
KernelF - an Embeddable and

Extensible Functional Language

Markus Voelter

independent/itemis AG

voelter@acm.org

Abstract

Expressions and simple functional abstractions are at
the core of most DSLs we have built over the last years,
in domains ranging from embedded software to medical
systems to insurance contracts. To avoid reimplement-
ing this functional core over and over again, we have
built KernelF, an extensible and embeddable functional
language. It is implemented based on JetBrains MPS,
which facilitates extension and embedding. Because of
this focus on embedding and the reliance on a language
workbench, the design decisions driving KernelF are
quite different from other functional languages. In this
paper we give an overview over the language, describe
the design goals and the resulting design decisions. We
use a set of case studies to evaluate the degree to which
KernelF achieves the design goals.

1. Introduction

After designing and implementing dozens of domain-
specific languages (DSLs) over the last years, we have
found a recurring pattern in the high-level structure
of DSLs (see Fig. 1). All DSLs rely on domain-specific
data structures, be they the structure of refrigerators,
data schemas for legal contracts or insurance products or
sensor and actor definitions in industrial automation. No
two DSLs are similar in these structures. The behavioral
aspects of DSLs is often based on versions of established
behavioral paradigms, such as functional or object-
oriented programming, rules executed by solvers or other
rule engines, data flow models or state machines. Using
an established behavioral paradigm makes the semantics
of DSLs easier to tackle – and checkers and analyzers
easier to build. However, at the core of the vast majority

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author. Request permissions from permissions@acm.org or Publica-
tions Dept., ACM, Inc., fax +1 (212) 869-0481. Copyright held by Owner/Author.
Publication Rights Licensed to ACM.

Copyright c© ACM [to be supplied]. . . $15.00

of these behavioral paradigms one can find expressions,
and by extension, a small functional language: all of the
mentioned paradigms require arithmetics, conditions or
other simple “calculations”. Many of them can benefit
from having functions, records or enums.

Assuming the language implementation technology
supports modular, reusable (embeddable and extensible)
languages, reinventing this core functional language
for each DSL is a huge waste of effort. Instead, a
better solution to this problem is to develop a small
functional language that can be reused in (and adapted
for) all these DSLs. More specifically, the language
should be extensible (so new expressions can be added)
and embeddable (so it can be used in all the contexts
mentioned above).

In this paper we describe the design and implemen-
tation of KernelF, a modern functional core language
built on top of MPS, a language workbench that facil-
itates modular and reusable language.

Access to the Code The core of KernelF (i.e.,
everything that is described outside the case studies
in Sec. 7) is open source software. It lives in the IETS3
repository at

https://github.com/IETS3/iets3.opensource
The examples discussed in Sec. 2 can be found in the
following root, in the above repo:

1 project: org.iets3.core (repo/code/languages/org.iets3.core)

Figure 1. The three typical layers of a DSL: domain-
specific data structures, behavior based on an existing
paradigm, and at the core, functional expressions.

2 module: sandbox.core.expr.os
3 model: sandbox.core.expr.os.expressions
4 node: Paper [TestSuite] (root)
5 url: http://localhost:8080/select/org.iets3.core/
6 r:3dff0a9d-8b1d-4556-8482-b8653b921cfb/
7 7740953487934666415/

1.1 Design Goals

Simplicity KernelF should be used as the kernel of
DSLs. The users of these DSLs may or may not be
programmers – the overwhelming majority will not be
experts in functional programming. These users should
not be “surprised” or “overwhelmed”. Thus, the language
should use familiar or easy to learn abstractions and
notations wherever possible.

Extensibility Extensibility refers to the ability to add
new language constructs to the language to customize it
for their domain-specific purpose. Specifically, it must be
possible to add new types, new operators or completely
new expressions, such as decision tables. These must be
added to the language without invasively changing the
implementation of KernelF itself.

Embeddability Embedding refers to the ability to use
the language as the core of arbitrary other languages. To
enable this, several ingredients are needed: the existing
set of primitive types must be replaceable, because
alternative types may be provided by the host language.
More generally, the parts of the language that may not
be needed must be removable. And finally, extension also
plays into embedding, because embedding into a new
context always requires extension of the language with
expressions that connect to (i.e., reference) elements from
this context (e.g., expressions that refer event arguments
in a state machine language).

Robustness The users of the DSLs that embeds
KernelF may not be experienced programmers – in
fact, they may not see themselves as programmers at
all. This means that the language should not have
features that make it easy to make dangerous mistakes
(such as pointer arithmetics). To the contraty, the
language should be structured in a way that makes it
straightforward to ”do the right thing”. For example,
handling errors should be integrated into the type
system as opposed to C’s approach of making checking
of errno completely optional. It should also enable
advanced analyses, for example, through solvers, possible.
Importantly, it should ship with language abstractions
for writing and running unit tests to facilitate test-driven
development.

IDE Support In our experience, DSLs must come
with an IDE, otherwise they are not accepted by users.
This means that an IDE must be available for the
language, but also that the language should be designed
so that it can be supported well by IDEs. Such support

includes code completion, type checking, refactoring and
debugging. In addition, programs should be executable
(by an interpreter) directly in the IDE to support quick
turnaround and the ability of end users to “play” with
the programs.

Portability The various languages into which KernelF
will be embedded will probably use different ways of
execution. Likely examples include code generation to
Java and C, direct execution by interpreting the AST and
as well as transformation into intermediate languages
for execution in cloud or mobile applications. KernelF
should not contain features that prevent execution on
any of these platforms. Also, while not a core feature of
the language, a sufficient set of language tests should be
provided to align the semantics of the various execution
platforms.

2. KernelF Described

In this section we describe the KernelF language. The
description is complete in the sense that it describes
every important feature. However, it is incomplete in
that it does not mention every detail; for example, several
of the obvious binary operators or collection functions
are not mentioned. They can be found out easily through
code completion in the editor.

2.1 Types and Literals

Three basic types are part of KernelF: boolean, number,
and string. This is a very limited set, but it can be
extended through language engineering. They can also
be restricted or entirely replaced if a particular host
language wants to use other types.

val aBool: boolean = true
val anInt: number = 42
val aReal: number{2} = 33.33
val aString: string = "Hello"

Boolean types are obvious; for strings, it is worth men-
tioning that KernelF also support string interpolation,
because this is usually more understandable to non-
programmers than concatenating strings with +:

val concatString = "Hello " + anInt + " and " + (3 + anInt)
val interpolString = ’’’Hello $(anInt) and $(3 + anInt)’’’

The number type needs a little bit more explanation.
A number has a range and a precision. The following
patterns exist to specify number types:

// integer type, unlimited range
number => number[-inf|inf]{0}
// positive integer
number[0|inf] => number[0|inf]{0}
// integer type, range as specified
number[10|20] => number[10|20]{0}
// decimal type with 2 decimal places, unlimited range
number{2} => number[-inf|inf]{2}
// range as specified, precision derived from range decimals
number[3.3|4.5] => number[3.3|4.5]{1}

The precision of numbers can be modified with the
precision operator:

type preciseT: number[0|10]{5}
type roundedT: number[0|10]{2}
type wholeT: number[0|10]{0}
val precisePI: preciseT = 3.14156
val roundedPI: roundedT = precision<round up to 2>(precisePI)
val wholePI wholeT = precision<cut to 0>(0)
test case Precision {
assert precisePI equals 3.14156 <number[0|10]{5}>
assert roundedPI equals 3.15 <number[0|10]{2}>
assert wholePI equals 3 <number[0|10]>

}

There are also operators to ensure a value stays in its
bounds but cutting too big or too small values.

val high = limit<wholeT>(20)
val mid = limit<wholeT>(5)
val low = limit<wholeT>(-1)
test case TestLimit {
assert high equals 10 <number[0|10]>
assert mid equals 5 <number[0|10]>
assert low equals 0 <number[0|10]>

}

We tried to use the various brackets consistently. We
use regular round parentheses for value constructors,
functions calls, built-in functions (like limit above) and
for precedence. We use angle brackets for everything
that relates to types, specifically type arguments (as in
list<int>). Finally, we use square brackets for tuples,
indexed collection access, number ranges (as shown
above). Curly braces are used for blocks and in the
special case of number precision.

2.2 Basic Operators

KernelF provides the usual unary and binary operators,
using infix notation. Precedence is similar to Java,
parentheses are available. Note that the type system
performs type inference (discussed in more detail in
Section 5.2). As part of that, it performs basic arithmetic
computations on the ranges of numeric types.

42 + 33 ==> 75 <number[75|75]{0}>
42 + 2 * 3 ==> 48 <number[48|48]{0}>
aReal + anInt ==> 75.33 <number[75.33|75.33]>
if aBool then 42 else 33 ==> 42 <number[33|42]{0}>

type tt: number[-10|10]
val n3, n4: tt = 0
val n34: number[-100|100] = n3 * n4

A few less trivial operators are also available, expressed
as member functions. For example, you can test for
membership in a list of values or a range:

val fourtyTwo = 42
fourtyTwo.oneOf[33, 42, 666] ==> true <boolean>
fourtyTwo.inRange[0..42] ==> true <boolean>
// notice open upper bracket: excluded upper limit
fourtyTwo.inRange[0..42[==> false >boolean>

2.3 Null Values and Option Types

Option types are used to handle null values in a typesafe
way. The constant maybe in the code below can either

be an actual number value, or nothing (i.e., none),
depending on the if condition and the value of aBool.
This is why the constant is typed as an option<number>
instead of just number. The if expression then produces
either none or 42.

val maybe : option<number> = if aBool then 42 else none

Most operators, as well as many dot operations, are
overloaded to also work with option<T> if they are
defined for T. If one of the arguments is none, then the
whole expression evaluates to none. In this sense, a none
value ”bubbles” up. Note that the type system represents
this; the + operator and the length call in the example
below are also option types!

val nothing : opt<number> = none
val something : opt<number> = 10
val noText : opt<string> = none

nothing + 10 ==> none <option[number[-inf|inf]{0}]>
something + 10 ==> 20 <option[number[-inf|inf]{0}]>
noText.length ==> none <option[number[0|inf]{0}]>

To test whether an option actually contains a value, you
can use the isSome expression as shown below:

val maybeHasAValue : boolean = isSome(maybe)

To explicitly extract the value from an option type
(i.e., to essentially transform an option<T> to a T), a
special form of the if expression can be used for this
purpose, as shown in the example below. As mentioned
above, the isSome expression is as a query that tests if
the option contains a value; inside the then part, the
val expression refers to the value extracted from the
option; val cannot be used in the else branch, so it is
syntactically impossible to access the (then non-existent)
value in the option.

if isSome(maybe) then maybe else 0 ==> 42 <number[42]>

If the name val is ambiguous, then the name can be
changed using an as clause; the example also illustrates
that several expressions can be tested at the same time.

if isSome(f(a)) as t1 && isSome(f(c)) as t2
then t1 + t2 else 0

A shorthand operator opt ?: alt is also available; it
returns the value inside the option if the option is a
some, and the alt value otherwise:

val anInt = maybe(a, b) ?: 0

2.4 Error Handling using Attempt Types

In the same way that KernelF encodes null checks into
the type system using option types, KernelF also pro-
vides type system support for handling errors using
attempt types. An attempt type has a base type that
represent the payload (e.g., return value in a function)
if the attempt succeeds. It also has a number of error

literals that have to be handled by the client code. An at-
tempt type is written down as attempt<baseType|err1,
err2,..,errN>. As a consequence of type inference,
such a type is hardly ever written down in a program.

Error handling has two ingredients. The first step
is reporting the error. In the example below, this is
performed in the getHTML function. Depending on what
happens when it attempts to retrieve the HTML, it
either returns the payload or reports an error using
error(<error>). The type inference mechanism inferes
the type attempt<string|timeout, err404> for the
alt expression and, transitively, the function getHTML.

fun getHTML(url: string) : attempt<string|timeout, error404>
= alt |..successful.. => theHTML |

|..timeout.. => error(timeout) |
|..unreachable.. => error(error404) |

The client has to “unpack” the payload from the attempt
type using the try expression. In the successful case,
the val expression provides access to the payload of the
attempt type. Errors can either be handled one by one
(as shown in Figure ??), or with a generic error clause.

val toDisplay : string =
try getHTML("http://mbeddr.com") => val
error<timeout> => "Timeout"
error<error404> => "Not Found"

As with the unpacking of options using isSome, it is
possible to assign a name to the result of the called
function, so that name can be used instead of val in the
success case:

try getHTML("http://mbeddr.com") as data => data
...

