends Expression.
Consequently, fragments that use the exprblocks language, can now use Block-
Expressions in addition to the concepts provided by the base language. The
fragments become heterogeneous, because languaegs are mixed.

18 Markus Voelter

Fig. 7 Expression blocks (in blue) are basically anonymous inline methods. Upon transfor-
mation, a method is generated that contains the block content, and the expression block is
replaced with a call to this method. Expression block are used mostly when implementing
generators; this screenshot shows a generator that uses an expression block.

concept BlockExpression extends Expression implements INamedConcept

children:

StatementList body 1 specializes: <none>

� Type System. The type of the yield statement is the type of the expression
that is yielded, specified by typeof(yield) :==: typeof(yield.result);

(the type of /verb+yield 1;+ would be int). Since the BlockExpression is used
as an expression, it has to have a type as well. Since it is not explicitly specified,
the type of the BlockExpression is the common super type of the types of all
the yields. The following typing rule computes this type:

var resultType ;

for (node<BlockExpressionYield> y :

blockExpr.descendants<concept = BlockExpressionYield>) {

resultType :==: typeof(y.result);

}

typeof(blockExpr) :==: resultType;

� Generator. The generator for BlockExpressions reduces the new concept
to pure base language: it performs assimilation. It transforms a heterogeneous
fragment (using BaseLanguage and exprblocks) to a homogeneous fragment
(using only BaseLanguage). The first step is the creation of the additional
method for the block expression (Fig. 8).

Fig. 8 We use a weaving rule to create an additional method for this. A weaving rule
processes an input element (BlockExpression) by creating another node in a different place.
The context function defines this other place. In this case, it simply gets the class in which
we have defined the block expression.

The template shown in Fig. 9 shows the creation of the method. It assigns a
mapping label to the created method. The mapping label creates a a mapping
between the BlockExpression and the created method. We will use this label to
refer to this generated method when we generate the method call that replaces
the BlockExpression (Fig. 10).

Language and IDE Modularization, Extension and Composition with MPS 19

Fig. 9 The generator creates a method from the block expression. It uses COPY SRC
macros to replace the string type with the computed return type of the block expression,
inserts a computed name, adds a parameter for each referenced variable outside the block,
and inserts all the statements from the block expression into the body of the method. The
blockExprToMethod mapping label is used later in the method call.

Fig. 10 Here we generate the call to the previously generated method. We use the mapping
label blockExprToMethod to refer to the correct method (not shown; happens inside the -¿$
macro). We pass in the environment variables as actual arguments.

A second concept introduced by the exprblocks language is the Placehold-
erStatement. It extends Statement so it can be used insider method bodies. It
is used to mark locations at which subsequent generators want to add addi-
tional code. These subsequent generators will use a reduction rule to replace
the placeholder with whatever they want to put at this location. It is a means
to building extensible generators, as we will see later.

5.3 Language Reuse

Language reuse covers the case where a language that has been developed
independent of the context in which it should be reused. The respective frag-
ments remain homogeneous. In this paper, we cover two alternative cases: the
first case addresses a persistence mapping language. The generated code is
separate of the code generated from the entities language. The second case
described a language for role-based access control. The generated code has to
be ”woven into” the entities code to check permissions when setters are called.

5.3.1 Separated Generated Code

� Structure and Syntax. relmapping is a reusable language for mapping ar-
bitrary data to relational tables. The relmapping language supports the def-
inition of relational table structures, but leaves the actual mapping to the
source data unspecified. As you adapt the language to a specific reuse con-
text, you have to specify this mapping. The following code shows the reusable
part. A database is defined that contains tables with columns. Columns have
(database-specific) data types.

20 Markus Voelter

Database CompanyDB

table Departments

number id

char descr

table People

number id

char name

char role

char isFreelancer

Fig. 11 shows the structure of the relmapping language. The abstract con-
cept ColumnMapper serves as a hook: if we reuse this language in a different
context, we extend this hook by context-specific code.

