
Towards Improving Software Security using
Language Engineering and mbeddr C

Markus Voelter
independent/itemis
voelter@acm.org

Zaur Molotnikov
fortiss

molotnikov@fortiss.org

Bernd Kolb
itemis AG

kolb@itemis.de

Abstract
This paper explores the use of domain-specific languages
for improving software security, which deals with develop-
ing software in a way that is not maliciously exploitable.
Specifically we demonstrate how modular extension of the C
programming language can help with technical and process-
related aspects of software security. Some of these examples
are already implemented, some are analytical extrapolations
from related work we have done in the past; a detailed em-
pirical evaluation has not yet been done. We rely on mbeddr,
an extensible version of C developed with the JetBrains MPS
language workbench. We conclude the paper with a discus-
sion of the potential drawbacks of the approach and how
these can be addressed in the future.

1. Introduction and Contribution
Software security refers to the security properties of a soft-
ware system’s implementation [1]. Various programming
techniques as well as process practices can help with build-
ing a secure implementation. Many of the software security
weaknesses originate from careless or wrong use of pro-
gramming languages [2]. C is widely used in embedded soft-
ware, cyber-physical systems and the Internet of Things as
well as network infrastructure. The software in these do-
mains is also often critical in the sense that security (and/or
safety) flaws can cost a lot of money, expose networks, dam-
age physical systems or endanger lives (examples of attack-
ing an aircraft can be found in [3]). Hence, addressing poten-
tial security problems in C-based software is of paramount
importance for these systems. We claim in this paper that it is
possible to improve over the general purpose languages (and
in particular, C) by transitioning to new, domain-specific
tools and languages. Language engineering [4], the notion
of building, extending and composing languages, makes de-
veloping such languages and tools feasible. Language engi-
neering relies on language workbenches [5, 6], which are a
class of tools that makes language implementation efficient.

Contribution This paper demonstrates security-enhancing
language extensions for C. Some are implemented, others
are analytical extrapolations of previous work. Based on

these extensions, we proceed to pointing out the directions
for future research.

2. Language Engineering, MPS and mbeddr
Language Engineering and MPS Language engineering
refers to building, extending and composing languages. The
field encompasses general-purpose programming languages
and domain-specific languages (DSLs) [4]. Language work-
benches [5, 6] are tools for efficiently designing and im-
plementing languages. JetBrains Meta Programming System
(MPS) [7] is an open-source language workbench that pro-
vides comprehensive support for many aspects of language
definition, including structure, syntax, type systems, trans-
formation and generation, debugging and integrated devel-
opment environment (IDE) support. MPS relies on a pro-
jectional editor which avoids parsing the concrete syntax
of a language to construct the abstract syntax tree (AST);
instead, editing gestures directly change the AST, and the
concrete syntax is rendered (“projected”) from the changing
AST. This means that MPS can work with a wide variety of
(unparsable) notations such as mathematical symbols, tables
and diagrams [8]. Since a projectional editor never encoun-
ters grammar ambiguities, they can support language com-
position [9]. Traditionally, projectional editors were hard to
use and were not adopted much in practice. MPS, in con-
trast, makes editing in a projectional editor as close to “nor-
mal text editing” as possible and also supports diff/merge on
the level of the projected concrete syntax; the study in [10]
shows that users are mostly agreeable with the editor after a
short while of getting used to it.

Embedded Software, C and mbeddr The benefits of
projectional editors relative to notational flexibility and lan-
guage composition have been explored in the context of em-
bedded software engineering in the mbeddr project [11].
It provides a user-extensible version of C and ships with
a set of predefined extension such as physical units, inter-
faces and components, state machines and unit testing. The
benefits of these extensions in terms of developer produc-
tivity, maintainability and robustness are discussed in [12].
mbeddr also supports product line variability, requirements
traces and documentation. Finally, mbeddr explores the syn-

ergies between language engineering and formal verification
by providing domain-specific verifications [13]. mbeddr is
an open-source project licensed under the Eclipse Public Li-
cense. It is currently being used in several commercial de-
velopment projects and forms the basis for a future controls
engineering product by Siemens PLM Software.

Modular Language Extension The extensions provided
by mbeddr are modular, in the sense that the base language
(C in our case) is extended with additional language con-
cepts without invasively changing the base language. We call
such extensions modular language extensions (MLEs); they
include concrete syntax, type system, execution semantics as
well as IDE support. They can also be seen as little embed-
ded DSLs. We rely on MLEs in this paper to add security-
relevant language abstractions to mbeddr. [4, 14] and [15]
provide details on building MLEs in MPS.