If not all errors are handled, the type of the try expres-
sion remains an attempt type. In the above example, we
may not handle the error404 case:

val toDisplay =
try getHTML("http://mbeddr.com") => val
error<timeout> => "Timeout"

In this case, the type of try, and hence of toDisplay,
would be attempt<string|error404>. This way, error
handling can be delegated to an upstream caller. To
force complete handling of all errors, two strategies can
be applied. The first one involves a type constraint to
express that the success type is expected:

val toDisplay: string =
try getHTML("http://mbeddr.com") => val
error<timeout> => "Timeout"

In an incomplete case, where not all errors are handled
(either individually or with a generic error clause), the
type of try will remain an attempt type with the non-
handled errors. If an explicit return type expects a non-
attempt type, this type incompatibility will return in an
error. A way of forcing the try expression to handle all
errors is to use the complete flag, as shown below. It

reports an error on the try expression directly if not all
errors are handled:

val toDisplay =
// try will have error b/c error404 is not handled
try complete getHTML("http://mbeddr.com") => val

error<timeout> => "Timeout"

Similar to option types, the attempt types are also
overridden wrt. to their success type for the same
operators and dot expressions. The error literals are
propagated accordingly.

getHTML("http://mbeddr.com").length ==> 4
<attempt[number[0|inf]{0}|[error404, timeout]]>

getHTML("http://doesntExist.com").length ==> error(error404)
<attempt[number[0|inf]{0}|[error404, timeout]]>

2.5 Functions and Extension Functions

Even though function syntax may be domain-specific,
KernelF includes a default abstraction for functions.
Functions have a name, a list of arguments, an optional
return type and an expression as the body; the code
below shows a few examples. The body can use the block
expression, which supports values as temporary variables
(similar to a let expression, but with a more friendly
syntax). As with variables, the return type is optional.

fun add(a: number, b: number) = a + b
fun addWithType(a: number, b: number) : number = a + b
fun biggerFun(a: number) = {
val t1 = 2 * a
val t2 = t1 + a
t2

}

KernelF also supports extension functions. They must
have at least one argument, the one that acts as the this
variable. They can then be called using dot notation
on an expression of the type of the first argument. In
contrast to regular functions, the advantage is in IDE
support: code completion will only show those functions
that are valid for the first argument. Note that, at least
for now, no polymorphism is supported.

ext fun isSomethingInIt(this: list<number>) = this.size != 0
list(1, 2, 3).isSomethingInIt() ==> true <boolean>

2.6 Function Types, Closures, Function
References and Higher-Order Functions

KernelF has full support for function types, closures and
function references as well as higher-order functions.

We start by using a typedef to define abbreviations
for two function types. The first one, INT_BINOP is the
type of functions that take two numbers and return a
number. The second one represents functions that map
one number to another. Using typedefs is not necessary
for function types, they can also be used directly. But
since these types become long’ish, using a typedef
makes sense.

type INT_BINOP : (number, number => number)
type INT_UNOP : (number => number)

Next, we define a function mul that is of type INT_BINOP.
We can verify this by assigning a reference to that
function (using the colon operator) to a variable mulFun
: INT_BINOP. Alternatively we can define a closure, i.e.,
an anonymous function, and assign it to a similarly
typed variable mulCls. Closures use the vertical bar for
deliniation.

fun mul(a: number, b: number) = a * b
val mulFun: INT_BINOP = :mul
val mulCls: INT_BINOP = |a: number, b: number => a * b|

We can now define a higher-order function doWithTwoInts
that takes two integers as arguments, as well as value of
type INT_BINOP. The body of the function executes the
function or lambda, forwarding the two arguments.
The next two lines verify this behavior by calling
doWithTwoInts with both mulFun and mulCls.

fun doWithTwoInts(x: number, y: number, op: INT_BINOP) =
op.exec(x, y)

doWithTwoInts(2, 3, mulCls) ==> 6 <number>
doWithTwoInts(2, 3, mulFun) ==> 6 <number>

Finally, KernelF also supports currying, i.e., the bind-
ing of some of a function’s arguments, returning new
functions with correspondingly fewer arguments. The
value multiplyWithTwo in the example below is a func-
tion that takes one argument, because the other one
has already been bound to the value 2 using bind.
We could add an optional type to the constant (val
multiplyWithTwo: INT_UNOP = ...) to verify that the
type is indeed INT_UNOP. For demonstration purposes
we define another higher-order function and call it.

val multiplyWithTwo = mulCls.bind(2)
fun doWithOneInt(x: int, op: INT_UNOP) = op.exec(x)
doWithOneInt(5, multiplyWithTwo) ==> 10 <number>

2.7 Collections

KernelF has lists, sets and maps. All are subtypes
of collections. While KernelF does not have generics
in general, the collections are parametrized with their
element types. They are also covariant.

val reals = list(1.41, 2.71, 3.14)
val names = set("Markus", "Markus", "Tamas")
val hometowns = map("Markus"->"Heidenheim",

"Tamas" ->"Puspokladany")
val col : collection<real> = reals

The collections support the usual simple operations,
a few are shown in the following example code. Of
course, like all other values in KernelF, collections are
immutable; the operations to not modify the value on
which they are called, the return a modified copy. This is
illustrated by the second line, where the original reals
list is still list(1.41, 2.71, 3.14).

reals ==> list(1.41, 2.71, 3.14)
<list<number[0.00|100.00]{2}>>

reals.add(1.00) ==> list(1.41, 2.71, 3.14, 1.00)
<list<number[0.00|100.00]{2}>>

reals.at(1) ==> 2.71 <number[0.00|100.00]{2}>
reals[2] ==> 3.14 <number[0.00|100.00]{2}>
names.isEmpty ==> false <boolean>
names.size ==> 2 <number>
hometowns["Tamas"] ==> "Budapest" <string>

Notice that the reals.add(1.00) will lead to an
error because it tries to add a 1.00 to a list of
number[1.41|3.14]{2}, i.e. 1.00 is out of range! To
fix this, the reals collection must be given an explicit
type, for example number[0.00|100.00]1.

The usual higher order functions on collections are
also available. They can be used in three forms: you can
pass in a function reference, a closure (both introduced
before), and also a shorthand version of the closure,
where the it argument is implicit. The latter is the
default.

val ints = list(1, 2, 3, 4)
fun isGreaterTwo(it: number) = it > 2
ints.where(:isGreaterTwo) ==> list(3, 4)

<list<number[1|4]>>
ints.where(|number r => r > 2|) ==> list(3, 4)

<list<number[1|4]>>
ints.where(|it > 2|) ==> list(3, 4)

<list<number[1|4]>>

More examples are shown below; the list of operations
is expected to grow over time.

ints.map(|it + 1|) ==> list(2, 3, 4, 5) <list<number>>
ints.any(|it < 0|) ==> false <boolean>
ints.all(|it > 3|) ==> false <boolean>

There is also a foreach which requires the lambda
expression inside to have a sideeffect; it ”performs” the
sideeffect and then returns the original list.

Inside where, foreach and map, the variable counter
is available; it has a zero-based index value of the current
iteration (i.e., 0 in the first iteration, 1 in the second,
etc.).

2.8 Tuples

Tuples are non-declared multi-element values. The type
is written as [T1, T2, .., Tn], and the literals look
essentially the same way: [expr1, expr2, .., exprN].
Tuple elements be accessed using an array-access-like
bracket notation.

ext fun minMax(this: list<number>) = [this.min, this.max]
ints.minMax() ==> [1, 4] <[number, number]>
ints.minMax()[0] ==> 1 <number>
ints.minMax()[1] ==> 4 <number>

2.9 Records and Path Expressions

Like Tuples, records are structured data, but they are
explicitly declared. KernelF has them primarily for

1 In later version of the type system, a suitable type might be
derived automatically. Currently, the element added to a list must
be a subtype of the element in the list.

Figure 2. The builder expression uses collapsible trees
to build hierarchical structures.

completeness; we expect most data structures to be
domain-specific and hence contributed by a language
that embeds KernelF.

record Company {
offices: list<Office>
emps : list<Person>

}
record Person {
lastName : string
middleInitial: option<string>
firstName : string

}
record Office {
branchName: string

}

A literal syntax is also supported:

val officeLuenen = #Office{"Luenen"}
val comp = #Company{
list(#Office{"Stuttgart"},

officeLuenen),
list(#Person{"Markus", none , "Voelter"},

#Person{"Tamas", "M", "Szabo"})
}

Path expressions can be used to navigate along nested
records structures, as shown in the examples below.

comp.emps.firstName
==> list("Voelter", "Szabo") <collection<string>>

comp.emps.firstName.last
==> "Szabo" <string>

comp.emps.map(|Person p => "Hello " + p.firstName|).first
==> "Hello Markus" <string>

In addition, a semi-graphical builder expression is avail-
able for constructing complex structures. An example
is shown in Figure 2. It can be used for any hierarchi-
cal structure, not just records, if a suitable adapter is
provided.

Like all other values in KernelF, record instances are
immutable. However, there is a convenient syntax to
“modify” record instances, i.e., create copies with some
member values changed:

val me = #Person{"Markus", none, "Voelter"}
val meWithX = me.with(firstName = old + "X",

lastName = lastName + "X")
val meSwitched = me.with(firstName = lastName,

lastName = firstName)
val brother = me.with(firstName = "Mathias")

brother ==> #Person{"Mathias", none, "Voelter"} <Person>
meWithX ==> #Person{"MarkusX", none, "VoelterX"} <Person>
meSwitched ==> #Person{"Voelter", none, "Markus"} <Person>

Grouping The groupBy operation supports grouping
the entries in an existing collection by a key. The result
is a new collection of type group<KT, MT> where KT is

Figure 3. Example code showing grouping, projection
of anonymous records and string joining/termination.

the type of the key expression and MT is the type of
the members of each group (the type of the original
collection). In the example in Figure 3 the KT is string
and the MT is Item. On a variable of type group<KT, MT>
one can use the key operation to retrieve the current
group’s key, and members to acccess all the members of
that group.

Anonymous Records The project operation sup-
ports the on-the-fly creation of anonymous records. In
the example in Figure 3, we create one that has two
fields, author and cats.2 project is typed to a col-
lection of this anonymous record. As a consequence of
type inference, the anonymous record can be used with
full IDE support; however, since the type has no name
it cannot be mentioned in the program. So, for exam-
ple, the authorCats value could not be annotated with
an explicit type, and it cannot be used as a function
argument (because this would require an explicit type).

String Lists Lists of strings can be transformed into
a single string using the join(s) and terminate(s)
expressions. join separates two subsequent strings by s,
whereas terminate terminates each one with s. Figure
3 shows an example.

2.10 Enums

Enums are also supported in KernelF, with regular and
valued flavors. Regular enums just define a list of literals;
their type is the enum itself (see the use of Color in
the code snippet below). Literals can be marked as
qualified, which means that their literals have to be
referenced using enum name before the colon to deal
with potentially overlapping literal names.

enum Color { red, green, blue }
enum Starbucks qualified { large, venti, monster }
val ocean: Color = blue
val coffee = Starbucks:large

Valued enums associate an arbitrary value with each
literal; all values of a particular enum must be of the
same type. That type is declared after the name of
the enum, adding that type makes an enum a valued

2 This is short for categories and does not related to the animal
:-).

enum. From an enum literal reference, you can get the
associated value using the value operation.

enum StarbuckSizes<number> {
big -> 100
venti -> 200
mega -> 300

}

enum Family<Person> {
me -> #Person{"Markus", none, "Voelter"}
myBrother -> #Person{"Mathias", none, "Voelter"}

}

me.value.firstName ==> "Markus" [string]
big.value ==> 100 [number]

2.11 Unit Tests and Constraints

Tests Built-in support for unit tests is important,
because, as we describe in Sec. 5.3, the semantics of
KernelF is defined via a test suite; so we needed the
ability to conveniently write collections of unit tests even
during the implementation of KernelF. Test support is
also essential to help users write good code.