Fig. 11 A Database contains Tables which contain Columns. A column has a name and
a type. A column also has a ColumnMapper. This is an abstract concept that determines
where the column gets its data from. It is a hook intended to be specialized in sublanguages
that are context-specific.

The relmapping entities language extends relmapping and adapts it for
reuse with the entities language. To this end, it provides a subconcept of
ColumnMapper, the AttributeColMapper, which references an Attribute from
the entities language as a means of expressing the mapping from the attribute
to the column. The column mapper is projected on the right of the field defi-
nition, resulting in the following (heterogeneous) code fragment:

Database CompanyDB

table Departments

number id <- Department.id

char descr <- Department.description

table People

number id <- Employee.id

char name <- Employee.name

char role <- Employee.role

char isFreelancer <- Employee.freelancer

� Type System. The type of a column is the type of its type property. In
addition, the type of the column must also conform to the type of the column
mapper, so the concrete subtype must provide a type mapping as well. This
”typing hook” is implemented as an abstract behaviour method typeMapped-
ToDB on the ColumnMapper. It is acceptable from a dependency perspective
to have this typing hook, since relmapping is designed to be extensible. The
typing rules then look as follows:

Language and IDE Modularization, Extension and Composition with MPS 21

typeof(column) :==: typeof(column.type);

typeof(column.type) :==: typeof(column.mapper);

typeof(columnMapper) :==: columnMapper.typeMappedToDB();

The AttributeColMapping concept from the relmapping entities implements
this method by mapping ints to numbers, and everything else to chars.

public node<> typeMappedToDB()

overrides ColumnMapper.typeMappedToDB {

node<> attrType = this.attribute.type.type;

if (attrType.isInstanceOf(IntType)) { return new node<NumberType>(); }

return new node<CharType>();

}

� Generator. The generated code is also separated into a reusable part (a
class generated by the generator of the relmapping language) and a context-
specific subclass of that class, generated by the relmapping entities language.
The generic base class contains code for creating the tables and for storing
data in those tables. It contains abstract methods that are used to access the
data to be stored in the columns. So the dependency structure of the generated
fragments, as well as the depdendencies of the respective generators, resembles
the dedpendency structure of the languages: the generated fragemnts are de-
pendent, and the generators are dependent as well (they share the name (and
implicitly the knowledge about the structure) of the class generated by the
reusable relmapping generator). A relmapping fragment (without the concrete
column mappers) is sufficient for generating the generic base class.

public abstract class CompanyDBBaseAdapter {

private void createTableDepartments() {

// SQL to create the Departments table

}

private void createTablePeople() {

// SQL to create the People table

}

public void storeDepartments(Object applicationData) {

StringBuilder sql = new StringBuilder();

sql.append("insert into" + "Departments" + "(");

sql.append("" + "id");

sql.append(", " + "descr");

sql.append(") values (");

sql.append("" + "\"" + getValueForDepartments_id(applicationData) + "\"");

sql.append(", " + "\"" + getValueForDepartments_descr(applicationData) + "\"");

sql.append(")");

}

public void storePeople(Object applicationData) {

// like above

}

public abstract String getValueForDepartments_id(Object applicationData);

22 Markus Voelter

public abstract String getValueForDepartments_descr(Object applicationData);

// abstract getValue methods for the People table

}

The subclass, generated by the generator in the relmapping entities lan-
guage implements the methods defined by the generic superclass. The inter-
face, represented by the applicationData object, has to be kept generic so any
kind of user data can be passed in. Note how this class references the beans
generated from the entities. So the generator for entities and the generator for
relmapping entities are dependent, the information shared between the two
generator is the names of the classes generated from the entities. The code
generated from the relmapping language is designed to be extended by code
generated from a sublanguage (the abstract getValue methods). This is ac-
ceptable, since the relmapping language itself is intended to be extended to
adapt it to a new reuse context.

public class CompanyDBAdapter extends CompanyDBBaseAdapter {

public String getValueForDepartments_id(Object applicationData) {

Object[] arr = (Object[]) applicationData;

Department o = (Department) arr[0];

String val = o.getId() + "";

return val;

}

public String getValueForDepartments_descr(Object applicationData) {

Object[] arr = (Object[]) applicationData;

Department o = (Department) arr[0];

String val = o.getDescription() + "";

return val;

}

}

5.3.2 Interwoven generated code

� Structure and Syntax. rbac is a language for specifying role-based access
control, to specify access permissions for the entities.