3. Language Engineering and Security
Developing secure software relies on techniques and pro-
cess. Techniques (Section 3.1) refers to the languages, ar-
chitectures and tools used to implement a software system.
Different choices may make it more or less easy to build
secure systems. C is a problematic language for secure sys-
tems because programs written in C are prone to low-level
mistakes that can be exploited maliciously. Its low abstrac-
tion level also makes it hard to analyze. Process (Section 3.2)
refers to the practices employed to build the system [16]: re-
views, education of the developers and a strong test and ver-
ification culture are ingredients of a process that can lead to
more secure software. We now explore the potential benefits
of language engineering, MPS and mbeddr for both aspects.

3.1 Techniques
In this subsection we describe how extensible languages
and language workbenches can be utilized to enhance soft-
ware security by, for example, adding additional markup and
checks to the source code, using higher level abstractions
that prevent users from getting low-level details wrong or by
changing the semantics of existing constructs in a way that
makes the binary more secure.

Code Markup and Checking Code markup refers to
annotations that are added to the code to express additional
semantics. Checks associated with these annotations verify
the semantics. One example is the support for physical units
in mbeddr. Types and literals can be annotated with units,
and the type system then checks for the correct use of units
in expressions and assignments:

mbeddr’s units do not directly focus on security, instead they
address correctness and robustness (the Mars Climate Or-

biter crashed in 1999 due to a unit mismatch [17]). How-
ever, a similar approach can be used for security. Consider a
system that deals with sensitive data. The data can exist in
encrypted or unencrypted forms (de and du). The software
system is correspondingly structured into a non-secure and
a secure part (Pn and Ps). For security, it is crucial that no
unencrypted data is in the non-secure part (du /∈ Pn) and
that data is encrypted as it moves from Ps to Pn. A set of
annotations on types, variables and modules similar to phys-
ical units can be used as the basis for data flow checks that
verify these properties.

Straightforward Language Extension MLEs extend ex-
isting languages with additional, first-class language con-
structs in a modular way; they include syntax, type sys-
tem, semantics and IDE support. An example for a security-
relevant MLE is the trysequentially statement (which
is part of the mbeddr tutorial). It can be used to address
the goto fail bug found in Apple SSL implementation in
2014 (https://gotofail.com/).
trysequentially {
validateStep1(data, ...);
validateStep2(data, ...);
validateStep3(data, ...);

} on fail (errorcode) {
handleFailedValidation(data, errorcode, ...);

}

trysequentially invokes a sequence of functions, each
returning an error code. If a function returns a non-zero value
(i.e., reports an error), the trysequentially branches to
the error handler. This is a higher-level version of the fol-
lowing C-level idiom:
if (validateStep1(data, ...) != 0) goto fail;
if (validateStep2(data, ...) != 0) goto fail;
if (validateStep3(data, ...) != 0) goto fail;
fail: handleFailedValidation(data, errorcode, ...);

Apple’s goto fail had a superfluous, unconditional goto
statement; this prevented the correct validation of SSL
certificates. Since the idiomatic C code is automatically
generated from the more intentional and less error-prone
trysequentially, fewer coding mistakes can happen,
thereby improving security. All of mbeddr’s existing MLEs
(for unit tests, physical units, interfaces and components and
state machines) represent direct language support for lower-
level C idioms, thereby improving robustness and security
by reducing the risk of mistakes in the lower level details.

We find another example to apply MLEs in Amazon’s s2n
TLS library (https://github.com/awslabs/s2n) They
use macros like the following one extensively:
#define GUARD(x) if ((x)<0) return -1

The problems here are typical for macros. For example,
the definition can be changed externally and it will not be
prevented by an IDE: GUARD(do_something) + 1; will
return 0 in the case of failure. Using a language extension
instead of a macro, an IDE can restrict the way the extension
is used and prevent such problems.

The second problem of this macro is typical for macros
that contain a return statement. Before returning from a
function one should deallocate all the resources allocated in
the function. However, the return statement in the macro
can lead to dangling resources. Using language engineering,
this problem can be solved in various ways. One could pre-
vent the use of return statements in macros, or one could
require to put resource deallocation code into a separate
block which is then generated to be executed with every re-
turn statement (similar semantics to smart pointers).

