
Design and Implementation of an Asynchronous Invocation
Framework for Web Services

Uwe Zdun1, Markus Voelter2, and Michael Kircher3

1 New Media Lab, Department of Information Systems, Vienna University of Economics, Austria
zdun@acm.org

2 voelter – Ingenieurbro für Softwaretechnologie, Germany
voelter@acm.org

3 Siemems AG, Corporate Technology, Software and System Architectures, Germany
michael.kircher@siemens.com

Abstract Asynchronous invocations are an important functionality in the context of
distributed object frameworks, because in many situations clients should not block dur-
ing remote invocations. There should be a loose coupling between clients and remote
services. Popular web service frameworks, such as Apache Axis, offer only synchronous
invocations (over HTTP). An alternative are messaging protocols but these implement
a different communication paradigm. When client asynchrony is not supported, client
developers have to build asynchronous invocations on top of the synchronous invocation
facility. But this is tedious, error-prone, and might result in different remote invocation
styles used within the same application. In this paper we build a framework using pat-
terns for asynchronous invocation of web services. The framework design is based on the
asynchrony patterns and other patterns from the same pattern language.

Keywords Web services, remote objects, asynchronous invocations.

1 Introduction

In this paper we discuss the problem of asynchronous invocation in the context of web services.
Although there are many different kinds of distributed object frameworks that are called web
services, a web service can be described by a set of technical characteristics, including:

– The HTTP protocol [7] is used as the basic communication protocol.
– Data, invocations, and results are transfered in XML encoded formats, such as SOAP [4]

and WSDL [6].
– Remotely offered services are invoked with a simple, stateless request/response scheme.
– Many web service frameworks are extensible with other communication protocols than

HTTP.
– The services are often implemented with different back-end providers (for instance, a Java

class, an EJB component, a legacy system, etc.) and a model for integration of these back-
ends is provided by the web service framework.

Advantages of this approach to invoke [16] are that web services provide a
means for interoperability in a heterogeneous environment. They are also relatively easy to use
and understand due to simple APIs, and XML content is human-readable. Further, firewalls
can be tunneled by using the HTTP protocol.

In the spirit of the original design ideas of XML [5] (and XML-RPC [18] as the predecessor
of today’s standard web service message format SOAP) XML encoding should also enable
simplicity and understandability as a central advantage. However, today’s XML-based formats
used in web service frameworks, such as XML Namespaces, XML Schema, SOAP, and WSDL,
are quite complex and thus not very easy to comprehend.

Liabilities of the approach are that the functionality of current web service frameworks is
relatively limited compared to other standard middleware. The string-based, human-readable
transport formats are bloated compared to more condensed (binary) transport formats. This
results in larger messages and a more extensive use of network bandwidth. Also more pro-
cessing power is consumed because XML consists of (human-readable) strings for identifiers,
attributes, and data elements. String parsing is more expensive in terms of processing power
than parsing binary data. The HTTP protocol may also cause some overheads because it is not
as optimized for distributed object communication as protocols specifically designed for this
task. For instance, the statelessness of HTTP may result in repeated transmission of the same
data (e.g. for authenication or identifying the current session), something that is not neces-
sary in a distributed object communication protocol that supports stateful connections between
client and server such as CORBA [9].

Many web service frameworks, such as Apache Axis [3], only allow for synchronous invo-
cations (for synchronous protocols such as HTTP). That means the client process (or thread)
blocks until the response arrives. For client application that have higher performance or scal-
ability requirements the sole use of blocking communication is usually a problem because la-
tency and jitter makes invocations unpredictable. In such cases we require the client to handle
the invocation asynchronously. That means, the client process should resume its work while the
invocation is handled. Also the intended loose coupling of web services is something that sug-
gests asynchronous invocations, that is, the client should not depend on the processing times of
the web service. As most web service frameworks are not designed for asynchronous commu-
nication we need to provide the asynchronous behavior on top of the synchronous invocation
layer.