RBAC

users:

user mv : Markus Voelter

user ag : Andreas Graf

user ke : Kurt Ebert

roles:

role admin : ke

role consulting : ag, mv

permissions:

admin, W : Department

consulting, R : Employee.name

The structure is shown in Fig. 12. Like relmapping, it provides a hook,
in this case, Resource, to adapt it to context languages. The sublanguge

Language and IDE Modularization, Extension and Composition with MPS 23

rbac entities provides two subconcepts of Resource, namely AttributeResource
to reference to an attribute, and EntityResource to refer to an Entity, to define
permissions for entities and their attributes.

Fig. 12 Language strucrure of the rbac language. An RBACSpec contains Users, Roles
and Permissions. Users can be members in several roles. A permission assigns a right to a
Resource.

� Type System. No type system rules apply here.

� Generator. What distinguishes this case from the relmapping case is that
the code generated from the rbac entities language is not separated from the
code generated from the entities. Instead, inside the setters of the Java beans,
a permission check is required.

public void setName(String newValue) {

// check permissions (from rbac_entities)

if (new RbacSpecEntities().currentUserHasWritePermission("Employee.name")) {

throw new RuntimeException("no permission");

}

this.name = newValue;

}

The generated fragment is homogeneous (it is all Java code), but it is
multi-sourced, since several generators contribute to the same fragment. To
implement this, several approaches are possible:

– We could use AspectJ (http://www.eclipse.org/aspectj/). This way,
we could generate separate Java artifacts (all single-sourced) and then use
the aspect weaver to ”mix” them. However, we don’t want to introduce
AspectJ here, so we will not use this approach.

– An interceptor (http://en.wikipedia.org/wiki/Interceptor_pattern)
framework could be added to the generated Java Beans, with the generated
code contributing specific interceptors (effectively building a custom AOP
solution). We will not use this approach either, since it would require the
addition of a whole interceptor framework to the entities. This seems like
overkill.

24 Markus Voelter

– We could ”inject” additional code generation templates to the existing
entities generator from the rbac entities generator. This would make the
generators woven as opposed to just dependent. Assuming this would work
in MPS, this would be the most elegant solution. But it does not.

– We could define a hook in the generated Java beans code and then have the
rbac entities generator contribute code to this hook. This is the appraoch
we will use. The generators remain dependent, they have to agree on the
way the hook works.

Notice that only the AspectJ solution can work without any preplanning
from the perspective of the entities language, because it avoids mixing the
generated code artifacts (it is handled ”magically” by AspectJ). All other
solutions require the original entities generator to ”expect” certain extensions.

In our case, we have modified the original generator in the entities language
to contain a PlaceholderStatement (Fig. 13). In every setter, the placeholder
acts as a hook at which subsequent generators can add statements. While we
have to preplan that we want to extend the generator in this place, we don’t
have to predefine how. The placeholder contains a key into the session object
that points to the currently processed attribute. This way, the subsequent
generator can know from which attribute the method with the placeholder in
it was generated.

Fig. 13 This generator fragment creates a setter method for each attribute of an entity.
The LOOP iterates over all attributes. The $ macro computes the name of the method, and
the COPY SRC macro on the argument type computes the type. The placeholder is used
later to insert the permission check.

The rbac entities generator contains a reduction rule for PlaceholderState-
ments. So when it encounters a placeholder (that has been put there by the
entities generator) it removes it and inserts the code that checks for the per-
mission (Fig. 14). To make this work we have to make sure that this generator
runs after the entities generator (since the entities generator has to create the
placeholder) and before the BaseLanguage generator (which transforms Base-
Language code into Java text for compilation). We use generator priorities,
i.e. a partial ordering, to achieve this.

