
OOPSLA 2000 Workshop:
Mining Pedagogical Patterns

Submission by Markus Voelter
voelter@acm.org

ABSTRACT

This paper is a submission to the OOPSLA 2000 workshop "Mining Pedagogical
Patterns". It briefly describes some of the problems of the current state of the
PPP and tries to give some proposals as to how to improve the situation. In
particular, it describes an alternative form for pedagogical patterns, it tries to
formalize a schema for categorization of the patterns and the relationships
among them, and it defines an XML based notation for the patterns.

Introduction
For the reader of the PPP, the PPP has a very non-uniform appearance. This is because
of the following reasons:

� The Pedagogical Pattern Project currently consists of a collection of so-called
proto-patterns. These patterns have different levels of maturity. Some have been
workshoped on a PLoP conference, some haven't.

� The patterns have different scope. Some are of a more general nature, some are
very specific. There is no way for the reader to distinguish the different kinds of
patterns.

� The patterns are not related to each other, i.e. they do not form a pattern
language. In addition, it is very hard to find a pattern for a specific problem.

Proposed Solutions
One way to resolve those problems is the one that is addressed during this workshop:
The proto-patterns are read by the workshop participants, with the goal to find
commonalities and basic principles in the patterns, a kind of refactoring process.
However, in the long run, this is not enough. The following additional steps should be
considered:

� It is necessary to create a homogeneous look-and-feel for the patterns. The
selected pattern form should be very shallow to allow the use of the form for as
many patterns as possible.

� The patterns should be categorized regarding several different aspects to
facilitate search and retrieval functions.

� The patterns should be related to each other to create a kind of pattern language
that can dynamically grow when new patterns are added.

� The patterns should be stored in a way that makes automatic processing
possible.

mailto:voelter@acm.org

The following sections propose some solutions for these aspects.

Aspects of the Solution

Homogeneous Look and Feel – Pattern Form
To make the pattern form usable for as many authors as possible, the form needs to be
very non-restrictive. The current form consists of more than ten sections. For many
pedagogical patterns, this is too strict. In contrast, a couple of other forms have been
used by pedagogical pattern authors. For example:

� Name – Problem – Forces – Solution – Dicussion in Learning to Teach and
Learning to Learn by Jutta Eckstein, or

� Name - Problem/Issue – Audience/Context – Forces – Solution – Dicussion –
Resources – Related Patterns – Example Instances – Contraindications –
References in Fourteen Pedagogical Patterns by Joe Bergin

� Name – Problem - Solution outline, consequences, drawbacks - Examples and
additional implementation information in SEMINARS by Astrid Fricke and
Markus Voelter

As can be seen, these forms are different from the one used in the PPP. To find a
common form, the following guidelines should be considered:

� The form should provide a rough skeleton and should not force the pattern
author to introduce artificial sections that do not come naturally.

� The general form should allow more specific forms through the introduction of
subsections.

� The form should be suitable for the different kinds of patterns as discussed
below.

Therefore, the following pattern form is proposed as a basis for further discussion
(sections in parentheses are optional subheadings):

Name - Author (Version, Release date, etc.) - Context (Audience, Indications,
Contraindications) - Problem (Forces) - Solution (Discussion, Resulting Context,
Consequences, Drawbacks, Necessary Resources) – Examples

This form gives the author sufficient freedom and can still be detailed as far as
necessary.

Pattern Categorization
To allow the reader a more sophisticated search and retrieval capability, the patterns
need to be categorized. It is especially important to allow the categorization in different
dimensions, as different users might have different categorization requirements.

As a first proposal, the patterns could be categorized along the following dimensions:

Time When, in the context of a seminar or a lecture, can the pattern be employed.
Possible values could be:

� during seminar preparation
� just before the seminar starts
� when the seminar runs
� after the seminar

Aspect Which aspect of the overall problem space does the pattern address? Possible
values could be:

� Social: The pattern tries to enhance the social relationships in the group
� Environment: The pattern tries to enhance the physical environment in

which the training/seminar/etc. is run.
� Pedagogical: The pattern deals with the pedagogical aspect, i.e. how to

teach something.
� Technical: The pattern gives hints on what to teach.
� Organizational: How to organize the schedule/etc. of a pattern

Scope Defines how broadly the pattern can be applied, some possible values could be:

� general: The pattern can be used in every setting
� academic: The patter can be used in an academic setting only.
� domain-specific: The pattern applies to a specific domain only.