Note that there are various efforts to integrate messaging protocols in web services, such as
the use of Java Messaging Service (JMS) in Axis and WSIF [2], JAXM, or Reliable HTTP
(HTTPR) [10]. These protocols provide asynchrony on the protocol level. They are more
sophisticated than simple asynchronous invocations (e.g. they support reliability of message
transfers as well) and use a different communication paradigm than synchronous protocols.
Under high volume conditions, messaging might incur problems such as a bursty and un-
predictable message flow. Messages can be produced far faster than they can be consumed,
causing congestion. This condition requires the messages to be throttled with flow control.
In this paper, we do not directly deal with messaging protocols, even tough it is possible to
use a messaging protocol in the lower layers of our framework design. Yet the synchronous
programming model would stay and clients cannot take advantage of concurrent execution.

There are many different styles of asynchronous invocations. For instance, the client might
not be interested in the invocation result, or it might be informed with a callback, or it might
actively obtain the result when it has finished some subsequent tasks. Hard-coding different
styles of asynchronous invocation into a client application by hand for each use is tedious,
error-prone, and results in different styles of invocation. Instead one invocation model should
be offered to the developer that supports all invocation variants with a simple and intuitive
interface.

In this paper, we present an asynchronous invocation framework for Apache Axis. Its de-
sign is based on a set of asynchrony patterns [17] to fulfill the specific client-side require-
ments for integrated asynchronous invocation in the web service context (on top of HTTP).
The framework is designed to be easily adapted to other web service frameworks and/or other
synchronous (or asynchronous) communication protocols.

The paper is structured as follows: First we give an overview of the goals of an asyn-
chronous invocation framework in the context of web services. Next we present the asynchrony
patterns from [17] briefly. Then we discuss the design of an asynchronous invocation frame-
work for Apache Axis and compare its performance with synchronous invocations. Finally, we
present some related work and conclude.

2 Goals of an Asynchronous Invocation Framework in the Context of
Web Services

There are a number of issues about web services because of the limitation to synchronous
invocations only. To avoid hard coding asynchronous invocations in the client code, we provide
an object-oriented framework [11] to offer a flexible and reusable software implementation. In
particular our framework aims at resolving the following issues:

– Better Performance of Client Applications: Asynchronous invocations can lead to better
performance of the client application, as we can avoid idle times waiting for a blocking
invocation to return. This is specifically important because handling of XML encoding and
HTTP is not the fastest variant of remote invocation.

– Simple and Flexible Invocation Model: A simple invocation model should be offered to
client developers. Asynchronous invocation should not be more complicated to use than
synchronous invocation. That is, the client developer should not have to deal with issues
such as multi-threading, synchronization, or thread pooling. There are different kinds of
invocations, including synchronous invocations and various ways to provide asynchronous
invocations. All these kinds of invocation should be offered with an integrated invocation
model that is easy to comprehend.

– Support for multiple Web Services Implementations and Protocols: The strength of web
services is heterogeneity, thus an asynchronous invocation framework should (potentially)
work with different protocols (such as JMS or Secure HTTP) and implementations. If
the invocation framework can be built on top of an existing web service framework (that
already integrates different protocols), then they are automatically integrated in the invo-
cation framework as well.

– Avoiding the Use of Messaging Protocols: Messaging protocols such as JMS or HTTPR
can provide asynchrony on the protocol level. But they use a different communication
paradigm than synchronous invocations and may cause problems such as a bursty message
flow or congestion of the message consumer. To provide for heterogeneity, web services
should not depend on a special protocol such as JMS, but all required functionality should
be provided for all supported protocols. For instance, if asynchrony is required and HTTP
should be used for firewall tunneling, then asynchrony should be provided for HTTP na-
tively.

– Client as a Reactive Application: Some clients are reactive applications, such as GUI ap-
plications or server applications that are clients to another servers. In such reactive clients

a blocking invocation is not possible because that would mean to block the reactive event
handling as well. A blocking server or GUI is usually not acceptable.