5.4 Language Embedding

� Structure and Syntax. uispec validation extends uispec, it is a sublanguage
of the validation language. It supports writing code such as the following in

Language and IDE Modularization, Extension and Composition with MPS 25

Fig. 14 This reduction rule replaces PlaceholderStatements with a permission check. Using
the condition, we only match those placeholders whose identifier is pre-set (notice how we
have defined this identifier in Fig. 13). The inserted code queries another generated class
that contains the actual permission check. A runtime exception is thrown if the check fails.

the UI form specifications. Writing the expressions is supported by embedding
a reusable expressions language. Fig. 15 shows the structure. To be able to
use the expressions, the user has to use a ValidatedField instead of a Field.
ValidatedField is also defined in uispec validation and is a subconcept of Field.

form CompanyStructure

uses Department

uses Employee

field Name: textfield(30) -> Employee.name validate lengthOf(Employee.name) < 30

field Role: combobox(Boss, TeamMember) -> Employee.role

field Freelancer: checkbox -> Employee.freelancer

validate if (isSet(Employee.worksAt)) Employee.freelancer == true else

Employee.freelancer == false

field Office: textfield(20) -> Department.description

To support the migration of existing models that use Field instances, we
provide an intention: the user can press Alt-Enter on a Field and select ”Make
Validated Field”. This transforms an existing Field into a ValidatedField, so
that validation expressions can be entered. The core of the intention is the
following script, which performs the actual transformation:

execute(editorContext, node)->void {

node<ValidatedField> vf = new node<ValidatedField>();

vf.widget = node.widget;

vf.attribute = node.attribute;

vf.label = node.label;

node.replace with(vf);

}

The uispec validation language extends the uispec language. We also ex-
tend the existing, reusable expressions language, so we can use Expressions
in the definition of our language. ValidatedField has a property expr that
contains the actual expression. As a consequence of polymorphism, we can

26 Markus Voelter

Fig. 15 The uispec validation language defines a subtype of uispec.Field that contains
an Expression from a reusable expression language. The language also defines a couple
of additional expressions, specifically the AttributeRefExpr, which can be used to refer to
attributes of entities.

use any existing subconcept of Expression here. So without doing anything
else, we could write 20 + 40 > 10, since integer literals and the plus oper-
ator are defined as part of the composed expressions language. However, to
write anything useful, we have to be able to reference entity attributes from
within expressions. To achieve this, we create the AttributeRefExpr as shown
in Fig. 15. We also create LenghtOf and IsSetExpression as further examples
of how to adapt an embedded language to its new context — i.e. the uispec
and entities languages.

The AttributeRefExpr may only reference those attributes of those entities
that used in the form within which we define the validation expression. The
following is the code for the search scope:

(model, scope, referenceNode, linkTarget, enclosingNode)

->join(ISearchScope | sequence<node< >>) {

nlist<Attribute> res = new nlist<Attribute>;

node<Form> form = enclosingNode.ancestor<concept = Form, +>;

for (node<EntityReference> er : form.usedEntities) {

res.addAll(er.entity.attributes);

}

res;

}

Notice that the actual syntactic embedding of the expressions in the uis-
pec validation language is no problem at all as a consequence of how projec-
tional editors work. We simply define Expression to be a child of the Validat-
edField.