At the core of the unit test support is the test case: a
test case has a name and a number of test case items. The
default item is an assertion that compares an expected
and an actual value. The comparison operator itself is
equation by default, but can be extended through lan-
guage extension. The second test case item is confail,
which expects a constraint failure to occur as part of the
evaluation of the actual result (see below for constraints).
The constructs that can go into a test case, the test case
items, can be extended as well. For example, users can
add set up or tear down code if they want to test ex-
pressions with side effects. A test suite finally groups
tests, plus other top level contents (records, functions,
constants). It is also possible to reference entities outside
the test suite. Fig. 10 shows an example.

Constraints KernelF also supports checking of run-
time constraints. Several forms exist, all illustrated in
Fig. 4:

• Attached to a value: it is checked after the value has
been computed.

• Attached to a typedef or record, it is checked when-
ever a value is checked against an explicitly declared
type: when assigning to a value, when returning from
a function, and when passing an argument into a func-
tion. For chained typedefs, the constraints are joined
in a conjunction (”anded” together). Constraints for
records are also checked when the record is instan-
tiated using a record literal #R{..} or when it is
”changed” using the with operation.

• Type check on an expression: it checks the type and
also the constraints associated with the type.

Figure 4. Constraints can be attached to values, to
functions (in the form of pre- and postconditions), to
records, and to types. In the latter case, they are checked
whenever a type is explicitly specified in values, function
arguments, return types and type constraint expressions.

• Attached to functions in the form of pre- and post-
conditions. They are checked before and after the
execution of the function, respectively.

Constraint failures lead to a target platform-specific
form of diagnostic output. The default implementation in
the interpreter throws a ConstraintFailureException
(whose occurence can be tested using the confail test
item). The output of the exception logs a stacktrace of
the failed constraint; see below. The long URL in line
two is the URL of the node in the MPS source code that
failed; you can paste it into your browser, and MPS will
select the particular node.

1 ERROR: Postcondition failed for res.inRange[0..1]
2 http://localhost:8080/select/DEFAULT/r:3dff0a9...
3 at [Function] PaperDescription.oddOrEven(10)
4 [Function] PaperDescription.function1(10)
5 [Function] PaperDescription.function2(10)

In case of a failed constraint, execution terminates. If, in
the example above, the error should be communicated
back to the caller, regular error handling should be used:

fun oddOrEven(i: number) = alt | i == 1 => success(0) |
| i == 2 => success(1) |
| i == 3 => success(0) |
| i == 4 => success(1) |
| otherwise => error(range) |

For constraints on types, it is also possible to query the
conformance of a value against this type explicitly from
the program (i.e., without throwing a runtime exception).
Types can contribute constraints as well as custom error
messages that can be reported to the user.

type Speed: number[-50|250]
type FwdSpeed: Speed where it >= 0

val validSpeed1 = check<Speed>(-10)
val validSpeed2 = check<Speed>(50)
val invSpeed = check<Speed>(300)
val invFwdSpeed1 = check<FwdSpeed>(-10)
val invFwdSpeed2 = check<FwdSpeed>(300)

test case TestConstraintsCheck {
assert validSpeed1.ok equals true
assert validSpeed2.ok equals true
assert if validSpeed1 then 1 else 0 equals 1
assert invSpeed.ok equals false
assert invSpeed.err equals "value is over minimum (250)"
assert invFwdSpeed1.ok equals false
assert invFwdSpeed2.ok equals false

}

If you want to test for constraints explicitly, you cannot
assign the type to the variable, because this would lead
to a constraint before the explicit test gets invoked. Thus,
the following code would be illegal, because the assertion
in the test case would never be executed; the runtime
constraint check in val aSpeed: Speed = 300 would
occur first.

val aSpeed: Speed = 300
val validSpeed = check<Speed>(aSpeed)
test case TestConstraintsCheck {
assert validSpeed.ok equals true

}

Using an unconstrained integer (or not specifying a type
at all) solves this problem:

val aSpeed: number = 300
val validSpeed = check<Speed>(aSpeed)

Forcing Types Assigning a“bigger”type to a“smaller”
type is prevented by the type system; thus the following
error:

val bigRge : number[0|100] = 50
val smallRge : number[10|20] = bigRge // error

However, in the following piece of code, we know that
the value will fit into number[10..20], even though the
type system cannot figure it out3 and will report an
error.

val smallRge : number[10|20] =
if bigRge > 20 then 20 else bigRge

To solve this issue, you need an explicit type cast:

val smallRge : number[10|20] =
cast<number[10|20]>(if bigRge > 20 then 20 else bigRge)

A cast essentially prevents type checks and delegates
checking to runtime; in other words, the runtime con-
straint checks of the target type are applied to the value
returned by the cast expression (range between 10 and
20 in this case). Note that, because of type inference,
the type of the val can be omitted, resulting in the
following code:

val smallRge =
cast<number[10|20]>(if bigRge > 20 then 20 else bigRge)

To recap: a type specified on an argument or value is
checked by the type system. A cast type is not checked

3 Future version of the type system may be able to figure it out
by improving the number range caclulcaton.

by the type system, but the value has to conform to the
target type at runtime. Note that there is no way to
avoid all static and runtime checks; KernelF always at
least provides runtime safety.

2.12 Type Tags

A type tag [1] is additional information attached to the
type, that is tracked and checked by the type system.
Consider a web application that processes data entered
by the user. A function process(txt: string) may be
defined to handle the data entered by the user. To ensure
that txt does not contain executable code (cf. code-
injection attacks), the string has to be sanitized. Until
this happens, the data must be considered tainted [2].
Type tags can be used to ensure that a function can
only work with sanitized strings:

// returns an arbitrary string
fun getData(url: string) : string { "data" }
// accepts a string that must be marked as sanitized
fun storeInDB(data: string<sanitized>) : boolean = ...
...
// v is a regular string
val v = getData("http://voelter.de")
// trying to pass it storeInDB fails because it
// does not have the sanitized tag
val invalid = storeInDB(v) // error
// sanitize is a special operator that cleans up the string,
// and them marks it as sanitized; passing to storeInDB works
val valid = storeInDB(sanitize[v])

The sanitized tag is an example of a unary tag.
A type can be marked to have the tag (<tag>), to
not have the tag (<!tag>), or to be unspecified. The
tag definition determines the type compatibility rules
between those three options. For sanitized, a type with
no specification corresponds to <!sanitized>; in other
words, if we don’t know, we cannot assume the string
has been sanitized.

In addition, the system supports n-ary tags as well.
They define a set of tag values (e.g., confidential,
secret, topsecret) with an ordering between them
(e.g., confidential < secret < topsecret). The type
checking for tags takes this ordering into account, as is
illustrated by the code below:

val somethingUnclassified : string = "hello"
val somethingConfidential : string<confidential> = "hello"
val somethingSecret : string<secret> = "hello"
val somethingTopSecret : string<topsecret> = "hello"

fun publish(data: string) = ...
val p1 = publish(somethingUnclassified)
val p2 = publish(somethingConfidential) // ERROR
val p3 = publish(somethingSecret) // ERROR
val p4 = publish(somethingTopSecret) // ERROR

fun putIntoCIAArchive(data: string<confidential+>) = ...
val a1 = putIntoCIAArchive(somethingUnclassified) // ERROR
val a2 = putIntoCIAArchive(somethingConfidential)
val a3 = putIntoCIAArchive(somethingTopSecret)
val a4 = putIntoCIAArchive(somethingSecret)

fun tellANavyGeneral(data: string<secret->) = ...
val g1 = tellANavyGeneral(somethingConfidential)
val g2 = tellANavyGeneral(somethingSecret)
val g3 = tellANavyGeneral(somethingTopSecret) // ERROR

val g4 = tellANavyGeneral(somethingUnclassified)

3. Stateful KernelF

3.1 Effects Tracking

KernelF at its core is a functional language and none
of the expressions in KernelF have a side effect. This
means, for example, that an execution engine can cache
the results of functions that are called repeatedly with
the same arguments; the default KernelF interpreter
does this. However, KernelF may be extended to sup-
port expressions with side effects or be embedded in a
language that has effects. Then, it must be possible to
analyze which functions (or other parts of programs) can
be cached, and which cannot because they have effects.
Similarly, it must be allowed to call a function with an
effect without capturing its return value (which is an
error otherwise).

To enable this, KernelF supports effects tracking. It
distinguishes between read and write effects, and for
write effects it also tracks idempotence.

Consider the following example:

fun standardize/RM(data: number) {
val filtered = filter(data)
effect[data]
if filtered > data then filtered else data

}

Here, effect[..] is a demo expression provided by a
language extension that has a side effect. This is signalled
to the checker by implementing IMayHaveEffect in the
language concept and returning an EffectDescriptor
from its effectDescriptor method; the descriptor has
Boolean flags for the various supported kinds of effects.

Because it is called inside the standardize function,
that function must also be marked to have an effect.
This is done by entering /R (reads), /M (modifies) or
/RM (reads + modifies) behind the function name; an
error will be reported otherwise. The mechanism also
works for function types: you can mark a function type
as allowing effects, by entering the flag after the arrow
in the function type; this is shown in the argument of
the function below. If declared this way, it is legal to
pass in functions that has an effect (or not).

fun doSomethingWithAnEffect/RM(f: (=>/RM string)) =
f.exec/RM()

Note that the function call (to exec in this case) is
automatically marked to have an effect if the called
function has an effect.

3.2 Boxes

Immutable data means that you cannot change a value
once it has been created. For primitive types, this is
intuitive:

val a = 1 + 2
val b = 3 + a
val x = a + b

1 + 2 creates a new value 3, and adding a and b creates
a new value c. Values can also not be reassigned because
anybody who has a reference to x now sees the value of
x change.

val x = a + b
x = x + 1 // invalid

Instead you have to invent a new name for the new value,
however, this leads to many new (temporary) names.
Let us look at collections. Assume you have a list of
three elements and you add a fourth one:

val l1 = list(1, 2, 3)
val l2 = l1.plus(4)
assert l1.size == 3
assert l2.size == 4

Here, too, the original list remains unchanged and you
get a new list, one that now has a fourth element, as the
result of l1.plus(4).

So, how do you store changing global state, for
example, a database of measurements? Using a new
variable for each updated “state of the database” is not
a solution because it is the database that is supposed
to change. One solution would be to introduce variables
(as opposed to the values used so far):

var db = list(1, 2, 3) // note the r instead of the l
fun store/M(x: int) {
db.add(x)

}

For this to work, you will have to mark the add operation
to have an effect, which will, transitively, also give store
an effect. However, add does not exist on immutable
lists, so you need a whole second set of APIs for mutable
collections. The list in this example cannot be the same
list as the one used earlier; it’s a mutable list, maybe
called mlist. In clonclusion, you need mutable versions
of all collections. This approach is a valid solution, and
some languages, for example, Scala, use it. However, it
is a lot of work and should be avoided.

Boxes Boxes are an alternative approach that do not
require mutable version of all immutable data structures.
Boxes explicitly values inside. The box itself is immutable
(i.e., its own reference stays stable), but its contents can
change:

val globalcounter: box<int> = box(0)
fun incrCounter() {
globalcounter.update(globalcounter.val + 1)

}

Apart from creation, boxes have two operations: a
val that returns the contents of the box, as well as
a update(newval) that sets a new value. The former
has a read effect, the latter a modify effect. When you
update the box’s content, you pass a new value; you do

Figure 5. A state machine is an example of natively
mutable data structure.

not need additional APIs for changing value. The boxes
themselves are generic, as shown with the next example
of boxed collections:

val db = box(list(1, 2, 3)) // we’re back to a value here!
fun store(x: int) {
db.update(db.val.plus(4))

}

The big advantage of this approach is that no mutable
data structures are required, the original immutable
APIs (plus the generic box functionality) are enough.
However, the syntax is a little bit chatty. To make it
more consise, the it expression provides access to the
current content of the box:

val globaxlcounter = box(0)
val db = box(list(1, 2, 3))
fun incrCounter() { globalcounter.update(it + 1) }
fun store(x: int) { db.update(it.plus(4)) }

Interpreter In terms of implementation, for ex-
ample, in an interpreter, boxes are really just wrap-
per objects with a method to get and set a generic
java.lang.Object box content. The val and update
operations call those methods on the runtime Java ob-
ject.