Adapting Semantics The semantics of existing language
are changed to make them more secure. Consider a sys-
tem that works with secret keys. Likely, the key is itself en-
crypted (as kenc), but to work with the key, it has to be avail-
able in the clear as kclr. For the software to be secure, it is
important that kclr is kept in memory only when absolutely
necessary. Consider the following code:

char* encryptData(char* k_enc, char* data) {
char k_clr[256];
decryptKey(k_enc, k_clr);
char* encryptedData = // encrypt with k_clr
return encryptedData;

}

At the end of this function, the k_clr local variable be-
comes invalid by moving the stack pointer, but the memory
allocated on the stack still contains the actual data and can
potentially be exploited. To avoid this, the semantics of C
should be changed in the following way: memory used by
local variables that leave their block should automatically be
zeroed. This can be achieved easily by a transformation that
inserts zeroing code for each local variable at the end of a
block. Optionally, these semantic changes can be combined
with code markup (discussed above). For example, instead
of performing the zeroing globally, it can be limited to func-
tions that are annotated as secure or to local variables that
are marked as secure. In embedded systems, this may be
important to avoid unacceptable performance overhead.

A related feature is the prevention of writing this variable
to disk as part of paging. Operating systems provide APIs to
mark memory areas so as to prevent them from being paged.
The code generator can call these APIs for all variables
marked as secure.

Exploiting the Generation Step Most language work-
benches are generative. For example, in mbeddr/MPS the
AST of a program is translated to C text for compilation.
MLEs are transformed to C in one or several steps. Beyond
adapting language semantics, code generation can also be
used for other security-related purposes.

A common attack vector are side-channel attacks [18]
which exploit non-functional properties of a system to
reverse-engineer details about the program’s implementa-
tion or about key material. A timing side-channel attack
exploits timing properties. To prevent this, the timing be-
havior of a system must not deterministically relate to the

operation of the system. To make this dependency harder to
observe, random instructions (essentially noise that does not
affect the program’s behavior) can be scattered throughout
the code. Because the final to-be-compiled source code is
generated, it is easy to automatically inject the noise with
one cross-cutting transformation, without mixing the side-
channel attack prevention concern with the business logic
of the software. Code markup can be used to select critical
areas where noise should be added.

An alternative way of decoupling execution time from
input is to ensure that the respective part of the program
always runs for the same time, for every possible valid input.
This requirement is expressed through naming conventions
in Amazon’s s2n library as shown below, and developers
ensure the requirement manually.

/* Returns 1 if a and b are equal, in constant time */
int s2n_constant_time_equals(string, string, len);

Encoding this information in the name prevents the IDE
from ensuring that the function actually runs in constant
time. Using MLEs, an annotation can mark functions as
constant time. Static analysis can ensure that every path
through the program has the same execution time. A less
sophisticated solution measures the elapsed time for any
particular execution and then busy-waits to extend the time
to the required constant time as necessary.

Another example of exploiting the generation step is the
introduction of additional runtime checks. For example, a
language extension can be defined that provides length-
aware arrays or strings, and generates length/buffer checking
code. Similarly, NULL-checks can be inserted before each
pointer access to avoid segmentation faults and the subse-
quent crash of the application.

Additional Constraints An MLE can also contain con-
straints that prevent the use of insecure language constructs
or library functions. For example, pointer arithmetics can be
prevented or limited, and the use of insecure functions (such
as strcpy) can be flagged as an error. Alternatively, the con-
straints can report as an error all uses of functions that are not
explicitly marked as a secure API.

Verification and MLE Software verification refers to prov-
ing specific properties of a program. In contrast to testing,
the program is not executed; instead, a verifier analyzes
the program, often performing the semantic equivalent of
an exhaustive search of possible execution paths. Verifying
security-relevant low-level C details (such as division by
zero, pointer or array access safety) is supported directly by
tools such as CBMC [19] or Java Pathfinder [20]. However,
verifying application-level properties is much harder. From
a user’s perspective, the challenge is the specification of the
expected properties (often done through code annotations
or label reachability checks), configuration of the verifier
(when configured wrongly it may not find existing prop-
erty violations) and the interpretation of the results (which

Figure 1. Running the verifier to find the Heartbleed prob-
lem in mbeddr C.