Language and IDE Modularization, Extension and Composition with MPS 27

� Type System. The general challenge here is that primitive types such as int
and string are defined in the entities language and in the reusable expression
language. Although they have the same names, they are not the same types.
So the two sets of types must be mapped. Here are a couple of examples. The
type of the IsSetExpression is by definition expressions.BooleanType. The type
of the LengthOf, which takes an AttrRefExpression as its argument, is expres-
sions.IntType. The type of an attribute reference is the type of the attribute’s
type property, as in typeof(are) :==: typeof(are.attr.type);. However,
consider now the following code:

field Freelancer: checkbox -> Employee.freelancer

validate if (isSet(Employee.worksAt)) Employee.freelancer == true else

Employee.freelancer == false

This code states that if the worksAt attribute of an employee is set, then
its freelancer attribute must be true else it must be false. It uses the equals
operator from the expressions language. However, that operator expects two
expressions.BooleanType arguments, but the type of the Employee.freelancer
is entities.BooleanType. In effect, we have to override the typing rules for the
expressions languages’s equals operator. Here is how we do it, using Equals as
an example.

In the expressions language, we define so-called overloaded operation rules.
We specify the resulting type for an EqualsExpression depending on its argu-
ment types. Here is the code in the expressions language that defines the
resulting type to be boolean if the two arguments are Equallable:

operation concepts: EqualsExpression

left operand type: new node<Equallable>()

right operand type: new node<Equallable>()

operation type:

(operation, leftOperandType, rightOperandType)->node< > {

<boolean>;

}

In addition to this code, we have to specify that expressions.BooleanType
is a subtype of Equallable, so this rule applies if we use equals with two ex-
pressions.BooleanType arguments. We have to tie this overloaded operation
specification into a regular type inference rule.

rule typeof_BinaryExpression {

applicable for concept = BinaryExpression as binaryExpression

overrides false

do {

when concrete (typeof(binaryExpression.left) as left) {

when concrete (typeof(binaryExpression.right) as right) {

node<> opType = operation type(binaryExpression , left , right);

if (opType != null) {

typeof(binaryExpression) :==: opType;

} else {

error "operator " + binaryExpression.concept.name +

" cannot be applied to these operand types " +

left.concept.name + "/" + right.concept.name

28 Markus Voelter

-> binaryExpression; }

} } } }

To override these typing rules to work with entities.BooleanType, we simply
provider another overloaded operation specification in the uispec validation
language:

operation concepts: EqualsExpression

one operand type: <boolean> // this is the entities.BooleanType!

operation type:

(operation, leftOperandType, rightOperandType)->node< > {

<boolean>; // this is the expressions.BooleanType

}

� Generator. The generator has to create BaseLanguage code, which is then
subsequently transformed into Java Text. To deal with the transformation of
the expressions language, we can do one of two things:

– Either we can use the expression’s language existing to-text generator and
wrap the expressions in some kind of TextHolderStatement. Remember that
we cannot simply embed text in BaseLanguage, since that would not work
structurally. A wrapper is necessary.

– Alternatively, we can write a (reusable) transformation from expressions
code to BaseLanguage code; these rules would get used as part of the
transformation of uispec and uispec validation code to BaseLanguage.

Since many DSLs will map code to BaseLangauge, it is worth the effort to
write a reusable generator from uispec validation expressions to BaseLanguage
expressions. We choose this second alternative. The generated Java code is
multi-sourced, since it is generated by two independent code generators.

Expression constructs from the reusable expr language and those of Base-
Language are almost identical, so this generator is trivial. We create a new
language project de.voelter.mps.expressions.blgen and add reduction rules.
Fig. 16 shows some of these reduction rules.

In addition to these, we also need reduction rules for those new expressions
that we have added specifically in the uispec validation language (AttrRefEx-
pression, isSetExpression, LengthOf). Those are defined in uispec validation.
As an example, Fig. 17 shows the rule for handling the AttrRefExpression. The
validation code itself is ”injected” into the UI form via the same placeholder
reduction as in the case of the rbac entities language.