1 public class BoxValue {
2 private Object value;
3 public BoxValue(Object initial) { this.value = initial; }
4 public void set(Object newValue) { this.value = newValue; }
5 public Object get() { this.value; }
6 }

3.3 Native Mutable Data

The reason for boxes is that existing immutable data
types can be used in a mutable way. However, this is
only useful if you have immutable data structures to
reuse this way in the first place; some data structures are
inherently mutable, and they can use a box-free syntax.

State Machine Example The embodiment of chang-
ing state are state machines, and Figure 5 shows minimal
one that represents a (slightly contrived) counter:

It defines two events, one to initialize the machine’s
counter, and the other one to increment it. It has two

states, an initial state and operational state. The init
event goes from the initial init state to the count
state, where it then accepts inc events. If the by value
is less than 10, the counter gets incremented, other-
wise a counter of invalids incrementation attempts is
increased.

Since the state machine’s purpose is to represent
changing state over time, we don’t have to pretend any-
thing is immutable. This is why we allow an assignment
operator := inside a state machine. Inside a state ma-
chine you can also read one of its variables by just
mentioning its name (as in invalids + 1); you don’t
need the val.

The following code shows how to use a state machine
from client code:

val ctr = start(CounterToMax).init(0) // start creates
instance

fun doStuffWithCounter() {
ctr.inc(5) // now 5
ctr.inc(3) // now 8
ctr.inc(20) // invalid; still 8
assert ctr.counter == 8
assert ctr.invalids == 1

}

Note that even though there is mutable state (and the
various operations on state machines have effects), there
are no boxes; no update or val is required. However,
internally the state machines still have box semantics
(in the implementation, several interfaces for IBoxLike
things are used to generalise box-like behavior). But
state machines have been purpose-built to have state,
there is no need to reuse existing immutable APIs, as
was the case for primitive operators and collections.

Interpreter Let’s look at the interpreter. To imple-
ment the variable references inside state machines, we
use an interface ICanBeUsedAsLValue to mark that they
can be used on the left side of an assignment (an“lvalue”).
The interface has a method isUsedAsLValue that de-
tects structurally, from the AST, if a particular variable
reference is on the left side of an assignment. The in-
terpreter uses this method to determine what it needs
to evaluate to: the box if it is used as a lvalue, and the
box contents otherwise. Here is the generic interpreter
for the assignment; note how it relies on the runtime
representation of things that can be lvalues to imple-
ment the ILValue interface to generically implement
this functionality:

1 Object rvalue = #right; // recursively call interpreter
2 Object lvalue = #left; // on the two arguments
3 if (lvalue instanceof ILValue) { // must be an ILValue
4 // which has update method
5 ((ILValue) lvalue).updateValue(rvalue);
6 } else {
7 throw new InvalidValueException
8 (node.left, "not an ILValue");
9 }

10 return rvalue;

In the case of state machines, the interpreter plays to-
gether with, the VarRef concept that represents refer-
ences to state machine variables:

1 SmValue currentMachine = (SmValue) env[SmValue.THIS];
2 SMVarValue value = currentMachine.getVar(node.var);
3 if (node.isUsedAsLValue()) {
4 return value; // returns the box
5 } else {
6 return value.value(); // returns box contents
7 }

It first retrieves the currently executing instance of the
state machine from the environment (the triggers put
that there), and then asks the current state machine for
the variable that it references. Note that this returns
the ILValue-implementing class that represents the
variable. Then comes the crucial distinction: if the
current variable reference is used in lvalue position, we
return the ILValue (so that the assignment interpreter
can call update). Otherwise we directly return the
contents of the box (e.g., an int)

3.4 Transactions

Take a look at the following code:

type intLE5: int where it <= 5
val c1: box<intLE5> = box(0)
val c2: box<intLE5> = box(0)
fun incrementCounters(x1: int, x2: int) {
c1.update(it + x1)
c2.update(it + x2)

}
fun main() {
incrementCounters(1, 1)
incrementCounters(3, 5)

}

Boxes respect the constraints on their content type: if
you set a value that violates a constraint, than the update
fails. What actually happens then is configurable, at least
in KernelF’s default interpreter: output a log message
and continue, or throw an exception that terminates the
interpreter. While, in the second case, the program stops
anyway, and so it does not matter which value is set,
in the first case we run into the problem that, for the
second invocation of incrementCounters, c1 is updated
correctly, but the update of c2 is faulty. Transactions
can help with this:

fun incrementCounters(x1: int, x2: int) newtx{
c1.update(it + x1)
c2.update(it + x2)

}

A transaction block is like a regular block, but if some-
thing fails inside it (interpreter: an exception is thrown),
it rolls back all the changes to mutable data inside that
transaction. Because the box contents themselvers are
immutable, the interpreter simply stores the value of
each box (or more generally, ITransactionalValue) be-
fore it performs the update and remembers them in the
transaction. On rollback, it just re-sets the value. This
also works with state machines, and with combinations

Figure 6. An example of using transactions with dif-
ferent mutable data structures.

of state machines and other boxes, as shown in the ex-
ample below where the state machine modifies other
global data.

The language also supports nested transactions
(which can be rolled back individually) as well as the
distinction between starting a new transaction (with
newtx) and a block requiring to be executed in an
existing transaction (using intx).

Interpreter The reason why transctions work also
with state machines is that the current total state of
a state machine is also an immutable object; in other
words, it also implements ITransactionalValue. The
implementation of the transaction in the interpreter
looks like this:

1 Transaction tx = new Transaction(node);
2 env[Transaction.KEY] = tx; // store in env for nested calls
3 try {
4 Object res = #body;
5 tx.commit();
6 return res;
7 } catch (SomethingWentWrong ex) {
8 tx.rollback();
9 } finally {

10 env[Transaction.KEY] = null; // no tx active anymore
11 }

This form of transactional memory is also used in Clojure,
as far as I understand.

3.5 State Machines

We have introduced basic state machines above. In this
section we’ll introduce the remaining features of state
machines.

Nested States States can be nested. A state S that
itself contains states considers the first F one as the
initial state. Any entry into S automatically enters F,
recursively.

Actions State machines support entry and exit actions
on states as well as transition actions. Ordering of their
execution is always exit-transition-entry. For nested
states, the exit actions are executed inside-out, the entry
actions are executed outside in.

Automatic Transitions In addition to transitions
that are triggered by events (expressed using the on
keyword), automatic transitions are also supported.
They are introduced by the keyword if and do not
include a triggering event, only a guard condition. They
are executed upon state entry (after the entry actions)
or if no triggered transition fires.

Timeouts A particular use case for automatic tran-
sitions is to use the timeInState variable in the guard
condition to implement time-dependent behaviours. It
contains the time since the last (re-)entry of the state.
Notice that if a transition on E -> S fires, this counts
as a reentry. If you want to“stay” in the state, then avoid
the -> S. Note that if you do not specify a target state,
then the transition must have an action. A transition
with no action and no target state is illegal (because it
does not do anything).

3.6 Clocks

KernelF supports clocks. There is a built-in type
clock whose values have a time operation that re-
turns the current time millis of the underlying clock.
New values of type clock can be created by us-
ing two expressions: systemclock returns a clock
that represents the clock of the underlying system.
artificialclock(init) returns a clock initialized to
the init value. Note that artificialclock is also
of type artificialclock, which, in addition to time,
also has an advanceBy(delta) operation that moves
the clock forward by delta units. The tick operation
corresponds to advanceBy(1).

Artificial clocks are useful for testing. However, built-
in expressions such as the timeInState mentioned above
default to the global clock. By default, the global clock is
the systemclock. If you want to use an artificial clock
for testing. you must register it as the global clock using
the §global-clock pragma.

4. Tooling

4.1 MPS-based IDE

The KernelF language is of course not dependent on
any particular IDE. However, what makes KernelF
relevant (and not just another functional language) is
its extensibility and embeddability. For this, it relies
on MPS’ meta programming facilities. In other words,
KernelF can only be sensibly used within MPS. This
also means thart the IDE support MPS provides is the
IDE support for KernelF. Like for any other langauge,

MPS provides syntax highlighting, code completion,
goto definition, find usages, and type checking. Because
MPS is a projectional editor, it also implicitly provides
formatting. Since all of this is pretty standard, we will
not discuss this further.

What is worth mentioning is that this IDE support
also automatically works for all extensions of KernelF,
and it keeps working if KernelF is embedded into an-
other language. No ambiguities arise from combining
grammars, and no disambiguation code has to be writ-
ten.

4.2 Interpreter

KernelF comes with an in-IDE interpreter that directly
interprets MPS’ AST. The semantic implementation
of the language concepts is implemented in Java. Note
that it is not optimized for performance (in which case
a completely different architecture would be required),
but for quick feedback for DSL code, in particular for
test cases. The interpreter can be executed on assert
entries in test cases; it can be started either from the
context menu or with Ctrl/Cmd-Alt-Enter. Complete
test cases and test suites can also be executed using the
same menu/keys.

Notice that the interpreter performs extensive caching
for expressions that have no effects. In particular, func-
tion calls with the same arguments are executed only
once (per interpreter session) if the function has no effect.
It is thus important that effect tracking is implemented
correctly in language concepts.

4.3 Read-Eval-Print-Loop

KernelF ships with a read-eval-print-loop (REPL; Figure
7 shows an example). It is represented as its own root
and is persisted; but its interaction is more like a
console in the sense that whenever you evaluate an entry
(using Ctrl/Cmd-Alt-Enter) the next one is created
and focused. Each entry is numbered, and you can refer
to each one using the $N expression.

By default, each entry in a REPL is evaluated once,
and you “grow” the REPL by adding new expressions.
However, by checking the downstream updates option,
you can change any REPL expression, and all the
transitively dependent ones are then reevaluated as well.

The easiest way to start a REPL is to select any
expression in a KernelF program and use the Open
REPL intention. It then creates a new REPL, adds the
expression in the first entry and evaluates it. By using
the Close and Return button in the REPL, the REPL
is deleted and the node from which it was opened is put
back in focus.

4.4 Debugger

One of the benefits of a functional language is that there
is no program state to evolve; all computations can be

Figure 7. An example of a REPL session on a clock
expression.

Figure 8. The frame tree as shown in the debugger.

seen as a tree of computed values. This means that
debugging does not require the step-and-inspect style
we know from imperative languages. Instead, debugging
can just illustrate the computation tree in a convenient
way.

KernelF ships with a debugger that is based on this
approach. Fundamentally, a computation in the KernelF
interpreter collects a trace, and this trace can be in-
spected.4 The debugger, also known as the tracer, can be
invoked for anything that has no upstream dependencies,
i.e., test case assertions, gloval values and functions
that have no arguments. Other domain-specific “main
program like”-constructs may be available in a DSL.
Whereas the interpreter is invoked via Ctrl-Alt-Enter,
the debugger is invoked with Ctrl-Alt-Shift-Enter
(or the Show Trace menu item in the context menu of
the respective program node).

Debugger Components The debugger comes with
three components: the frame tree, the value inspector
and the code decorator; we will discuss each in turn.
The frame tree shows a hierarchy of frames. Frames are
“coarse-grained” entities in the computation tree such as
functions and function calls, local values or if expres-
sions. Importantly, the tree does not show the program
nodes, it shows the computation steps involving these
program nodes. This is important, because any node
may be executed several times during as comoputation,
but with differnet values, producing a differnet result

4 The trace can also be collected from other sources, for example,
a KernelF program that has been generated to Java code, as long
as the runtime also collects trace data.

(consider val f = x() + x(), recursion, or the lamb-
das in higher-order functions). The frame tree shows the
hierarchical nesting of those computation steps. Each
node in the tree has an optional label (for example, cond
or then), the (abbreviated) syntax, the (abbreviated)
value and the time it took to compute it5. The tree node
shows a yellow [E] if that node has (had) an effect. If
the node throws a constraint failure, this is highlighted
in red, in place of the blue value.

Next to the frame tree we see the value inspector.
When clicking on a node in the tree, the inspector shows
the structure (if any) of the value of the tree node. For
example, an instance of a record as a tree, and if an
expression returns an MPS node, that node is clickable,
selecting that node in the MPS editor.