are often too low-level and detailed). In [13] we introduce
an approach called domain-specific C verification that ad-
dresses these usability challenges. It relies on the follow-
ing steps: (1) define MLEs that imply or explicitly specify
application-level semantics (2) generate the corresponding
low-level C code including verification-specific code anno-
tations or labels (3) automatically invoke the verifier (4)
lift the low-level results back to the application level. We
have used this approach to verify component contracts in
mbeddr, and in [13] we describe how to verify the functional
safety of a pacemaker implementation. An example that is
directly relevant to software security is given next, based
on the Heartbleed bug recently discovered in OpenSSL
(http://heartbleed.com/). In essence, the Heartbleed
bug is a problem with parsing a heartbeat packet in OpenSSL
TLS, which wrongly assumes the well-formedness of pack-
ets received from the network. Below we define a simplified
heartbeat message data type:

struct {
uint16 payload_length;
unsigned char payload[payload_length];

} HeartbeatMessage;

Unfortunately, this is not legal C: it is not possible to specify
the array length via a member of the same struct. Instead,
the struct must use a pointer to the actual data. OpenSSL’s
mistakes was trusting the payload_length value, reading
beyond the end of the buffer referred to by the pointer. Such
buffer overruns represent a serious security vulnerability.
This problem can be detected using verification. To enable
it, we create a message with a nondeterministically assigned
data buffer, meaning we instruct CBMC to assume all pos-
sible values for the variable. To achieve this, we use the
assign nondet MLE, specifically built for CBMC-based
verifications:

HeartbeatMessage prepareUntrustedMessage() {
HeartbeatMessage msg;
assign nondet msg;
return msg;

}

Fig. 1 shows the mbeddr user interface after running a
CBMC-based robustness analysis. The top-right table shows
2 of the 40+ checked properties, one of which failed. The
dereference failure happens in the selected line contain-
ing a memcpy call. The bottom-right part shows a trace
that leads to the error. The nondeterministic assignment

in prepareUntrustedMessage() results in 1 byte allo-
cated in the payload, and the length set to 25. The ef-
fort to implement this verification is low, assuming the
MLEs for CBMC-based verification are available; only the
prepareUntrustedMessage() and a call to the verified
dispatching function are required.

MLEs could also be used to avoid such problems in the
first place: a native message type could be defined that
enforces consistency between a declared size and the buffer.
Associated serialization and deserialization functions can be
generated and can enforce this consistency. Such a data type
recently been added to mbeddr.

Finally, another area where first-class extensions can be
combined with verification is the specification of communi-
cation protocols, which are a major vector for attacks [21,
22]. If they are expressed as tables, state machines or se-
quence diagrams, this helps users to visually detect invalid
states. In addition, model checking techniques, as discussed
above, have also been used successfully to verify the correct-
ness of communication protocols [23, 24].

3.2 Process
In this subsection we discuss how better abstraction, domain-
specific notations and review support enable a more secure
development process. The stakeholders for the process as-
pects below are mainly the developers themselves; only for
the audits discussed at the end of this subsection do we ex-
pect non-developers to become involved.

Better Abstraction, Simplified Review Good abstrac-
tions can simplify the code review process. For a review
to be productive, it is important that the code can be ex-
plained and understood easily. The more directly the code
represents relevant domain abstractions, the more produc-
tive the review process becomes. For example, reviewing the
trysequentially extension can be more effective than the
review on the level the corresponding C code1.

Better Notation, Simplified Review Beyond just suitable
abstractions, suitable notations are also essential because
they can more directly resemble established notations in
the domain, or because a particular notation reveal certain
problems in the code. Consider mbeddr’s state machines.
While the abstraction “state machine” is already a significant
improvement over its encoding as switch statements, the
textual notation can still be improved to make review even
easier. Fig. 2 shows a state machine represented as text and
as a table; a graphical notation is also available in mbeddr.
Another example for an easily-readable notation is given in
Fig. 3.

Tracing Code reviews are done to ensure the correctness of
the code (verification), but also to establish the code’s corre-

1 This assumes that all involved parties know the semantics of the
trysequentially extension. However, this is a reasonable assumption
in a team that develops software together.

Figure 2. A state machine edited as text and as a table.

spondence to the original requirements (validation). For this
to be effective, the relationship between a piece of code and
its associated requirements must be clear. Requirement trac-
ing [25] addresses this problem by establishing explicit links
between (parts of) implementation artifacts and particular re-
quirements. In mbeddr, a requirements trace can be attached
to any program node [26] (supporting tracing on any level
of granularity) expressed in any language. Fig. 4 shows an
example. If the code review should be driven by the require-
ments, navigation from a requirement to the traced program
nodes is possible via MPS’ Find Usages support as well as
dedicated trace reports (see below).