Language extension can also be used to prohibit the use of certain concepts
of the base language in the sublanguage, at least in certain contexts. As a sim-
ple (but admittedly relatively useless) example, we restrict the use of certain
operators provided by the reusable expression language insider validation rules
in uispec validation. This can be achieved by implementing a can be ancestor
constraint on ValidatedField.

can be ancestor:

(operationContext, scope, node, childConcept)->boolean {

return !(childConcept == concept/GreateEqualsExpression/ ||

childConcept == concept/LessEqualsExpression/);

}

Language and IDE Modularization, Extension and Composition with MPS 29

Fig. 16 A number of reduction rules that map the reusable expression language to Base-
Language (Java). Since the languages are very similar, the mapping is trivial. For example,
a PlusExpression is mapped to a + in Java, the left and right arguments are reduced recur-
sively through the COPY SRC macro.

Fig. 17 References to entity attributes are mapped to a call to their getter method. The
tempalte fragment (inside the TF) uses two reference macros (-¿$) to ”rewire” the object
reference to the Java bean instance, and the toString method call to a call to the getter.

5.5 Language Annotations

� Structure and Syntax. Since in a projectional editor the visual representa-
tion of a program is not necessarily the complete information in the program,
and since the program’s persistence format is not the concrete syntax, it is
possible to store additional data in a program, and show it optionally. The
mechanism MPS uses for this is called annotations. Using this approach, we
can store the mapping from entity attributes to database columns directly in
the entity, resulting in the following code:

module company

entity Employee {

id : int -> People.id

name : string -> People.name

role : string -> People.role

30 Markus Voelter

worksAt : Department -> People.departmentID

freelancer : boolean -> People.isFreelancer

}

entity Department {

id : int -> Departments.id

description : string -> Departments.descr

}

This is a heterogeneous fragment, consisting of code from the entities, as
well as the annotations. From a concrete syntax perspective, the column map-
ping is ”embedded” in the entity description. In the underlying persistent data
structure, the information is also actually stored in the entity model. However,
the definition of the entities language does not know that this additional in-
formation is stored and projected ”inside” entities! No modification to the
entities language is necessary whatsoever. Instead we define an additional lan-
guage relmapping annotations which extends the entities language as well as
the relmapping language. In this language we define a so-called annotation
link:

annotation link declaration colMapping

stereotype node

cardinality 1

source Attribute

target AttrToColMapping

This must be read as follows: we create an annotation for Attribute which
can point to one instance of AttrToColMapping. AttrToColMapping is simply
another concept that has one reference that points to a Column:

concept AttrToColMapping extends BaseConcept implements <none>

references:

Column column 1 specializes: <none>

Structurally, an annotation is a child of the node it is annotated to. So
the Attribute has a new child of type AttrToColMapping, and the reference
that contains the child is called @colMapping. However, in the editor the re-
lationship is reversed. The editor for AttrToColMapping wraps the editor for
Attribute, as Fig. 18 shows. The annotation is added via an intention (”quick
fix” via Alt-Enter).

Fig. 18 The editor for the AttrToColMapping embeds the editor of the concept it is an-
notated to (using the attributed node cell). It then projects the reference to the referenced
column.

Note that it is also possible to define the annotation source to be BaseCon-
cept, which means the annotation can be attached to any node. The language

Language and IDE Modularization, Extension and Composition with MPS 31

that contains the annotation then has no dependency to any other language.
This is useful for generic ”metadata” such as documentation, requirements
traces or presence conditions in product line engineering. We have described
this in [11] and [9].

� Type System. The same typing rules are necessary as in the relmap-
ping entities language described above. They reside in relmapping annotations.

� Generator. The generator is also broadly similar to the above example
with relmapping entities. It takes the entities model as the input, and then
uses the column mappings in the annotations to create the entity-to-database
mapping code.

The annotations introduced above were typed to be specific to certain tar-
get concepts (EntityAttribute in this case). A particularly interesting use of
of annotations includes those that can be annotated to any language con-
cept (formally targetting BaseConcept). In this case, there is no dependency
between the language that contains the annotation and the language that is
annotated. This is very useful for ”meta data”, as well as anything that can
be processed generically.

An example of the first case is traceability links (Fig. 19). This annotation
can be annotated to any language concept and adds pointers (trace links) to
requirements. As a consequence of the projectional approach, the program can
be shown with or without the annotations, controlled by a global switch.