When double-clicking a node in the frame tree, the
respective node is decorated in the source. As shown
in Figure 9, it associates a value with each AST node.
Depending on the node’s complexity, it shows no value
at all (for literals, because the value would be the same
as the node syntax), or shows it next to or below the
node. The color is goverened by the nesting depth. The
decorated code always represents one particular value
assignment. Thus, to debug the values for lambda in
the iterations of a coll.where(lambda) higher order
functions, you would click on the respective nodes in the
frame tree, highlighting each instance in the code.

Debugger UI The debugger opens a new frame tree
for each root for which the user opens the debugger. The
red X closes the current tab. The green arrow reexecutes
the same root, if it is reexecutable (as determines by the
debugged program node). This is useful after updating
the code. Node that the expansion state of the tree
is retained across reexecutions. The little grey round
X removes all code decorations created by the current
tab. The blue filter icon toggles between the regulae
tree where only coarse-grained frames are shown and
a view where all interpreter steps are included. While
this is usually overwhelming, it can sometimes be useful.
The reset arrow reverts the tree to its original expansion
state (see below). The collapse all and expand all buttons
should be obvious.

Breakpoints and Run To Breakpoints and Run
To are two features known from classical debuggers. A
breakpoint stops execution on a specific statement, and
Run To runs the program until it reaches a particular
statement. We have adapted these ideas in the tracer to
the world of debugging functional code. A program node
can be marked as REVEAL using an intention. Marked this
way, when the debugger is invoked, the tree is expanded
to show all instances of that node, marked with a red

5 We might evolve the tracer to also support a simple form of
profiling in the future.

Figure 9. Decorated code that associates values with syntax nodes.

Figure 10. Test suites in KernelF. They can either be
executed automatically (as part of MPS’ type system)
or on demand (by pressing Ctrl-Enter at any level in
the suite). Color coding highlights success and failure.

[R]. This way it is easy to identify a particular node in
an execution trace. Run To means that you execute the
program to a particular point. In the tracer, the Select
Next Trace selects the next trace for the node on which
it is called in the tree. Select All Traces highlights
all of them.

4.5 Test Execution

The default execution mechanism for test suites is
the built-in interpreter. Depending on the execute
automatically flag, tests are run automatically (techni-
cally, in the MPS type system) or manually. In the latter
case, Ctrl-Alt-Enter triggers a test item, a test case
or a test suite, depending on where Ctrl-Alt-Enter is
pressed.

4.6 Coverage Measurement

KernelF is being used for a wide range of applications,
some of them in safety-critical areas. It is thus impor-
tant to ensure the quality of the language itself, plus its
extensions. This is why KernelF ships with a coverage
analyzer for its test cases. The coverage analyzer pro-
vides structural and interpreter coverage checking. An
assessment reports various staticstics on the coverage,
as shown in Figure 11.

Structural coverage means that the analyzer checks
that all properties, children, and references are used in
test cases. Heuristics assess the average complexity and
size of the expressions in the test case. Minimum and

maximum complexity thresholds can be defined to force
developers to write ”unit tests” (low complexity/size)
and ”integration tests” (higher complexity/size).

Interpreter coverage refers to the coverage of the
interpreter that runs the language by default. It verifies
that the evaluator for all language concepts is executed
at least once. By marking branches in the interpreter,
one can also ensure that all relevant branches in the
interpreter code are executed at last once. Furthermore,
if the interpreter works with collections (such as an
argument list of a function), one can check that the
interpreter runs at least once with an empty list, with
a list of one element, and with a list of more than one
element. Finally, the interpreter coverage analyzer can
also track the ranges and distributions of numeric (and
potentially other) values to make transparent the range
of numbers used to exercise the interpreter.

The main limitation of the analyzer is that it does
not analyze combinatorial coverage, i.e., the possible
combinations of language concepts and/or value ranges.

4.7 Test Case Generation

KernelF supports test case generation; an example is
shown in Figure 12. While this requires a more detailed
explanation, here are the core characteristics. The gen-
erator works on any language construct that accepts a
vector-style input, such as functions. There are different
producers6, currently we support random (which creates
the specified number of random values that are each
compatible with the n-th vector element’s type) and
eqclass (which seelcts “interesting” values for each type
and then generates vectors with all permutations). If a
vector is executed, several things can happen:

• A precondition (if one is given) can fail, reported
as [PRE] error message. Using an intention, such
vectors can be marked as Invalid Input, which,
when running the vector again, makes the vector
green. A second intention can physically remove all
Invalid Input vectors.

• A postcondition (if one is given) can fail. This is a
genuine test failure and must be adressed.

6 Currently they work only for primitive types, not for collections
or records. This will be improved in the future.

Figure 11. Example of interpreter coverage measure-
ment. Users specify the language, concepts that should
be ignored (because they are not interpreted and should
hence not be part of the coverage analyis). The analyzer
reports missing branches, calculates a coverage ratio,
and tracks number ranges.

• If an expected result is specified, and the vector
evaluates to something else, this is also a failure that
must be adressed.

• If not result value is given, and no constraints fail,
all vectors will succeed. The actual values can then
be copied into the result column using an intention.
While this looks initially pointless, such vectors are
useful as a safety net for downstream refactorings of
the test subject.

4.8 Mutation Testing

The testing infrastructure also supports mutation testing.
Mutation testing is about judging the quality of a test
suite by making ”random” changes to the test subject
and then detecting if one or more tests in the suite fail.
If no test fails, this means that the tests are not specific
enough. A high quality test suite is one where for each
introduced mutation at least one test fails. The changes
performed by the mutator are extensible; currently we
support

• Replacement of boolean subexpressions with true and
false

• Negation of boolean expressions

• Replacement of some arithmetic operations with
others, e.g. + with *, - with /

• Replacement of some boolean relations with others,
e.g. > with >=, == and <=

• Exchange of the then and else part of conditions.

Currently we support mutation testing only vector test
itemis, i.e., those that define a set of test vectors for a
single test subject. They are also used for the test case
generation discussed above.

Figure 13 shows an example. A vector test item is used
for the function add, and, using an intention, we have
attached a mutator to the item. Using another intention,
the specified number mutation attempts can be executed.
Technically, we create a clone of the current model for
each mutation; those mutations where the set of tests
does not fail are kept around; the other are deleted
(unless keep all is set to true). Another intention can
be used to delete all the mutant models.

The original model, the one where we started the
mutation process, contains pointers to all the mutated
nodes to provide an overview of the problematic code
locations; they are attached to the mutator with the ->
notation. Following the references leads to the mutated
code which shows the new and the original node side-by-
side. A couple of examples are shown in Figure 14. Note
that the mutator can also touch indirectly used functions;
the particular scope of the mutations is defined by the
test subject adapter.

5. Design Decisions

Based on the goals for KernelF outlined in Sec. 1.1, we
have made a number of design decisions which we outline
in this section.

5.1 Exploit Language Workbench Technology

The core functional abstractions, and the design for
robustness are independent of the technologies used for
implementing the language. However, the support for
embedding, extension and the IDE support relies on the
fact that KernelF is designed to be used with language
workbenches that support modular language extension
and embedding. Specifically, we have built it on top of
Jetbrains MPS.

By deciding to rely on the capabilities of MPS, IDE
support comes essentially for free (a few refactorings,
such as extracting an expression into a value, have been
implemented manually). Similarly, the language does not
require an elaborate type system or meta programming
support to enable extension and embedding. Instead, we
rely on the language workbench to achieve extension
and embedding.

5.2 The Type System

Static Types KernelF is statically typed. This means
that every type is known by the IDE (as well as the
interpreter, or a future generator). If a user is interested

Figure 12. A couple of examples for test case generation; refer to the text for details.

Figure 13. An example of mutation testing.

Figure 14. Highlighting of code mutations. The mu-
tated code is red, the original one is grey.

in the type of an expression, they can always press
Ctrl-Shift-T to see that type. This helps with the
design goals of Simplicity and IDE Support, but
also with Robustness, because more aspects of the
semantics can be checked statically in the IDE. Examples
include suntyping errors as well as violations of number
ranges.

Numeric Types An early version of KernelF had int
and real types, implemented as Java long and double
in the interpreter. We received feedback immediately
that doubles and longs are not suitable, and that the
implementation should be changed to use BigDecimal
and BigInteger – to get rid of the range limitations.
Further feedback from business domains led to the
need for explicitly specified ranges (most quantities
in business domains have a range) and an explicitly
specified precision (number of decimal digits). Instead
of making this an optional (project-specific) extension
of KernelF, we decided to replace the int and real
types with number[min|max]{prec}, as explained in
the introduction. The feedback from our users is very
positive.

The type system performs simple range computations,
such as those listed below.

• Number literals have a type that has a singleton range
based on their value and number of decimal digits
(e.g., 42.2 has the type number[42.2|42.2]{1}.

• Supertypes of numeric types merge the ranges (for ex-
ample, the supertype of number[5|5], number[10|20]
and number[30|50] is number[5|50]. This is an
overapproximation (i.e., simplification in the type
system implementation), because the type system
could know that, for example, the value 25 is not
allowed. However, to implement this, a number type
would have to have several ranges; we decided that
this would be too complicated (both for users and
the language implementor) and induce performance
penalties in type checking; so we decided to live with
the overapproximation.

• For arithmetic operations (currently +, -, * and
/), the type system computes the correct result

ranges; for example, if variables of type number[0|5]
and number[3|8] are added, the resulting type is
number[3|13].

• A division always results in an infinite precision value;
if a different precision is required, the prevision<>()
operator has to be used. Since we cannot technically
represent infinite precision currently, we approximate
it with a precision of 10.

We are making the simplifying tradeoffs consciously,
because, in the extreme, we would have to implement a
type system that supports dependent types (or abstract
interpretation of code); this is clearly out of scope.

Type Inference To avoid the need to explicitly specify
types (especially the attempt types, collections and
number types can get long), KernelF supports type
inference; this also helps with Simplicity. The types of
all constructs are inferred, with the following exceptions:

• Arguments and record members always require ex-
plicit types because they are declarations without
associated expressions from which the type could be
inferred.

• Recursive functions require a type because our type
system cannot figure out the type of the body if this
body contains a call to the same function.

If a required type is missing, an error message is an-
notated. Users can also use an intention on nodes that
have optional type declarations (functions, constants)
and have the IDE annotate the inferred type.

No Generics KernelF does not support generics in
user-defined functions, another consequence of our goal
of Simplicity. However, the built-in collections are
generic (users explicitly specify the element type) and
operations like map, select, or tail retain the type
information thanks to the type system implementation
in MPS. As a consequence of the extensibility of Ker-
nelF, users can also define their own “generic” language
extensions, similar to collections.

Option and Attempt Types To support our goal
of Robustness, the type system supports option types
and attempt types. Option types are useful to explicitly
deal with null values and force client code to deal with
the situation where null (or none) is returned. Similarly,
attempt types deal systematically with errors and force
the client code to handle them (or return the attempt
type its own caller).

We decided not to implement full support for monads;
for our current use cases, this is acceptable and keeps
the implementation of the type system simpler, which
supports our goal of extensibility. Note that, because
many operations and operators for T also work for
opt<T>, users can defer dealing with options and errors

until it makes sense to them; no nested if isSome(...)
... are required.

Effect Tracking and Types Effect tracking, as
discussed in Sec. 3.1, is not implemented with the type
system: an effect is not declared as part of the type
signature of a function (or other construct). There are
two reasons for this decision. First, for various technical
reasons of the way the MPS type system engine works,
this would be inefficient. Second, language extenders
and embedders would have to deal with the resulting
complexity when integrating with KernelF’s type system.
Instead, the analysis is based on the AST structure and
relies on implementing the IMayHaveEffect interface
and overriding its hasEffect correctly. While this is
simpler for the language implementor or extender, a
drawback of this approach is an overapproximation in
one particular case: if you declare a function to take
a function type that has an effect, then, even if a call
passes a function without an effect, the call will still be
marked as having an effect:

fun f*(g: (=>* string)) = g.exec()* // declaration
f*(:noEffect) // call

We are working on an interprocedural data flow analysis,
which will solve this problem.