Expressing Security Requirements mbeddr ships with a
requirements language [26]. Each requirement is specified
with an ID, a short summary, tags, and a prose description.
However, just like mbeddr C, the requirements language
is extensible. For example, a classification scheme can be
added that classifies requirements according to their security
impact. Alternatively, requirements themselves can be traced
to a set of overall security guidelines. Assessments in mbeddr
are customizable reports over a model. They can be used to
verify that every section of code is traced to a requirement
(code for which there is no requirement is a potential attack

Figure 3. Mathematical symbols used in C code simplify
review of algorithmic code.

Figure 4. The green-shaded labels are requirements traces.
They can be attached to any program node, here they are
attached to C constants and a state machine exit action.

vector), or that every security requirement has at least one
trace. An example of an assessment is shown in Fig. 6.

Code Review and Security Audit mbeddr supports track-
ing the review state of code. This can be done at a customiz-
able granularity, and for code expressed in any language.
Code starts out as not reviewed. It can then be marked as
ready for review (yellow; see Fig. 5). Once reviewed, the
state changes to reviewed (green; the color scheme is based
on [27]). Upon the change to yellow or green, a hash of the
code structure is created and stored with the code itself (in
an annotation that is optionally visible to the user). An as-
sessment can be used to get an overview of the review state
of the different parts of a system (an example is shown in
Fig. 6). When the assessment is updated, the hashes are re-
calculated to determine which parts have changed and must
be reviewed again. Code that has been modified since the
last review is marked as raw (red).

This facility can be used for regular, team-internal code
reviews that aim at detecting bad practices, potential for
reuse, convoluted algorithms or bad naming. However, the
same approach can also be used for security audits. Com-
pared to code reviews, these are typically performed by dif-
ferent people and have a different goal: finding security vul-
nerabilities. They often go deeper, and should ideally be per-
formed after every change to the code base, and only on
the parts that changed (plus the locations affected by this
change, which can be found through data flow and other
analyses). The facilities discussed in the above paragraph
can detect such changed pieces of code. To ensure that the
code has been audited by the external team, the hash used
for detecting the changes can be signed with the private key
of the auditors. This way it can be cryptographically ensured

Figure 5. A piece of code can be annotated with a review
state. The colors have the following meaning: yellow is
ready for review, green is reviewed, red is recently created,
raw. The review state is persistent and survives diff/merge
operations.

Figure 6. An mbeddr assessment is used to collect the in-
formation about the review state of the various reviewable
parts of the system.

that the review has been performed by those authorized to
do the review.

4. Discussion
mbeddr’s approach to improving security relies on domain-
specific extensions to C programs. We have demonstrated
the potential advantages and opportunities of this approach
in the previous section. In this section we critically discuss
the approach.

Evaluating the MLEs Whether MLEs actually improve se-
curity can only be shown by experience, systematic attempts
at exploiting the systems, or systematic code review. None of
this has been done. In this paragraph we make two arguments
why MLEs are a promising direction nonetheless. First, the
experience gathered with mbeddr’s extensions have shown
to improve modularity, testability and robustness of embed-
ded software [12, 14]. A completely verified pacemaker im-
plementation is discussed in [13]. We argue that improved
robustness is an important building block of software secu-
rity, since robust software has a reduced attack surface.

Second, we argue that the MLEs make C generally a bet-
ter language according to Green’s Cognitive Dimensions of
Notations [28], a set of established language evaluation cri-
teria2. The table in Fig. 7 contains the dimensions most rel-
evant to this paper (the other dimensions are largely unaf-
fected by the MLEs). Incrementally adding MLEs to C is a
direct implementation of the Abstraction Gradient: the ab-
straction level can be increased incrementally if and when it
makes sense. The user is not forced to encode everything in

2 Even though it is called Cognitive Dimensions of Notations, some of the
dimensions actually apply to the language and its abstractions, not just the
notation (concrete syntax).

Abstraction Gradient What are the minimum and maximum
levels of abstraction exposed by
the notation? Encapsulation?

Closeness of Mapping How closely does the notation
correspond to the problem world?

Diffuseness/Terseness How many symbols or how much space
does the notation require to produce
a certain result or express a meaning?

Error-proneness To what extent does the notation
influence the likelihood of mistakes?