Fig. 19 Requirements traces can be annotated to any arbitrary program element. The
annotation is targetted to BaseConcept, which means there is no explicit dependency any
specific language.

32 Markus Voelter

An example of the second case is product line variability annotations
(Fig. 20). Boolean expressions over configuration switches can be annotated
to any model element. Such an annotation means that the respective element
is only in the program variant, if the boolean expression is true for the given
setting of configuration switches. The generic transformation simply removes
all elements whose annotation evaluates to false. The expressions can also be
evaluated as part of the projection, showing the code for a given variant. The
code is of course still editable. Details on this approach can be found in [9]
and [11].

Fig. 20 Feature dependency annotations are boolean expresssions over configuration
switches that determine whether the annotated program element is part of a program vari-
ant. The transformation removes all those elements for which the annotation evaluates to
false.

6 Evaluation

The examples above show that meaningful LME&C is possible with MPS.
Specifically, reuse and embedding of languages is possible. The challenge of
grammar composition is not an issue in MPS at all, since no grammars and
parsers are used. The fact that we hardly ever discuss syntactic issues in the
above discussions is proof of this.

However, extensibility regarding the other aspects is a bit less well struc-
tured:

– In case of generators, language designers have to specify a partial order-
ing of mapping configurations using priorities. It is not easily possible to

Language and IDE Modularization, Extension and Composition with MPS 33

Fig. 21 This is the statemachine from Fig. 20, customized to the variant where only the
bumper switch is turned on. The bumper -specific parts are highlighted.

”override” an existing generator, but generators can run before existing
ones. Generator extension is not possible directly, this is why we use the
placeholders that are put in by earlier generators to be reduced by later
ones.

– The concrete syntax for elements of the base language cannot be overridden
in the sublanguage, although this is supposed to change.

– Overriding of scopes is not possible; a workaround exists by factoring the
code into a virtual method (and calling it from the scope).

– Typing rules cannot be overridden unless an overloaded operation rules
container is used in the original language.

In my opinion, a consistent approach for extending and overriding aspects
of the original language is missing. I suggest an approach called Generic
Outside, Specific Inside. It is basically a variant of component-based design
(http://en.wikipedia.org/wiki/CBD). All language aspects use components
as the core structural building block. Components have types. The type of the
component determines the kinds of facets it has. A facet is a kind of interface
that exposes the (externally visible) ingredients of the component. The kinds
of ingredients depend on the component type: a component of type struc-
ture exposes language concepts. A component of type editor exposes editors,
type type system exposes type system rules, and so on. Each component type
would use a different DSL for implementation. Here is the important point: a
component (in a sublanguage) can specify an advises relationship to another
component (from a super language). Then each of the facets can determine
which facets from the advised component it wants to preempt, enhance or
override. Fig. 22 shows the meta model of the approach.

This approach would provide the same way of packaging behavior for all
language aspects, as well as a single, consistent way of changing that behavior
in a sublanguage:

34 Markus Voelter

Fig. 22 Components contain facets. Facets come in different kinds and the component type
determines which facets types are available. The facets export the component’s contribution
to a language. Facets can declare relations to other facets (preempt, enhance, override) as a
generic way to change the contributions exported by components of a base language.

– preemption means that the respective behavior is contributed before the
the behavior from the base language. A generator may use this to reduce
a construct before the original generator gets a chance to reduce the con-
struct.

– enhancement means that the sublanguage component is executed after
the advised component from the base language. Notice that for declarative
aspects where ordering is irrelevant, preempt and enhance are exchangable.

– overriding means that the original facet is completely shadowed by the new
one. This could be used for example to define a new editor for an existing
construct.

To control the granularity at which preemption, enhancement or overriding
is performed, the base language designed would have to group his structures or
behaviors into suitably cut facets. This amount of preplanning is acceptable:
it is just as in OO programming, where behavior that should be overridable
has to be packaged into its own method.