Asynchronous invocation support can be found in many distributed object frameworks.
However, designing an asynchronous invocation framework for a given synchronous web ser-
vice infrastructure means to deal with the particularities of that infrastructure. In the case of
web services that means in particular that we can rely on the operation types defined by WSDL
[6] (synchronous handling of In-Out, In-only, Out-only, and Out-In operations), as these are
provided by most web service infrastructures. A framework design should support the het-
erogeneity of services, infrastructures, and protocols, as this is the main design goal of web
services. As a minimum requirement, the HTTP protocol family should be supported (with
its typical properties such as stateless interaction). Web service frameworks usually provide
invocation handling with [16] that are automatically generated from WSDL-
 [16], as well as runtime construction of invocations. An asynchronous
invocation framework should support both invocation schemes.

3 Client Asynchrony Patterns

In this section, we present a set of client asynchrony patterns [17] that are part of a larger
pattern language for distributed object communication (see also [16]).

A pattern1 is a proved solution to a problem in a context, resolving a set of forces. Each
pattern is a three-part rule, which expresses a relation between a certain context, a problem, and
a solution [1]. A pattern language is a collection of patterns that solve the prevalent problems
in a particular domain and context, and, as a language of patterns, it specifically focuses on
the pattern relationships in this domain and context. As an element of language, a pattern is
an instruction, which can be used, over and over again, to resolve the given system of forces,
wherever the context makes it relevant [1].

The client asynchrony patterns are in particular:

– : In many situations, a client application needs to invoke an operation on a
 simply to notify the of an event. The client does not expect
any return value. Reliability of the invocation is not critical, as it is just a notification that
both client and server do not rely on. When invoked, the sends the invocation
across the network, returning control to the caller immediately. The client does not get any
acknowledgment from the receiving the invocation.

– : is a useful but extreme solution in the sense that it can
only be used if the client can really afford to take the risk of not noticing when a remote
invocation does not reach the targeted . The other extreme is a synchronous
call where a client is blocked until the remote method has executed successfully and the
response arrives back. Sometimes the middle of both extremes is needed. The client sends
the invocation, as in , but waits for a reply from the server application
informing it about the successful reception, and only the reception, of the invocation. After
the reply is received by the , it returns control to the client and execution
continues. The server application independently executes the invocation.

1 We present pattern names in font.

– : There are situations, when an application needs to invoke an operation asyn-
chronously, but still requires to know the results of the invocation. The client does not
necessarily need the results immediately to continue its execution, and it can decide for it-
self when to use the returned results. As a solution receive the result of remote
invocations on behalf of the client. The client subsequently uses the to query
the result. It can either just query (poll), whether the result is available, or it can block on
the until the result becomes available. As long as the result is not available on
the , the client can continue asynchronously with other tasks.

– : The client needs to be actively informed about results of asynchronously
invoked operations on a . That is, if the result becomes available to the

, the client wants to be informed immediatly to react on it. In the meantime the client
executes concurrently. A callback-based interface for remote invocations is provided on
the client. Upon an invocation, the client passes a object to the

. The invocation returns immediately after sending the invocation to the server. Once
the result is available, the calls a predefined operation on the callback object,
passing it the result of the invocation.

Table 1 illustrates the alternatives for applying the patterns. It distinguishes whether there
is a result sent to the client or not, whether the client gets an acknowledgment or not, and,
if there is a result sent to the client, it may be the clients burden to obtain the result or it is
informed via a callback.

Client Asynchrony PatternResult to clientAcknowledgment to clientResponsiblity for result
 no no -

 no yes -
 yes yes Client is responsible

for getting the result
 yes yes Client is informed

via a callback

Table 1.Alternatives for applying the patterns

4 Design and Implementation of an Asynchronous Invocation
Framework for Apache Axis

In this section, we explain a framework design to implement the client-side asynchrony pat-
terns, explained in the previous section, in a generic and efficient way for a given web service
implementations. We use the popular Apache Axis framework for our implementation in Java,
though the general framework design can also be used with other web service implementations.