Figure 7. Relevant Cognitive Dimensions of Notations.

either a (too) low- or a (too) high-level language. A suitable
MLE can be used (or developed) for each particular case.
Adding domain-specific abstractions and notations increases
the Closeness of Mapping between the program and the
domain. The traces also help bring the prose requirements
closer to the implementation code. The additional abstrac-
tions and notations are also a way of adjusting the Diffuse-
ness/terseness of a language (or a specific program). Gener-
ally, a more terse program is better, since it exhibits lower
complexity [29], assuming the language constructs used to
achieve the terseness are known to all involved parties. Fi-
nally, as we have discussed above, using the right abstrac-
tions reduces the Error-proneness of programs because pro-
grammers do not have to deal with low-level details irrele-
vant for the problem at hand. These are all the reasons why
we believe that MLEs have a good potential in secure soft-
ware development.

Learning the MLEs In order to use the MLEs effectively,
users have to learn them. This cannot be avoided. However,
as a consequence of the ubiquitous IDE support available
in MPS, learning the MLEs is relatively simple. We also
feel that learning the MLEs is a worthwhile price to pay
for the security benefits. As discussed in [30], the usability
and learnability of the projectional editor are appropriate for
most end users. Of course, to make this practical, training
material on the MLEs and the concepts behind them must be
provided.

Developing the MLEs The effort of developing the
MLEs obviously depends on the level of sophistication of
the MLE, but it is generally moderate. For example, the
trysequentially MLE (including syntax, type system,
transformation and IDE support) can be developed in one
hour by an experienced MPS language engineer. Develop-
ing the tabular notation for an existing state machine lan-
guage takes less than a day. The reason for the low efforts is
that language workbenches such as MPS are optimized for
rapid development of languages (this is discussed in [14]).
The modular nature of the MLEs makes the overall com-
plexity manageable. Modularity also allows growing the
language [31] over time, developing extensions only as the
need arises, avoiding costly up-front investments into MLEs
that might not in fact be needed.

Trusting the MLEs When we use higher-level extensions
of a language in order to abstract over “irrelevant” details
we implicitly trust the extension in two ways. First, we trust
that we understand the MLE well enough for us to use it
correctly. A well-defined extension should be relatively ob-
vious to the users, so the risk of “using it wrong” is low (but
not zero). Second, we trust the transformation that maps the
MLE to its equivalent base language implementation. This
is an example of tool qualification [32] in the sense through
some mechanism we have to build trust that the semantics
of the MLE is correct. In practice, this is done via (a suffi-

ciently large) set of test cases as well as based on experience
in practice (“proven in use” in ISO 26262). Although this
may be sufficient in some use cases, others require the cor-
rectness of the transformation to be proven by analyzing the
transformations. Eelco Visser and his group are working on
using more formal, more analyzable languages for defining
languages [33]. A related issue is known as feature interac-
tion [34]: currently there is no way of predicting what hap-
pens if several independent MLEs are combined in the same
program. Structurally and syntactically it is never a problem
(thanks to projectional editing). But semantic interactions
cannot be predicted because there is no formal description
of the semantics. However, in practice this problem has not
occurred with the 50+ C extensions developed in mbeddr.

In addition, the implementation of MLEs itself now be-
comes a critical part of the secure software. If an attacker
or a careless programmer changes the language or the trans-
formations he could break the security of the software im-
plemented in the language without changing the software
code itself. Thus MLEs should potentially be a part of the
software project. They should be a subject for audits and re-
views, changes to them should be tracked.

Working with Legacy Code Existing C code has not
been written using the facilities discussed in this paper, but
it may make sense to add the extensions retroactively. It
is possible to import existing code into mbeddr. Once the
code is in mbeddr, it can be refactored towards the MLEs.
Our future work includes an investigation into whether such
refactorings can be (partially) automated.

Tool Lock-in mbeddr, as well as the MLEs developed and
suggested for improving software security require the use
of the MPS language workbench (for developing the MLEs
and also for writing code). At this point there is no way this
can be avoided; there are no interoperability standards for
language workbenches. However, both MPS and mbeddr are
open-source software.

Other Languages In this paper we focus on C because a
lot of secure software (in embedded and cyber-physical sys-
tems, the Internet of Things, as well as in operating systems
and web servers) is written in C. However, the approach can
also be used with other languages and tools. For example,
MPS ships with an extensible version of Java; similar MLEs
can be developed.

Other Tools The approach can also be used with other lan-
guage workbenches: Spoofax [35] and Rascal [36] support
some of the same language extension facilities as MPS (they
are not projectional editors and hence are not as flexible re-
garding the notations).