The approach could be taken further. Components could be marked as
abstract, and define a set of parameters for which values need to be provided
by non-abstract subcomponents. A language is abstract as long as it has at
least one abstract component, for which no concrete subcomponent is pro-
vided. Component parameters could even be usable in structure definitions,
for example as the base concept; this would make a language parametrizable
regarding the base language it extends from.

In essence, the suggested approach is a bit like object orientation (com-
ponents == classes, facets == methods), with a rich advise framework (as

Language and IDE Modularization, Extension and Composition with MPS 35

in AOP). Component parameters typed to language concepts are similar to
generics. Using this approach, a powerful and consistent approach to language
extensibility would be available.

7 Summary

MPS is powerful environment for language engineering. While not all of its
features are unique (see Section 3), the combination of flexible composition
and the notational freedom as a consequence of the projectional approach
is certainly convincing. I also want to emphasize that the tool also scales
to realistic program sizes, the editor is very usable, and it integrates well
with existing VCS (diff and merge is provided on the level of the concrete
syntax). At the very minimum, the tool is a perfect environment for language
experimentation in the context of academic and industrial research.

The major drawback of MPS is its non-trivial learning curve. Because it
works so differently than traditional language engineering environments, and
because it addresses so many aspects of languages (incl. type systems, data
flow and refactorings) mastering the tools takes a significant investment in
terms of time. I hope that in the future this investment will be reduced by
better documentation and better defaults, to keep simple things simple and
complex things tractable. First ideas exist on how this could be done.

References

1. M. Bravenboer, R. Vermaas, J. J. Vinju, and E. Visser. Generalized type-based dis-
ambiguation of meta programs with concrete object syntax. In R. Glck and M. R.
Lowry, editors, Generative Programming and Component Engineering, 4th Interna-
tional Conference, GPCE 2005, volume 3676 of Lecture Notes in Computer Science,
pages 157–172, Tallinn, Estonia, 2005. Springer.

2. M. Bravenboer and E. Visser. Parse table composition. In D. Gasevic, R. Lmmel, and
E. V. Wyk, editors, Software Language Engineering, First International Conference,
SLE 2008, Toulouse, France, September 29-30, 2008. Revised Selected Papers, volume
5452 of Lecture Notes in Computer Science, pages 74–94. Springer, 2009.

3. M. Fowler. Language workbenches: The killer-app for domain specific languages?, 2005.

4. T. Goldschmidt. Towards an incremental update approach for concrete textual syntaxes
for uuid-based model repositories. In D. Gasevic, R. Lmmel, and E. V. Wyk, editors,
Software Language Engineering, First International Conference, SLE 2008, Toulouse,
France, September 29-30, 2008. Revised Selected Papers, volume 5452 of Lecture Notes
in Computer Science, pages 168–177. Springer, 2008.

5. J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax definition formalism
SDF - reference manual. SIGPLAN Notices, 24(11):43–75, 1989.

6. L. C. L. Kats and E. Visser. The Spoofax language workbench: rules for declarative
specification of languages and IDEs. In W. R. Cook, S. Clarke, and M. C. Rinard,
editors, Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2010, pages 444–463,
Reno/Tahoe, Nevada, 2010. ACM. (best student paper award).

7. H. Krahn, B. Rumpe, and S. Vlkel. Monticore: a framework for compositional develop-
ment of domain specific languages. STTT, 12(5):353–372, 2010.

36 Markus Voelter

8. C. Simonyi, M. Christerson, and S. Clifford. Intentional software. In P. L. Tarr and
W. R. Cook, editors, Proceedings of the 21th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2006,
October 22-26, 2006, Portland, Oregon, USA, pages 451–464. ACM, 2006.

9. M. Voelter. Implementing feature variability for models and code with projectional
language workbenches. 2010.

10. M. Voelter and E. Visser. Dimensions of dsl design. 2011.
11. M. Voelter and E. Visser. Product line engineering using domain-specific languages. In

Software Product Line Conference, 2011.