4.1 Client Proxies

Our general design relies on the pattern [16]. A is provided as a local
object within the client process that offers the ' interface and hides networking

details. Client proxies can dynamically construct an invocation, or alternatively they can use an
 [16] (such as WSDL). In our description, we first concentrate on

 that build up a remote invocation at runtime. We also discuss how to use the stubs that
are automatically generated from WSDL in an asynchronous in Section 4.6.

In our framework, we provide two kinds of , one for synchronous invocations
and one for asynchronous invocations. Both use the same invocation scheme. The synchronous
 blocks the invocation until the response returns. Thus it is just a wrapper to the or-
dinary of the Axis framework for convenience. A client can invoke a synchronous
 by instantiating it and waiting for the result:

SyncClientProxy scp = new SyncClientProxy();
String result =

(String) scp.invoke(endpointURL, operationName, null, rt);

This simply instantiate a handler for dealing with the invocation, and after it has
returned, it returns to the client.

The asynchronous is used in a similar way. It offers invocation methods that
implement the four client asynchrony patterns discussed in the previous section. For this goal
a client invocation handlers, corresponding to the kind of invocation, is instantiated in its own
thread of control. The general structure of asynchronous invocation is quite similar to syn-
chronous invocation. The only difference is that we pass anAsyncHandler andclientACT

as arguments and do not wait for a result (AsyncHandler and client invocation handlers are
described in the next sections in detail):

AsyncHandler ah = ...;
Object clientACT = ...;
AsyncClientProxy ascp = new asyncClientProxy();
ascp.invoke(ah, clientACT, endpointURL, operationName, null, rt);

Note that theclientACT field is used here as a pure client-side implementation of an
 (ACT) [15]. The ACT pattern is used to let clients identify
different results of asynchronous invocations. In contrast to theclientACT field, the ACT (in
the description in [15]) is passed across the network to the server, and the server returns it to
the client together with the result. We do not need to send theclientACT across the network
here because in each thread of control we use synchronous invocations and use multi-threading
to provide asynchronous behavior. We thus can identify results by the invocation handler that
has received it (or, more precisely, on basis of its socket connection). This handler stores the
associatedclientACT field.

4.2 Client Invocation Handlers

In the case of a synchronous invocation, invocation dispatching and subsequent invocation han-
dling do not need to be decoupled. This is because the invoking process (or thread) blocks until
the invocation is completely handled. In contrast, asynchrony means that multiple invocations
are handled in parallel, and the invoking thread can continue with its work while an invocation
is handled. Therefore, invocation dispatching and invocation handling should be decoupled.

Synchronous and asynchronous invocation handling is performed by different kinds of in-
vocation handlers. These, however, require the same information about the invocation, such
as endpoint URL and operation name as web service IDs, an argument list, and a return type.

ClientInvocationHandler

String endpointURL
String operationName
Object[] arguments
QName returnType

Call constructCall ()
...

SyncInvocationHandler

Object invoke ()
...

AsyncInvocationHandlerFireAndForgetHandler

void run ()
...

void run ()
...

Object clientACT;

Runnable
«interface»

AsyncHandler
«interface»handlerObj

0..* 1

AsyncClientProxy

void invoke (...)
...

«instantiate»

1 0..*

Figure 1. Invocation Handlers

Also constructing aCall from these information is common for all different kinds of invoca-
tion handlers (see Figure 1).

The synchronous invocation handler mainly provides a methodinvoke that synchronously
invokes the service constructed withconstructCall . The invocation returns when the re-
sponse arrives.

The asynchronous invocation handler (AsyncInvocationHandler) implements the
Runnable interface. This interface indicates that the handler implements a variant of the
 pattern [8] that can be invoked in the handler’s thread of control using a methodrun .
The classAsyncInvocationHandler associates a handler object to hand the result back to
the client thread. It also contains aclientACT field that stores the

 supplied by the client. Usually, the field is used identify the invocation later in time,
when the response has arrived.

The AsyncInvocationHandler decides on basis of the kind of handler object which
asynchrony pattern should be used, , , or (see
Section 4.4). The decision is done using Java’sinstanceof primitive.