5.3 Definition of the Semantics

The semantics of KernelF are given by the interpreter
that ships with the language, together with a sufficiently
large amount of test cases. No other formal definition
of the language semantics is provided. KernelF does
not ship with a generator, because, in the interest
of Portability, a generator would always be target
platform-specific. To align the semantics of generators
with the reference semantics given by the interpreter, one
can simply generate the test cases to the target platform
and then run them there – if all pass, the (functional)
semantics are identical.

5.4 Extension

We provide more details on extension and embedding
in Sec. 7, but here is a quick overview of the typical
approaches used for extension of KernelF.

Abstract Concepts A few concepts act as im-
plicit extension points. They are defined as abstract
concepts or interfaces in KernelF, so that extending
languages can extend these concepts. They include
Expression itself, IDotTarget (for things on the right
side of a dot expression), IFunctionLike (for function-
like callable entities with arguments), IContracted (for
things with constraints or pre-/postconditions) and Type
(as the super concept of all types used in KernelF).
IToplevelExprContent is the interface implemented
by all declarations (records, functions, typedefs).

Figure 15. Dependencies between the language mod-
ules in KernelF.

Syntactic Freedom A core ingredient to extension is
MPS’ flexibility regarding the concrete syntax itself. As
we show in Sec. 7.1, tables, trees, math or diagrams are
an important enabler for making KernelF rich in terms
of the user experience.

5.5 Embedding

Making a language embeddable is more challenging – at
least with MPS – than making it extensible. We outline
the core approaches here:

KernelF is Modular The language itself is modular;
it consists of several MPS languages that can be (re-
)used separately, as long as the dependencies shown in
Figure 15 are respected. Importantly, it is possible to
use only the basic expressions (base), or expressions
with functional abstractions lambda. Nothing depends
on the simpleTypes, so these can be exchanged as well
(discussed below). We briefly discuss the dependencies
(other than those to base) between the languages and
explain why they are acceptable:

• A: required because of the higher-order functions
(where, map) on the collections

• B: path navigation usually also has 1:n paths, which
requires collections

• C: repl is a utility typically used when developing
larger systems, which usually also use toplevel
expressions; so the dependency does not hurt.

• D: tests are themselves top level elements; also, a
dependency on toplevel does not hurt for a test
model.

• E: the functions in toplevel require generic function-
like support from lambda

Removing Concepts In many cases, embedding a
language into a host language requires the removal of
some of the concepts from the language. One way of

achieving this is to use only those language modules that
are needed; see previous paragraph. If a finer granularity
is needed the host language can use constraints to
prevent the use of particular concepts in specific contexts.
A concept whose use is constraint this way cannot be
entered by the user – it behaves exactly as if it were
removed.

Exchangeable Primitive Types One particular part
of a language that may have to be removed (or more
specifically, exchanged) is the set of primitive types.
As per what we have said in the previous paragraph,
users can decide to not user kernelF.primitiveTypes
or constrain away some of the primitive types. However,
the type system rules in the kernelF.base language
relies on primitive types (some built-in expressions must
be typed to Boolean or integer). This means that the
types constructed in those rules types must also be
exchangeable. To make this possible, KernelF internally
uses a factory to construct primitive types. Using an
extension point, the host language can contribute a
different primitive type factory, thereby completely
replacing the primitive types in KernelF.

Structure vs. Types The types and the underlying
typing rules can be reused independent from the lan-
guage concepts. For example, if a language extension
defines a its own data structures (e.g., a relational data
model), the collection types from KernelF can be used
to represent the type of a 1:n relation. Examples are
given in the case studies.

Scoping Scopes are used to resolve references.
Every DSL (potentially) has its own way of look-
ing up constants, functions, records, typedefs or its
own domain-specific declarations. To make the lookup
strategy configurable, KernelF provides an interface
IVisibleElementProvider. Host language root con-
cepts can implement this interface and hence control
the visibility of declarations.

Overriding Syntax Imagine on embeds KernelF into
a language that uses German keywords. In this case the
concrete syntax (in particular, the keywords) of KernelF
must be adapted. MPS’ support for multiple editors for
the same concepts makes this possible.

Extension Finally, embedding KernelF into a host
language usually also requires extending KernelF. For
example, if KernelF expression were to be used as guards
in a state machine, then a new expression EventArgRef
would be required to refer to the arguments of the event
that triggered the current transition; an example is the
reference to data after the if in the following snippet:

state machine Protocol {
state Waiting {

on PacketReceived(data: list<number>)
if data.size > 0 -> Active

}

state Active { ... }
...

}

To this end, everything discussed in Sec. 5.4 is relevant
to embedding as well.

5.6 Miscellaneous

Algebraic Data Types not Essential Option types
can be seen as a special case of algebraic data types,
with the following definition:

1 type option<T> is some<T> | none;

Similarly, attempt types could also be built with a
generic algebraic data type language. However, we
decided against having algebraic data types in the core
of the language (they might become available as an
extension) for two reasons. First, as we have outlined at
the beginning of Sec. 1, we expect domain-specific data
structures to be contributed by the host language, so
sophisticated means of modeling data, of which algebraic
data types are an example, are unnecessary. Second,
by making attmpt and option types first class, we can
provide support for them with special syntax and type
checks (e.g., the try expression for attempt types) or
by making an existing concept aware of them (the if
statement wrt. option types).

No Monads We decided to not add a generic facility
for (user-definable) monads, for two reasons. First, they
are probably at odds with our design goal of Simplicity:
our users will probably not be able to understand them.
More importantly, however, they make the type system
much more complicated to implement in MPS. This, in
turn, is a problem for extensibility, because extension
developers would have to deal with this complexity.

No Exceptions KernelF does not support exceptions.
The reason is that these are hard or expensive to
implement on some of the expected target platforms
(such as generation to C); Portability would be
compromised. Instead, attempt types and the constraints
can be used for error handling.

Not Designed for Building Abstractions KernelF
is not optimized for building custom structural or be-
havioral abstractions. For example, it has no classes
and no module system. The reason for this apparent
deficiency lies in the layered approach to DSL design
shown in Fig. 1: the DSLs in which we see KernelF used
ship their own domain-specific structural and behavioral
abstractions. More generally, if sophisticated abstrac-
tions are needed (for example, for concurrency), these
can be added as first-class concepts through language
engineering in MPS (cf. Sec. 5.1).

Keyword-rich In contrast to the tradition of func-
tional languages, KernelF is relatively keyword-rich;
which means, it has relatively many first-class language

constructs. There are several reasons for this decisions,
the main reason being simplified analyzability: if a lan-
guage contains first-class abstractions for semantically
relevant concepts, analyses are easier to build. These,
in turn, enable better IDE support (helping with Sim-
plicity and making the language easier to explore for
the DSL users) and also make it easier to build genera-
tors for different platforms (Portability) Finally, in
contrast to languages that do not rely on a language
workbench, the use of first-class concepts does not mean
that the language is sealed: new first-class concepts can
be added through language extension easily.

5.7 A specific example: “unpacking” options

In this section we provide a more detailed discussion
of one particular language design decision to illustrate
how user expectations and MPS tool capabilities lead
to the final solution. We struggled with this one for a
while, and this section illustrates the thought process.
The example is about “unpacking” option values, i.e.,
checking if a valuf of type option<T> contains a T and
not none.

The Starting Point We started with a first-class
concept with some, plus an expression val that would
provide access to the optioned value if it is some and not
none. Having a first-class concept makes analyses simple
to build, because it is simple to recognize a check for
some because the language concept directly expresses it.

fun f(x: option<number>) = with some x => val + 10

We also experimented with using a dot expression to
access the optioned value:

fun f(x: option<number>) = with some x => x.val none 10

This second version would not work for complex expres-
sion such as function calls, since repeating the complex
expression before the dot is syntactically ugly and leads
to errors if the called function has side effects. We de-
cided on the first alternative.

Naming However, this alternative will result in a
problem if several with some expressions are nested
because val would be ambiguous. The name of the
expression used to refer to the value must be changeable.
One solution would be to define a value explicitly:

fun f(x: number, y: number) = {
val xval = with some maybe(x) => val none 10
with some maybe(y) => val + xval none 20

}

However, this is too verbose. We came up with two
versions of an abbreviation to define names for the tested
value:

fun f(x: number) = with some v = maybe(x) => v none 10
fun f(x: number) = with some maybe(x) as v => v none 10

We preferred <expr> as <name> over <name> = <expr>
because it cannot be confused with an assignment (which
we do not support in KernelF). It is also easier from the
perspective of the user, because you can add the name
(syntactically and in terms of typing sequence) after
the expression the user wants to test. Finally, KernelF
already has a facility for optionally naming things with
an as suffix. The above can then be written as:

fun f(x: number, y: number) = {
with some maybe(x) as xval

=> with some maybe(y) as yval => xval + yval
none 0

none 0
}

To avoid nesting, we allowed comma-separated tests:

fun f(x: number, y: number) =
with some maybe(x) as xval, maybe(y) as yval

=> xval + yval none 0

Using If Expressions The first-class concept with
some turned out to be ugly, and also introduced new
keywords for something where users intuitively wanted
to use an if; so we allowed the if statement to be used,
again with the same options:

fun f(x: option<number>) = if isSome(x) then val else
10

fun f(x: option<number>) = if isSome(x) then x.val else
10

fun f(x: number) = if isSome(maybe(x)) then val else
10

fun f(x: number) = if isSome(maybe(x) as v) then v else
10

A problem with using the existing if expression is that
users can construct arbitrarily complex expressions, such
as the following:

fun f(x: option<number>) =
if isSome(x) || g(x) then val else 10

In this case it cannot (easily) be statically checked that
inside the then branch, x always has a value. To enforce
this, we ensure that the isSome expression is the topmost
expression in the if; it cannot be combined with others.
This is trivial to check structurally and avoids the need
for advanced semantic analysis of complex expressions.

We had the idea of interpreting an option type as
Boolean to allow this syntax:

fun f(x: option<number>) = if x then val else 10

However, we discarded this option because, for our target
audience, we think that too much type magic is too
complicated. Another idea was to use the name of the
tested variable (if it is a simple expression) in the then
part, and type it to the content of the option. This would
allow the following syntax:

fun f(x: option<number>) = if isSome(x) then x else 10

This is harder to implement because the type of x is now
different depending on the location in the source. This is

not easily possible with MPS’ type system. Alternatively,
the second x could be made to be a different language
concept (which comes with a different type), but then
one has to prevent the use of the original x in the
then part. This would require all reference concepts
to be aware of the mechanism; every scoping function
would have to call a filter method. While this makes
language extension a little bit harder (users have to call
the filtering function), we decided that this is worth it:
since one cannot do anything else inside the then part,
providing the “unpacked” value there makes sense.

Final Design We settled on the following syntax.
The if conforms to users’ expectations, the as avoids
confusion with assignments, and we provided the magic
of “automatic unpacking” inside the then part.

fun f(x: option<number>) = if isSome(x) then x else 10
fun f(x: number) = if isSome(maybe(x) as v) then v else 10

For multiple tested values we now use && instead of the
comma, because the && is used in logical expressions al-
ready as a conjunction; note that other logical operators
are not supported on isSme tests.

fun f(x: number, y: option<number>) =
if isSome(maybe(x)) as xval && isSome(y)

then xval + y else 0

6. Evolution over Time

6.1 Number Types

Initially, KernelF had been designed with the usual
types for numbers: int and float. However, even in
our very first customer projects it turned out that those
numberic types are really too much focussed on the need
of programmers (or even processors), and that almost
no business domain finds those types useful. Thus we
quickly implemented the number types as described
earlier. Since this happened during the first real-world
use, so this evolution did not involve any migration of
existing, real-world models of customers, making the
evolution process very simple.

6.2 Transparent Options and Attempts

Initially, option types and attempt types were more
restricted than what has been described in this paper.
For example, if a value of option<T> is expected, users
had to explicitly construct a some(t) instead of just
returning t. Similarly for attempt types: users had to
return a success(t). Options and attempts also were
not transparent for operators. For example, the following
code was illegal, users first had to unpack the options
to get at the actual values, which lead to hard to read
nested if expressions.

val something : opt<number> = 10
val noText : opt<string> = none
something + 10 ==> 20 <option[number[-inf|inf]{0}]>
noText.length ==> none <option[number[0|inf]{0}]>

The reasons for the initial decision to do it in the more
strict way were twofold. One, we thought that the more
explicit syntax would make it clearer for users what
was going on (less magic). Instead it turned out it
was perceived as unintuitive and annoying. The second
reason was that the original explicit version was easier
to implement in terms of the type system and the
interpreter, so we decided to go with the simpler option.