Domain Defines the domain to which the pattern applies.

Of course, there are interrelation between these categories, e.g. if a pattern only applies
to a specific domain (scope), then this domain must be specified in the domain
category.

For some categories, multiple values are possible.

Pattern relationships
To form a systematic pattern catalog – or even a pattern language – there must be a
way to define relations among patterns. These relations should be defined in a
standard way, together with a descriptive comment, to allow automatic processing.
Among others, such relations could be the following:

Generalization /
Specialization

One pattern can generalize/specialize another pattern.
This can be reflected by relaxing/constricting the pattern
categorization. For example, if the scope of a certain
pattern only applies to a specific domain, then a
generalized pattern could relax this scope to be general.

Requires as
predecessor/has as
successor

A pattern can require another pattern to define the
context for the pattern, or the pattern can define the
context for another one.

Can be supported by Another pattern could help in implementing the current
pattern

Can be implemented by Other patterns can be used to implement the current
pattern

Alternative A pattern can be a an alternative to another pattern.

Pattern Storage and retrieval – Technical implementation

STRUCTURE

The following paragraphs show a pattern from the SEMINARS pattern language. The
pattern is printed in its current (MS Word97) format, together with relations and
categorizations annotated:

Introduction Session *
To make PERSONAL COMMUNICATION possible during the rest of the seminar, the
participants need to learn something about each other at the beginning. Usually, the
participants are a little bit shy and you should start this process. In addition, you might
want to learn something about the participants, to ADAPT TO THE PARTICIPANTS

BACKGROUND or to LET THEM DECIDE.

❊❊❊

Therefore, take the time at the beginning of the seminar to let everybody introduce him-
/herself to the others. The participants should be given a chance to state their expectations
towards the seminar and tell the others about their professional background, their company,
et cetera. This session should be held in an informal context, which can be achieved by using
a suitable TABLE ARRANGEMENT. It is also possible to use GAMES at the beginning of such a
session. To make a start, you should begin the session by introducing yourself. Be sure to
introduce yourself, not the seminar.

There are different ways how this introduction session can be held. The most common form is that
everybody introduces himself to the others, including his name, employer, his field of activity, et
cetera. In general, the contents depend heavily on the clientele (imaging the difference between
programmers and pedagogists). It is a good idea to let the participants decide what they want to
include in their introduction. An alternative form is to let one person interview another person and
introduce this other person to the group. The introduction session usually ends with everybody
attaching a NAMEPLATE to himself.

Categorization
Time: During a Seminar
Aspect: Social, Organizational
Scope: *

Relations
Precondition for: Personal Comm: Personal communication can only take place if there is
room for it.
Precondition for: Adapt to Participants Background:
Precondition for: Let them Decide:
Can be implemented by: Games:
Can be supported by: Table Arrangement:
Can be supported by: Nameplate:

By providing a suitable hypertext representation for this pattern, together with a
powerful search engine, a kind of dynamic, extensible pattern language can be
implemented.

NOTATION IN XML
The requirements outlined above lend themselves to be implemented using XML. A
common DTD for the patterns can be defined. By using XSL, different renderings of the
patterns can be defined. A transformation to HTML is possible, there are also tools to
create PDF for printing. The following is the above pattern as an XML document:

<pattern id="IntroductionSection">

<title>Introduction section</title>

<administrative>

<author email="voelter@acm.org">Markus Voelter</author>

<author email="astrid.fricke@gmx.de">Astrid Fricke</author>

<version>1.2</version>

<date>2000-08-16</date>

</administrative>

<categorization>

<category name="time" value="during a seminar"/>

<category name="aspect" value="social"/>

<category name="aspect" value="organizational"/>

<category name="scope" value="*"/>

</categorization>

<relations>

<relation type="precondition for" destination="PersonalCommunication">

Personal communication can only take place if there is room for it.