Finally, is implemented in its own invocation handler class (see next Sec-
tion).

4.3 Fire and Forget Invocations

The pattern is not implemented in the classAsyncInvocationHandler

(or as a subclass of it) due to a specialty of web services: the WSDL standard [6] that is
used for interface description of web services supports so-called one-way operations. These
are thus implemented by most web service frameworks that support WSDL. Therefore, we
do not implement with the AsyncInvocationHandler class, but use the
one-way invocations to support operations. All invocations dispatched by the
AsyncInvocationHandler class are request-response invocations.

A invocation executes in its own thread of control. The

invocation simply constructs theCall , performs the invocation, and then the thread terminates.

A invocation is invoked by a specialinvokeFireAndForget method of
theAsyncClientProxy class:
AsyncClientProxy clientProxy = new AsyncClientProxy();
clientProxy.invokeFireAndForget(endpointURL, operationName,

null, rt);

:AsyncClientProxy

invokeFireAndForget()

client

new

execute()

:FireAndForgetInvocationHandler

async: run()

:Call

constructCall()

new

invokeOneWay()

Figure 2. Fire And Forget Dynamics

Figure 2 shows the dynamic invocation behavior of a invocation.

4.4 Asynchrony Pattern Handlers

To deal with the asynchrony patterns , , or the
client asynchrony handler typesResultCallback , PollObject , andSyncWithServer are
provided. These are instantiated by the client and handed over to the (for instance,
in the invoke method).

The asynchronous handles the invocation with anAsyncInvocationHandler .
Each invocation handler runs in its own thread of control and deals with one invocation. A
thread pool is used to improve performance and reduce resource consumption (see Section
5.1). The client asynchrony handlers are sinks that are responsible for holding or handling the
result for clients.

For an asynchronous invocation, the client simply has to instantiate the required client
asynchrony handler (a class implementing one of the following interfaces:ResultCallback ,
PollObject , or SyncWithServer) and provide it to the ' operationinvoke .
This operation is defined as follows:
public void invoke(AsyncHandler handler, Object clientACT,

String endpointURL, String operationName,
Object[] arguments, QName returnType)

throws InterruptedException {...}

The parameterhandler determines the responsible handler object and type. It can be of any
subtype ofAsyncHandler . clientACT is a user-defined identifier for the invocation. The
client can use theclientACT to correlate a specific result to an invocation. The four last
arguments specify the service ID, operation name, and invocation data.

For instance, the client might invoke a by first instantiating a corresponding
handler and then providing this handler toinvoke . Subsequently, it polls the for
the result and works on some other tasks until the result arrives:

AsyncClientProxy clientProxy = new AsyncClientProxy();
SimplePollObject p = new SimplePollObject();
clientProxy.invoke(p, null, endpointURL, operationName,

null, rt);

while (!p.resultArrived()) {
// do some other task ...

}
System.out.println("Poll Object Result Arrived = " +

p.getResult());

Note that theclientACT parameter is set tonull in this example because we can use the
object reference inp to obtain the correct .

The pre-defined client asynchrony handlers and interfaces are depicted in Figure 3.

The client asynchrony handlers that are informed of the results run in the invoking thread.
To enable synchronization of the access from different threads (and clients) we apply the-
 pattern [15], which is supported by Java’ssynchronized language construct. The
operations of each client asynchrony handler are synchronized and the access is scheduled.

Figure 4 shows the dynamic invocation behavior of a invocation. The dynamics
of handling a are identical, with the exception that a asyn-
chrony handler is passed to the , and the client does not poll it. A

 uses the asynchrony handler and does not obtain the result, but only
an acknowledgment.

4.5 Queued Asynchrony Handlers

Sometimes we want to use one instance to handle multiple responses. A simple implementation
of such behavior is an asynchrony handler that queues the arriving responses. Such queuing
handlers with FIFO (first-in,first-out) behavior are pre-defined in our framework for

, , and (as depicted in Figure 3).