The migration to the current version happened after
significant end-user code had been written, and so we
implemented an automatic migration where possible:
all some(t) and success(t)were replaced by just t
by migration script that was automatically executed
once users opened the an existing model once the
new language version was installed. The unnecessary
unpackings were flagged with a warning that explained
the now possible simpler version. We expected users to
make the change manually because we were not able
to reliably detect and transform all cases, and because
automated non-trivial changes to users’ code is often
not desired by users.

6.3 Enums with data

Originally, enums, as described in Section 2.10, were
available only in the traditional form, i.e., without
associated values. However, it turned out that one major
use case for enums was to use them almost like a database
table, where the structured value of one enum literal
would refer to another enum literal (through using tuples
or records in as their value type):

enum T<TData> {
t1 -> #TData(100, true, u1)
t2 -> #TData(200, false, u2)
t3 -> #TData(300, true, u2)

}

enum U<number> {
u1 -> 42
u2 -> 33

}

6.4 Records

According to our own design goal to keep KernelF small
and simple, and in particular, the assumption that the
host language would supply all (non-primitive) data
structures, we originally did not have records. However,
it turned out that this was a bidge too far: records are
useful as temporary data structures, even if the hosting
DSL defines the notion of a component, class or insurance
contract. Records are also useful for testing many other
language constructs.

However we did not add advanced features to records,
such as inheritance; we reserve such features for host
language domain-specific data types. However, the inter-
nal implementation infrastructure for records is based
on interfaces. This way, it is very easy for extension
developers to create their own, record-like structures

that, for example, use custom syntax or support things
like inheritance. This extension hook has been used in
several KernelF-based DSLs by now.

6.5 Range Qualifiers

A very common situation is to work with ranges of num-
bers. With the original scope of KernelF, for example,
one could use an alt expression to compute a value r
based on slices of another value t:

val r = alt | t < 10 => A |
| t < 10 && t < 20 => B | // or t.range[10..20]
| t > 20 => C |

However, as our users told us, this is perceived as
unintuitive. The situation gets worse once uses range
checks as part of decision tables, where many more such
conditions have to be used. Our solution to this approach
was to create explicit range qualifiers, so one could write
the following code:

val r = split t | < 10 => A |
| 10..20 => B |
| > 20 => C |

Note that these are not really expressions, because, for
example in < 10, there is no argument given on which
the check has to be performed. That argument is implicit
from the context. This is why these range qualifiers can
only be used in surrounding expressions that have built
specifically for use with range qualifiers. The split
expression is an example. We decided to make this part
of the core KernelF language instead of an extension
because these constructs are used regularly.

6.6 Enhanced Effects Tracking

Originally, there was only one effect flag: an expression
either had an effect or it did not. However, when
extending KernelF with mutable data, it quickly became
clear that we have to distinguish between read and
mofify effects because, for example, a precondition or a
condition in an if is allowed to contain expression that
have read effects, but it is an error for them to have
write effects. Interpreting “has effect” as “has modify
effect” also does not work, because, even for expressions
with read effects, caching is invalid.

So far we have decided not to distinguish further
between different kinds of effects (IO, for example),
because this distinction is irrelevant for our main use of
effect tracking, namely caching in the interpreter.

7. Case Studies

7.1 The Utilities Extension

Context Our first case study is an extension of the
core KernelF languages with more end-user friendly ways
of writing complex expressions: decision tables, decision
trees and mathematical notations. Figures 16, 17 and
18 show examples.

Figure 16. A decision tables makes a decision over two
dimensions, plus an optional default value.

Figure 17. A decision tree directly captures a step-wise
decision-making procedure found in many technical and
scientific domains.

Figure 18. The mathematical notation helps capture
mathematical calculations in a way a domain expert
might write them down on paper.

Notations and Abstractions The abstractions used
should be fairly obvious. Their natural notations are
extremely helpful when building languages for non-
programmers, since the same notations would be used in
the proverbial Word document that is often the basis for
capturing knowledge (informally) in non-programmer
organizations. The fact that first-class logical and math-
ematical abstractions are used has, however, additional
benefits: for example, for decision tables their complete-
ness7 and overlap-freedom can be checked. In our partic-
ular implementation, we do this by translating the table
to the corresponding logical formulae in the Z3 solver.
Errors are highlighted directly in the table.

For a table with n rows (ri) and m columns (cj),
we detect incompleteness if the following formula is
satisfiable:

¬
n,m∨
i,j=1

(ri ∧ cj)

Similarly, an overlap between conditions ca be found by
checking the following conjunctions:

∀i, k = 1..n, j, l = 1..m :

i 6= k ∧ j 6= l ⇒ ri ∧ cj ∧ rk ∧ cl

7 Assuming the range of the type is defined.

Figure 19. The definition of the editor for the
∑

Ex-
pression essentially maps the structural members (body,
lower, upper) to predefined slots in the notational prim-
itive for math loops.

If nested if expressions would be used instead of the
table, no assumption about completeness can be made,
and the checks could not be performed (unless the user
annotates the set of nested if expressions with some
must be complete annotation).

Implementation Structurally, all the new language
concepts – decision tree, decision table, fraction bar,
square root symbol and sum symbol – all extend
kernelf.base.Expression so they can be used wher-
ever an expression is expected, particular, as the im-
plementation of functions. Some concepts are wrappers
around functions; for example, the content cells of de-
cision tables are instances of DectionTableContent,
which in turn contain the value expression, but also
point to their respective row and column headers to
define their position in the table.

In terms of notation, we reuse existing notational
primitives we have developed over the years for tables,
trees and mathematical symbols. Once these are avail-
able, the definition of the concrete syntax is straightfor-
ward. Fig. 19 shows the editor definition for the sum
symbol. The editors for the table and the tree are a little
bit more complicated, since they dynamically construct
the tree and table structures. The integration with the
solver is the subject of the next subsection.

7.2 Solver Integration

Context In this case study we take a closer look at
the integration of the solver: this explains more details
about the architecture of the solver integration hinted at
above, and it is also a case study in the use of KernelF
itself.

Working with the solver, we have found a set of
recurring “questions” that one asks from the solver:
are the following set of expressions complete, are they
overlap free, do they contract themselves, is one a subset
of another, or are two expressions identical (while have
different structure, think deMorgan laws). Answering
many of these questions requires an often initially

Figure 20. The integration of the solver, Z3 in our case,
into end user-facing DSLs.

unintuitive encoding of the expressions in the solver
(e.g., using negations).

Notations and Abstractions To avoid users’ having
to implement such encodings over and over again, we
have developed a set of solver tasks that represent these
questions. As shown in Fig. 20, a problem that should
be addressed with the solver must be translated to one
or more suitable solver tasks; these are then mapped to
the solver, taking into account the unintuitive encodings.
This simplifies the use of the solver (for typical problems)
to the developer of a DSL. In addition, by isolating the
DSL developer from the actual solver API, it also makes
the solver exchangeable without any effect on the end
user-DSLs: only the solver DSL with its tasks has to get
a new mapping to a new solver.

Consider the following simple alt expression:

fun decide(a: int) = alt | a < 0 => 1 |
| a == 0 => 2 |
| a > 0 => 3 |

For this to be correct, the three conditions should be
complete (there should not be a value for a that is not
covered by any option) and it should be overlap free (for
any value of a, only one option should apply). Below we
show the encoding of these two problems in the solver
DSL (layout changed to save space). These formulations
are considerably simpler than the two mathematical
formulae given earlier; the mapping to the solver API
takes care of the mathematical encoding.

variables:
a: int

relationships:
<none>

checks:
completeness { a < 0, a == 0, a > 0 }
non-overlapping { a < 0, a == 0, a > 0 }

Implementation The Solver DSL embeds the Ker-
nelF expressions. To do this, the checks (complete-
ness, non-overlapping, etc.) have children of type
kernelf.base.Expression, as well as a type check
that ensures them to be of Boolean type.

Note that the solver tasks must be self-contained,
i.e., no external references are allowed. So the uses of
the a variable in the expressions in the solver task are
references to the a declared in the variables part, not
to the argument of the decide function from which the
checks are derived. This is an example of an extension
required because of the embedding: a new expression,

Figure 21. An example of natural language syntax for
extension function calls: in the test case, the function
is called with a multi-word text string instead of a
positional argument list.

Figure 22. Associating a natural language function call
syntax with an existing extension function.

the SolverTaskVarRef has been introduced as part of
the Solver DSL. During the transformation from the
end user-visible DSL (in this case, the alt Expression
of KernelF itself), the references to function arguments
are replaced with SolverTaskVarRef. The mechanics of
how this is done is outside the scope of this paper.

7.3 Natural Language Function Calls

Context The KernelF should be usable for business
DSLs where its users are non-programmers. While such
users can easily deal with operators such as + or &&,
the notion of function calls with its parentheses and
positional arguments can be hard to communicate. These
users often want a more “natural language-like” syntax.

Notations and Abstractions We continue to use
regular functions and extension functions, but provide an
additional call syntax, as shown in Fig. 21. The syntax
is associated with existing extension functions via an
annotation, as shown in Fig. 22. In this annotation, a text
template can be specified that embeds the arguments
at the respective places. The notation also extends into
the code completion menu: when you press control space
after the dot on a Car instance, you will get a proposal
accelerate to @[to] with @[at]. Goto definition on
the function call also still works as expected.

Implementation The template is attached to the
function definition using an annotation. Annotations are
an MPS feature where it is possible to attach annotation
nodes A to other nodes N without the definition of N
having to be aware of it.

The annotation contains a Text node that supports
entering arbitrary, multi-line, unstructured text. Text
nodes consist of a sequence of IWord nodes. Languages
can define their own concepts that implement IWord,
which is how the @[..] placehoders are built: the
NatLangFunctionArgRef concept implements IWord
and has a reference to a FunctionArgument, scoped to

Figure 23. An example components-based system with
delegating connectors.

the arguments of the function to which the annotation
is attached.

The implementation of the caller syntax is a little
bit more work: ca. 100 lines of customer MPS cell
provider are required to render the custom cell. While,
as a downside, this requires some detailed knowledge
of how the MPS editor works, the plus side is that it
is possible at all to add this kind of natural language-
influenced function call syntax at all. Once this cell
provide is available, it is embedded into the function call
expression’s editor like any other cell.

7.4 Components Language

Context Components-based software development re-
lies on composing systems from reusable components
with well-defined interfaces. Components expose inter-
faces through ports which are then connected hierar-
chically. One problem with this approach is that cross-
cutting functionality, such as the diagnostics shown in
Fig. 23, leads to a lot of connectors, some of them may
even have to be delegated through many layers of com-
ponent assembly. This is tedious and error prone.

Notations and Abstractions To solve this problem,
some ports should be connected programmatically, i.e.,
by using expressions that enumerate instances and
ports of specific types (e.g., the client port of the
WheelControl instances) to connect those to other ports
(e.g., the server port of the DiagnosticsController
instance). In our system, one can write expressions, such
as the following:

component Car {
connect many this.allinstances<WheelController>

.map(|it.ports<IDiagnostics>|)
to DiagnosticsController.server
// more component contents

}

Notice the special-purpose expressions: allinstances<T>
returns all recursively nested component instances of
type T, and port<P> returns all ports with port type
P of a given component. this represents the compo-
nent in which we write the expression. map is reused
from kernelF.collections. An alternative formulation

could have been to directly recursively get all ports of
type IDiagnostics (however, this would not illustrate
the use of map):

this.allports<IDiagnostics>

Implementation The Component concept owns
the connect many clauses, which, in turn, embed
kernelf.Expression. Several new expressions have
been implemented for this language:

The this expression is used to refer to the component
in which the connect many clause lives. It is typed to be
a ComponentType that in turn refers to the surrounding
Component.

allinstances is not an expression, but an IDotTarget,
the concept that can be used on the right side of a
DotExpression. A can be child constraint ensures that
it can only be used if the context (the expression on the
left side of the dot) is of type ComponentType:

1 parentNode:DotExpression.expr.
2 type.isInstanceOf(ComponentType);

Since this expression returns the list of all instances of the
ComponentType specified as the argument, it is typed to
be a list of this component type: <ListType(baseType:
allinstances.component.copy)>; This is an exam-
ple of where KernelF’s existing collections are reused as
the types of custom expressions; ListType is KernelF’s
regular type for lists. This way, all list operations from
KernelF can be used on the collection of component
instances returned by allinstances. The expression to
return all ports allports works basically the same way.