5. Related Work
Modular C extensions have been developed for mbeddr [37]
and in Cox [38] (without IDE support in the latter). Simi-

larly, language extensions for improving security are an es-
tablished idea [39], and so are dedicated DSLs for speci-
fying aspects of software security [40]. Using static analy-
ses to verify security-relevant properties of C has also been
done before [41]. What our contribution adds is the modular
language and IDE extensibility for security-relevant exten-
sions, the use of integrated non-textual notations, as well as
the combination of language extension and static analysis.

6. Summary
We have shown how modular language extension, in combi-
nation with the infrastructure provided by mbeddr and MPS,
can be used to improve the security of embedded software.
While empirical evaluation is still pending, we have argued
why we consider the approach promising. Future work in-
cludes the development of specific security-relevant MLEs,
as well as their systematic evaluation. We are convinced that
MPS and mbeddr are useful platforms for research on im-
proving software security through language engineering and
we encourage other research groups to experiment with it.

References
[1] G. McGraw, Software Security: Building Security In.

Addison-Wesley, 2006.

[2] R. C. Seacord, Secure Coding in C and C++. Pearson Ed.,
2005.

[3] H. Teso, “Aircraft hacking,” in HITB Security Conference,
Amsterdam, The Netherlands, 2013.

[4] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander,
L. Kats, E. Visser, and G. Wachsmuth, DSL Engineering.
dslbook.org, 2013.

[5] M. Fowler, “Language Workbenches: The Killer-App for Do-
main Specific Languages?” 2005.

[6] S. Erdweg, T. Storm, M. Völter et al., “The state of the art in
language workbenches,” in Software Language Engineering,
ser. LNCS, M. Erwig, R. Paige, and E. Wyk, Eds. Springer,
2013, vol. 8225.

[7] “JetBrains Meta Programming System,”
http://www.jetbrains.com/mps/, accessed 14/9/2015.

[8] M. Voelter and S. Lisson, “Supporting diverse notations in
mps’ projectional editor,” GEMOC Workshop 2014, p. 7,
2014.

[9] M. Voelter, “Language and IDE Development, Modulariza-
tion and Composition with MPS,” in GTTSE 2011, ser. LNCS.
Springer, 2011.

[10] M. Voelter, J. Siegmund, T. Berger, and B. Kolb, “Towards
user-friendly projectional editors,” in Software Language En-
gineering. Springer, 2014, pp. 41–61.

[11] M. Voelter, D. Ratiu, B. Kolb, and B. Schaetz, “mbeddr:
instantiating a language workbench in the embedded software
domain,” Automated Software Engineering, vol. 20, no. 3, pp.
1–52, 2013.

[12] M. Voelter, “Preliminary experience of using mbeddr,” in 10th
Dagstuhl Workshop on Model-based Development of Embed-
ded Systems, 2014, p. 10.

[13] Z. Molotnikov, M. Voelter, and D. Ratiu, “Automated
Domain-Specific C Verification with mbeddr,” in 29th Intl.
Conf. on Automated Software Engineering (ASE 2014), 2014,
pp. 539–550.

[14] M. Voelter, “Generic tools, specific languages,” dissertation,
TU Delft, 2014.

[15] F. Campagne, The MPS Language Workbench. CreateSpace,
2014.

[16] J. Gregoire, K. Buyens, B. D. Win, R. Scandariato, and
W. Joosen, “On the secure software development process:
Clasp and sdl compared,” in Proc. of the 3rd Intl. Workshop on
Software Engineering for Secure Systems. IEEE CS, 2007.

[17] M. C. O. M. I. Board, Mars Climate Orbiter Mishap Inves-
tigation Board: Phase I Report. Jet Propulsion Laboratory,
1999.

[18] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side chan-
nel cryptanalysis of product ciphers,” in Computer Security-
ESORICS 98. Springer, 1998, pp. 97–110.

[19] E. Clarke, D. Kroening, and F. Lerda, “ A Tool for Checking
ANSI-C Programs ,” in Tools and Algorithms for the Con-
struction and Analysis of Systems, ser. Lecture Notes in Com-
puter Science, vol. 2988. Springer, 2004, pp. 168–176.

[20] K. Havelund and T. Pressburger, “Model Checking JAVA Pro-
grams using JAVA PathFinder,” International Journal on Soft-
ware Tools for Technology Transfer, vol. 2, no. 4, pp. 366–381,
2000.