</relation>

<relation type="precondition for"

destination="AdaptToParticipantsBackgound">

</relation>

<relation type="precondition for" destination="LetThemDecide">

</relation>

<relation type="Can be implemented by" destination="Games">

</relation>

<relation type="Can be supported by" destination="Table Arrangement">

</relation>

<relation type="Can be supported by" destination="Nameplate">

</relation>

</relations>

<content>

<context>

</context>

<problem>

To make PERSONAL COMMUNICATION possible during the rest of the seminar,

the participants need to learn something about each other at the

beginning. Usually, the participants are a little bit shy and you

should start this process. In addition, you might want to learn

something about the participants, to ADAPT TO THE PARTICIPANTS

BACKGROUND or to LET THEM DECIDE.

</problem>

<solution>

Therefore, take the time at the beginning of the seminar to let everybody

introduce him-/herself to the others. The participants should be given a

chance to state their expectations towards the seminar and tell the

others about their professional background, their company, et cetera.

This session should be held in an informal context, which can be achieved

by using a suitable TABLE ARRANGEMENT. It is also possible to use GAMES

at the beginning of such a session. To make a start, you should begin the

session by introducing yourself. Be sure to introduce yourself, not the

seminar.

</solution>

<examples>

There are different ways how this introduction session can be held.

The most common form is that everybody introduces himself to the others,

including his name, employer, his field of activity, et cetera. In

general, the contents depend heavily on the clientele (imaging the

difference between programmers and pedagogists). It is a good idea

to let the participants decide what they want to include in their

introduction. An alternative form is to let one person interview

another person and introduce this other person to the group. The

introduction session usually ends with everybody attaching a

NAMEPLATE to himself.

</example>

</content>

</pattern>

A possible XML DTD could look like the following.

<!ELEMENT pattern (title, administrative, categorization, relations, content)>

<!ATTLIST pattern

id CDATA #REQUIRED

>

<!ELEMENT title (#PCDATA)>

<!ELEMENT administrative (author+, version?, date?)>

<!ELEMENT author (#PCDATA)>

<!ATTLIST author

email CDATA #REQUIRED

>

<!ELEMENT version (#PCDATA)>

<!ELEMENT date (#PCDATA)>

<!ELEMENT categorization (category*)>

<!ATTLIST category

name CDATA #REQUIRED

value CDATA #REQUIRED

>

<!ELEMENT relations (relation*)>

<!ELEMENT relation (#PCDATA)>

<!ATTLIST relation

type CDATA #REQUIRED

destination CDATA #REQUIRED

>

<!ELEMENT content (context, problem, solution, examples)>

<!ELEMENT context (audience?, indications?, contraindications?)>

<!ELEMENT problem (forces?)>

<!ELEMENT solution (discussion?, resultingContext?, consequences?, drawbacks?,

necessaryResources?)>

<!ELEMENT examples (#PCDATA)>

SEARCH AND RETRIEVAL

To make a pedagogical pattern repository really useful, there must be different ways
on how to search and browse the patterns.

� The simplest form is full text searching, i.e. there is no guidance for the user
about which values can be searched for.

� Another possibility to implement the search algorithm is to allow the user to
specify (one or more) values for some of the pattern categories, e.g. the user
could search for IT-specific patterns, that address the pedagogical aspect during
a seminar.

� When the user has found something, he should be able to relax/constrict some
of the categories, and he should be able to follow the pattern's relations to
discover other, related patterns.

Doing this, a "dynamic pattern language" can be created, which can easily cope with
relations among patterns, with domain-specific patterns as well as general patterns,
etc.

	Introduction
	Proposed Solutions

	Aspects of the Solution
	Homogeneous Look and Feel – Pattern Form
	Pattern Categorization
	Pattern relationships
	Pattern Storage and retrieval – Technical implementation
	Structure
	Introduction Session *

	Notation in XML
	Search and Retrieval