A type system rule verifies that the two expressions
of the connect many clause are typed to PortType or
collection<PortType>.

7.5 Variability Models

7.6 A DSL for Medical Applications

Context A language has been developed for spec-
ifying medical algorithms. The main abstractions are
components (with input/output parameters and user
interactions) for realizing modularity, as well as state
machines to implement asynchronous, verifiable behav-
ior inside the components. Expressions play a role in
many contexts such as invariants for data structures as
well as transition guards.

As part of the behavior in the algorithms, interactions
with databases are required. For example, averages of the
last N measurements of certain medical parameters are
required. In addition, such parameters must be stored
in the database in the first place. The expressions to
achieve this are expressions with sideeffects; this allows
us to illustrate how effect tracking works in KernelF.

The system has several record definitions to represent
system data:

record Patient { id: string }
record BSLMeasurement {
measuredAt: [date,time]
quantity : sugarLevel

}
record BlooodPressureMeasurement {
measuredAt: [date,time]
systolic : int
diastolic : int

} where systolic < 120 &&
diastolic < 80 &&
diastolic < systolic

The database is essentially a unstructured store that
can store data for a patient. The data is tagged by the
kind; we use the name of the record we want to store
as that kind. The special-purpose expression db-store
performs storage; it takes the ID of the patient as a key,
and then associates the value val with the tag derived
from the name of the record.

ext fun storeBloodSugarValue*(this: Patient,
val: BSLMeasurement)

= db-store*[this.id][BSLMeasurement => val]

ext fun storeBP*(this: Patient,
val: BloodPressureMeasurement)

= db-store*[this.id][BloodPressureMeasurement => val]

The db-store operation obviously has a sideeffect –
storing the data in the database. To tell this to the
type system, the db-store language concept implements
IMayHaveEffect. Transitively, the two functions shown
above also have an effect, as shown by the asterisk behind
their names. If a function calls one of these, that function
also gets an effect (the cur-expressions are keyword
expressions).

fun userEnteredBSLMeasurement*(value: int)
= cur-patient.storeBloodSugarValue*(

#BSLMeasurement{[cur-date,cur-time], value})

Finally, if functions with sideeffects are called from a
lambda, this lambda also is marked with a sideeffect:

fun valueSubmitted*(v: int, action: (int =>* boolean)) {
action.exec(v)*
log("value submitted: " + v)

}

fun mainLoop*() {
..run UI code..
valueSubmitted*(10,

|v: int => userEnteredBSMeasurement*(v)|*)
}

8. Related Work

8.1 Dynamic Languages

A widespread approach for building embedded DSLs is
the use of dynamic languages that support reflection and
flexible syntax. Prime examples are Groovy and Ruby.
However, the approach is not suitable for our purposes,
for several reasons. First, the implementation based on
reflection prevents static analysis and (automatic) IDE
support. Second, the syntax of extensions is limited to

the freedom given by the grammars of the respective
language.8 In addition, the languages are all not purely
functional and provide no support for explicit effects
tracking. We discarded this option early and clearly.

8.2 Other Base Languages

mbeddr C mbeddr[] is an implementation of C in
MPS. As we have shown in many publications, it is very
extensible; it uses the same extension mechanisms as
KernelF because it is built on MPS as well. However,
it is unsuitable as a general-purpose embeddable base
language for DSLs because (a) it implicitly relies on
many C abstractions such as the primitive data types
and some operators and (b) it has all the non-functional
abstractions available in C and (c) comes with its own
C-specific module system.

mbeddr C is implemented in a modular way, i.e., even
the core of C is split into several languages. One of them,
com.mbeddr.core.expressions, contains only the C
expressions and primitive types. In particular, it does
not have user-defined data types, pointers, statements,
or a module system. The idea was to make this a kind of
core expression language to be hosted in other DSL. In
practice, this works well as long as that DSL generates
to C. However, even in this core language subset, there
are many implicit assumptions about C, making it
unsuitable as a generic, embeddable expression language;
building an interpreter is also tough. It also misses many
useful features, such as higher-order functions.

When we started seeing the need for a core expression
language, we thought about generalizing the mbeddr
expressions; however, we decided against it and started
KernelF: the required changes would have been too great,
making mbeddr C too complicated. The use cases are
just too different.

MPS BaseLanguage MPS ships with a language
called BaseLanguage – it wears its purpose clearly on its
sleeve. It is fundamentally a slightly extended version
of Java (for example, it had higher order functions and
closures long before they were standardized as part of
Java 8). It also ships with a set of (modular) extensions
for meta programming, suppliying language constructs,
to, for example, create, navigate and query ASTs.

BaseLanguage has been used successfully – by us and
others – as the basis for DSLs. If those DSLs either
extend Java or at least generate to Java, BaseLanguage
is a great fit and the recommended way to go. Even
though it is not built in a modular way, MPS’ support
for restricting languages (using constraints) is powerful
enough to cut it down to a subset that is relevant in any
particular DSL.

8 Both of these points are clearly illustrated by a customer’s (not
very satisfying) attempt at building a whole range of business
DSLs with Groovy.

However, similar to mbeddr C, it suffers from its tight
connection to Java in terms of data types, operators and
assumptions about the context in which expressions are
used. The fact that it is not a purely functional language
and does not support effects tracking also makes it much
harder to analyze. It also has several features, such as
generics, that make it harder to extend. Finally, its long
evolution in MPS also means that it carries around a
lot of baggage; we decided that it is worth the effort to
build a new, clean base language.

Xbase/Xtend Xbase is a functional language that
ships with Xtext. Similar to KernelF, its purpose is to be
extended and embedded in the context of DSLs. Xtend
is a full programming language (with classes, modules
and effects) that embeds Xbase expressions. Similar to
Kotlin and Ceylon, its goal is to be a better, cleaned up
Java, while not being as sophisticated/complex as Scala.
For the purposes of being an embeddable base language,
Xtend’s scope is too big (like Java or C), so we limit our
discussion in this paragraph to Xbase.

In terms of its suitability as a base language, Xbase
suffers from several problems. The most obvious one for
our use case is that it is implemented in Xtext, and is
thus useless for MPS-based languages. Of course, this
does not say anything about its conceptual suitability as
a core language. However, there are also two siginificant
conceptual problems. First, because of the fact that
it is implemented in Xtext, its support for modular
extension or embedding are limited: one cannot use
several independently developed extensions in the same
program in a modular way. Consequently, no such
extensions are known to us, or documented in the
literature. Second, Xbase is very tightly coupled to Java:
it uses Java classes, generates to Java and even its IDE
support is realized by maintaining Java shadow models
in the background. While this is a great benefit for Java-
based languages (the goal of Xbase), it is a drawback if
that dependency is not desired.

In terms of its core abstractions, many of the ideas
of Xbase are similar: everything is an expression, func-
tional abstractions, no modules or statements (those are
supplied by Xtend).

8.3 Lisp-Style Languages

Lisp-style languages have a long tradition of being
extensible with new constructs and being used at the
core of other systems, such as Emacs. Racket takes this
to an extreme and allows significant syntactical flexibility
for Lisp itself. We decided against this style of languge
for several reasons:

First, while, generally, it is a matter of taste (and of
getting used to it) whether developes like or hate the
syntax, it is very clear that (our) end users do not like

it. Thus, adopting this syntactical style was out of the
question.

Second, existing Lisp implementations are parser-
based, and even the meta-programming facilities rely
on integrated parsing through macros. This limits the
syntactic freedom to textual notations in general, and
to the capabilities of the macro system more specifically.
We needed more flexibility, as shown throughout this
paper.

Third, we wanted language extensions to be first-class:
instead of defining them through meta programming, we
wanted the power of a language workbench. Of course
we could have implemented (a version of) Lisp im MPS
and then used MPS’ extension mechanisms to build first-
class extensions. However, then we would not make use
of Lisp’s inherent extensibility, while still getting the
end-user-unsuitable syntactic style – clearly not a good
tradeoff.

Finally, Lisp language extensions only extend the
language, not the IDE. However, for our use cases, the
IDE is just as important as the language itself, so any
language extension or embedding must also be known
to the IDE. Lisp does not support this (at least not out
of the box).

8.4 Embeddable Languages

Lua is a small, extensible and embeddable language. In
contrast to KernelF, it is not functional – it has effects
and statements. Also, the notion of extension relates to
extending the C-based runtime system, not the frontened
syntax. So, out of the box, Lua would not have been an
alternative to the development of KernelF.

However, we could have reimplemented Lua in MPS
and used MPS’ language engineering facilities for syn-
tactic extension. While possible, this would still mean
that we would use a procedural language as opposed
to a functional one, which was at odds with our design
goals.

On the plus side is Lua’s small and efficient runtime
system. While we did not perform any comparisons,
it is certainly faster than our MPS-integrated AST
interpreter. However, performance considerations are not
a core requirement for the IDE-integrated interpreter. If
fast execution is required, we would generate to Java or
C, or implement an optimized interpreter in C.

9. Conclusion

We have built KernelF as a base language. This means
that it must be extensible (so new, domain-specific lan-
guage constructs can be added), embeddable (so it can
be used as part of a variety of host languages) and things
users do not need must be removable or replaceable. Our
case studies show that we have resoundingly achieved
this goal. Since developing KernelF, we have used it

in all customer projects that required expressions or a
full-blown programming language.

Why were we successful? Two factors contribute. One
is that we have built KernelF after years and years of
building DSLs. So we had a pretty good understanding
of the features required for the language, and to make
it extensible and embeddable. In particular, the design
that enables extensiblity was based on our experience
with mbeddr C, which has proven to be extensible as
well. We also had a good understanding of what features
not to include, because they are typically contributed
by the hosting DSL. The second factor is MPS itself.
As we have analyzed in [?], MPS supports this kind
of modular language engineering extremely well; it has
literally been designed for this purpose. In conjunction
with the team’s experience, the leads to an extremely
powerful tool.

Future Work Can a general monad system be built so
that extension developers don’t have to care (much)? A
generic logging system for expectations and constraints,
PPC?

References
[1] J. S. Foster, M. Fähndrich, and A. Aiken. A theory of

type qualifiers. ACM SIGPLAN Notices, 34(5):192–203,
1999.

[2] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner.
Detecting format string vulnerabilities with type qualifiers.
In USENIX Security Symposium, pages 201–220, 2001.

	Introduction
	Design Goals

	KernelF Described
	Types and Literals
	Basic Operators
	Null Values and Option Types
	Error Handling using Attempt Types
	Functions and Extension Functions
	Function Types, Closures, Function References and Higher-Order Functions
	Collections
	Tuples
	Records and Path Expressions
	Enums
	Unit Tests and Constraints
	Type Tags

	Stateful KernelF
	Effects Tracking
	Boxes
	Native Mutable Data
	Transactions
	State Machines
	Clocks

	Tooling
	MPS-based IDE
	Interpreter
	Read-Eval-Print-Loop
	Debugger
	Test Execution
	Coverage Measurement
	Test Case Generation
	Mutation Testing

	Design Decisions
	Exploit Language Workbench Technology
	The Type System
	Definition of the Semantics
	Extension
	Embedding
	Miscellaneous
	A specific example: ``unpacking'' options

	Evolution over Time
	Number Types
	Transparent Options and Attempts
	Enums with data
	Records
	Range Qualifiers
	Enhanced Effects Tracking

	Case Studies
	The Utilities Extension
	Solver Integration
	Natural Language Function Calls
	Components Language
	Variability Models
	A DSL for Medical Applications

	Related Work
	Dynamic Languages
	Other Base Languages
	Lisp-Style Languages
	Embeddable Languages

	Conclusion