[21] D. Wagner, B. Schneier et al., “Analysis of the ssl 3.0 proto-
col,” in The Second USENIX Workshop on Electronic Com-
merce Proceedings, 1996, pp. 29–40.

[22] D. Geneiatakis, T. Dagiuklas, G. Kambourakis, C. Lambri-
noudakis, S. Gritzalis, S. Ehlert, D. Sisalem et al., “Survey of
security vulnerabilities in session initiation protocol.” IEEE
Communications Surveys and Tutorials, vol. 8, no. 1-4, pp.
68–81, 2006.

[23] M. Kwiatkowska, G. Norman, and J. Sproston, Probabilistic
model checking of the IEEE 802.11 wireless local area net-
work protocol. Springer, 2002.

[24] M. Musuvathi, D. R. Engler et al., “Model checking large net-
work protocol implementations.” in NSDI, vol. 4. Citeseer,
2004.

[25] M. Jarke, “Requirements tracing,” Commun. ACM, vol. 41,
no. 12, pp. 32–36, Dec. 1998. [Online]. Available:
http://doi.acm.org/10.1145/290133.290145

[26] M. Voelter, D. Ratiu, and F. Tomassetti, “Requirements as
first-class citizens: Integrating requirements closely with im-
plementation artifacts,” in ACESMB@MoDELS, 2013.

[27] F. Deissenboeck, M. Pizka, and T. Seifert, “Tool support for
continuous quality assessment,” in 13th International Work-
shop on Software Technology and Engineering Practice, 2005,
pp. 127–136.

[28] T. R. Green, “Cognitive dimensions of notations,” People and
computers V, pp. 443–460, 1989.

[29] J. Graylin, J. E. Hale, R. K. Smith, H. David, N. A. Kraft,
W. Charles et al., “Cyclomatic complexity and lines of code:
empirical evidence of a stable linear relationship,” Journal of
Software Engineering and Applications, vol. 2, no. 03, p. 137,
2009.

[30] M. Voelter, J. Siegmund, T. Berger, and B. Kolb, “Towards
user-friendly projectional editors,” in 7th International Con-
ference on Software Language Engineering (SLE), 2014.

[31] G. L. Steele, “Growing a language,” Higher-Order and Sym-
bolic Computation, vol. 12, no. 3, pp. 221–236, 1999.

[32] M. Conrad, G. Sandmann, and P. Munier, “Software tool qual-
ification according to ISO 26262,” SAE, Tech. Rep., 2011.

[33] E. Visser, G. Wachsmuth, A. Tolmach, P. Neron, V. Vergu,
A. Passalaqua, and G. Konat, “A language designer’s work-
bench. a one-stop-shop for implementation and verification of
language designs,” in Proceedings of SPLASH 2014, Onward,
2014.

[34] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec,
“Feature interaction: a critical review and considered fore-
cast,” Computer Networks, vol. 41, no. 1, pp. 115–141, 2003.

[35] L. Kats and E. Visser, “The Spoofax language workbench:
rules for declarative specification of languages and IDEs,” in
ACM Sigplan Notices, vol. 45, no. 10. ACM, 2010, pp. 444–
463.

[36] P. Klint, T. Van Der Storm, and J. Vinju, “EASY Meta-
programming with Rascal,” in Generative and Transforma-
tional Techniques in Software Engineering III. Springer,
2011, pp. 222–289.

[37] M. Voelter, D. Ratiu, B. Kolb, and B. Schätz, “mbeddr: instan-
tiating a language workbench in the embedded software do-
main,” Autom. Softw. Eng., vol. 20, no. 3, pp. 339–390, 2013.

[38] R. Cox, T. Bergan, A. T. Clements, M. F. Kaashoek, and
E. Kohler, “Xoc, an extension-oriented compiler for systems
programming,” in ASPLOS 2008, 2008.

[39] K. Ashcraft and D. Engler, “Using programmer-written com-
piler extensions to catch security holes,” in Security and Pri-
vacy, 2002. Proceedings. 2002 IEEE Symposium on, 2002, pp.
143–159.

[40] J. DeTreville, “Binder, a logic-based security language,” in
Security and Privacy, 2002. Proceedings. 2002 IEEE Sympo-
sium on, 2002.

[41] M. Aizatulin, F. Dupressoir, A. D. Gordon, and J. Jürjens,
“Verifying cryptographic code in C: Some experience and
the csec challenge,” in Formal Aspects of Security and Trust.
Springer, 2012, pp. 1–20.