In the queuing variant the client cannot use the handler object reference to identify the
invocation that belongs to the result. Thus generally theclientACT field should be used to
identify the invocation that belongs to an asynchrony handler. TheclientACT field is also
important for clients, if they need to customize the handler objects. For instance, if a

 should forward the callback to an operation of the client object, a reference to the
client object is needed. This reference can be passed as part of a client ACT structure, which
is then used by the custom asynchrony handler to dispatch the callback to the client.

Consider a as a second example. A developer might define a -
 class as an extension of the existing typeResultCallbackQueue :

AsyncHandler
«interface»

ResultCallback
«interface»

boolean resultArrived();
Object getResult();

PollObject
«interface»

int ackArrived()

SyncWithServer
«interface»

SingleSyncWithServer SingleResultCallback

QueuedResultCallback

void inform(Object clientData, Object result);

SinglePollObject

void doCallback()

ObjectQueue

QueuedPollObjectQueuedSyncWithServer

Figure 3. Handlers for Obtaining Asynchronous Results

:AsyncClientProxy

invoke()

client

new

execute()

:AsyncClientInvocationHandler

async: run()

:Call

constructCall()

new

invoke()

result

:PollObject

new

pollObject

pollObject

inform()

resultArrived()

false

resultArrived()

false

resultArrived()

true

getResult()

result

Figure 4. Poll Object Dynamics

class DateClientQueue extends ResultCallbackQueue {...};

Then the client can use this custom type to handle invocations. When we use a queue handler
type, we usually want to handle more than one result with the same handler; thus we instantiate
a number of invocations in different threads of control:

AsyncClientProxy clientProxy = new AsyncClientProxy();
DateClientQueue results = new DateClientQueue(10);
for (int i = 0; i < 10; i++) {

String id = "callback" + i;
clientProxy.invoke(results, id, endpointURL, operationName,

null, rt);
}

In this example the ten invocations are all reported to one queuing object.
This object can either handle the result on its own (e.g. if the client is just amain method) or
forward the callback to the client object that has invoked it. Of course, if the client is an object
that implements theResultCallback interface it can also be itself handed over as a

 object.

4.6 Using WSDL Generated Client Stubs in An Asynchronous Client Proxy

WSDL [6] is used as a standard [16] language in the context of web
services. The main goal of using WSDL is to provide a language to interchange information
about web services and transfer these to clients.

Axis provides two models of invocation and both can be used within our asynchronous
invocation framework:

– The Call interface provided by Axis can be used to construct an invocation at runtime.
This interface is used by theconstructCall operation mentioned earlier.

– When using WSDL, Axis generates a stub class that already constructs the invocation
using theCall interface. Thus, when this stub is provided by the client, the

in our asynchronous invocation framework can directly use the stub and does not need to
invoke theconstructCall operation.

5 Performance Considerations

Providing an asynchronous invocation framework provides a better performance regarding the
invocation times because the client can resume its work after dispatching an invocation. Yet,
compared to synchronous invocation dispatching, multi-threaded invocations also incur an in-
vocation overhead due to instantiating the threads. This overhead can be minimized with thread
pooling discussed in Section 5.1. Next, we compare the performance of asynchronous invoca-
tions to synchronous invocations in our framework.

5.1 Thread Pooling

To optimize resource allocation for threading, the threads can be shared in a pool using the
 pattern [12]. Clients can acquire the resources from the pool, and release them back

into the pool, when they are no longer needed. To increase efficiency, the pool eagerly acquires
a pre-defined number of resources after creation. If the demand exceeds the available resources
in the pool, it lazily acquires more resources.P thus reduces the overhead of instantiating
and destroying threads.

AsyncInvocationHandler
Runnable
«interface»

ThreadPool ThreadPoolWorker
idleWorkers

0..*1
workers

0..*1

ThreadinternalThread

1 1

«processes in internal thread»

Figure 5. Thread Pooling

We use a generic thread pool with thread pool workers that require the client to provide
 [8] of the typeRunnable (see Figure 5). The thread pool acquires a pre-defined
number of thread pool workers in its idle workers list. Whenever a thread pool worker is re-
quired, it is obtained from the pre-instantiated worker pool, if possible. If there is no worker
idle, the thread pool lazily instantiates more workers. After the work is done, the (pre-defined)
workers are put back into the pool.

The asynchronous invocation handlers implement theRunnable interface and can thus be
used with the thread pool. Thus each invocation handler runs in its own thread of control and
is automatically pooled.

5.2 Performance Comparison

As a performance comparison we have used a simple web service that just returns the current
date as a string.

For each variant we have tested 1, 3, 10, and 20 invocation in a row. The thread pool had
a size of 10 pre-initialized workers. All results are measured in milliseconds. We have used
the Sun JDK 1.4, Jakarta Tomcat 4.1.18, Xerces 2.3.0, and Axis 1.0. All measurements were
performed on an Intel P4, 2.53 GHz, 1 GB RAM running Red Hat Linux. We have measured
all performance tests 10 times and used the best results (the average results were quite close to
the best results and therefore we omit them here).

The results are summarized in Table 2.

For synchronous invocations we have simply measured the time that all invocations took.
We can see that the invocation times increase as the number of invocations increases.

For and we have measured the time until the requests
were sent. We can see that the times are much shorter than the synchronous invocations, as
expected. Only the 20 invocations case is 2-3ms slower than it could be expected when a linear

progression would be assumed. This overhead is approximately the time needed to instantiate
10 thread pool workers.

For and we have measured the times until the invocations are
dispatched and the invoking thread can resume its work. These numbers are more or less equal
to the times of and . Also we have measured the times until
the last response has arrived. We can see that these numbers are similar to the synchronous
invocation times yet there is a slight overhead.

Performance TestSynchronous

Invocation

1 invocation 30ms 1ms 1ms 1ms/39ms 1ms/42ms
3 invocation 68ms 2ms 2ms 2ms/89ms 2ms/69ms
10 invocation 204ms 2ms 2ms 2ms/265ms2ms/189ms
20 invocation 378ms 5ms 4ms 5ms/409ms4ms/368ms

Table 2.Performance Comparison

Note that these numbers

6 Related Work: Other Known Uses of the Patterns

In this section we summarize some known uses of the asynchrony patterns as related work.

There are various messaging protocols that are used to provide asynchrony for web services
on the protocol level, including JAXM, JMS, and Reliable HTTP (HTTPR) [10]. In contrast
to our approach these messaging protocols do not provide a protocol-independent interface to
client-side asynchrony and require developers to use the messaging communication paradigm.
Yet these protocol provide a reliable transfer of messages, something that our approach does
not deal with. Messaging protocols can be used in the lower layers of our framework.

The Web Services Invocation Framework (WSIF) [2] is a simple Java API for invoking
Web services with different protocols and frameworks (similar to the internal invocation API
of Axis). It provides an abstraction to circumvent the differences in protocols used for com-
munications, similar to our invocation framework. However, it deals with asynchrony using
messaging protocols (HTTPR, JMS, IBM MQSeries Messaging, MS Messaging) only. The
approach presented in this paper can also be used on top of with WSIF.

For a long time CORBA [9] supported only synchronous communication and unreliable
one-ways operations, which were not really an alternative due to the lack of reliability and
potential blocking behavior. Since the CORBA Messaging specification appeared, CORBA
supports reliable one-ways. With various policies the one-ways can be made more reliable so
that the patterns as well as , offering more reliability, are
supported. The and patterns are supported by the Asynchronous
Method Invocations (AMI) with their callback and polling model, also defined in the CORBA
Messaging specification.

.NET [13] provides an API for asynchronous remote communication. Similar to our ap-
proach, client asynchrony does not affect the server side. All the asynchrony is handled by

executing code in a separate thread on the client side. are supported by the
IAsyncResult interface. One can either ask whether the result is already available or block
on the . are also implemented with this interface. An invocation
has to provide a reference to a callback operation. .NET uses one-way operations to implement
 . is not provided out-of-box, but it can be implemented with
a similar approach as used in this paper.

Actiweb [14] is a web object system implemented in Tcl. It provides sink objects for all
kinds of blocking and non-blocking communication. A client can register a callback for the
sink (to implement), block on the sink, or use the sink as a .

 can be implemented by using sink with an empty . Similarly,

 can be implemented by a that raises an error if a timeout exceeds
and does nothing if the server responds correctly.

7 Conclusion

In this paper we have provided a practical approach to provide asynchronous invocations for
web services without using asynchronous messaging protocols. The framework was designed
with a set of patterns from a larger pattern language for distributed object frameworks. The
functionalities as well as the performance measurements indicate that the goals of the frame-
work (as introduced in Section 2) were reached; in particular:

– A client can significantly faster resume with its work so that the performance penalty of
web services can be avoided to a certain degree.

– The invocation API provided by the framework is very simple and can flexibly be extended
with custom handlers.

– As the framework is built on top of Axis we automatically can use its heterogeneity
regarding communication protocols and back-ends of web services (so-called “service
providers”).

– If the client is a reactive server applications, a remote invocation does not block it.

As a drawback, an asynchrony framework on top of a synchronous invocation framework al-
ways incurs some overhead in terms of the overall performance of the client application. Fur-
ther functionalities of messaging protocols, for instance, are not supported. But as messaging
protocols can be used internally this is not a severe drawback.

References

1. C. Alexander.The Timeless Way of Building. Oxford Univ. Press, 1979.
2. Apache Software Foundation. Web services invocation framework (WSIF). http://ws.apache.org/

wsif/, 2002.
3. Apache Software Foundation. Apache axis. http://ws.apache.org/axis/, 2003.
4. D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S. Thatte, and

D. Winer. Simple object access protocol (SOAP) 1.1. http://www.w3.org/TR/SOAP/, 2000.
5. T. Bray, J. Paoli, and C. Sperberg-McQueen. Extensible markup language (XML) 1.0.

http://www.w3.org/TR/1998/REC-xml-19980210, 1998.
6. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services description language

(WSDL) 1.1. http://www.w3.org/TR/wsdl, 2001.

7. R. Fielding, J. Gettys, J. Mogul, H. Frysyk, L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
transfer protocol – HTTP/1.1. RFC 2616, 1999.

8. E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1994.

9. O. M. Group. Common request broker architecture (corba). http://www.omg.org/corba, 2000.
10. IBM developerWorks. Httpr specification. http://www-106.ibm.com/developerworks/webservices/

library/ws-httprspec/, 2002.
11. R. E. Johnson and B. Foote. Designing reusable classes.Journal of Object-Oriented Programming,

1(2):22–35, June/July 1988.
12. M. Kircher and P. Jain. Pooling pattern. InProceedings of EuroPlop 2002, Irsee, Germany, July

2002.
13. Mircrosoft. .NET framework. http:///msdn.microsoft.com//netframework, 2003.
14. G. Neumann and U. Zdun. Distributed web application development with active web objects. InPro-

ceedings of The 2nd International Conference on Internet Computing (IC’2001), Las Vegas, Nevada,
USA, June 2001.

15. D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.Patterns for Concurrent and Distributed
Objects. Pattern-Oriented Software Architecture. J. Wiley and Sons Ltd., 2000.

16. M. Voelter, M. Kircher, and U. Zdun. Object-oriented remoting: A pattern language. InProceeding
of The First Nordic Conference on Pattern Languages of Programs (VikingPLoP 2002), Denmark,
Sep 2002. http://wi.wu-wien.ac.at/∼uzdun/publications/vikingPlop02.pdf.

17. M. Voelter, M. Kircher, and U. Zdun. Patterns for asynchronous invocations in distributed ob-
ject frameworks. submitted, a draft can be found at http://wi.wu-wien.ac.at/∼uzdun/publications/
AsynchronyDraft.pdf, 2003.

18. D. Winer. XML-RPC specification. http://www.xmlrpc.com/spec, 1999.

