
Programming
vs.

That Thing Subject Matter Experts Do

Markus Voelter

independent/itemis, Oetztaler Strasse 38, 70327 Stuttgart, Germany
voelter@acm.org

Abstract. Allowing subject matter experts to directly contribute their
domain knowledge and expertise to software through DSLs and automa-
tion is a promising way to increase overall software development efficiency
and the quality of the product. However, there are doubts of whether this
will force subject matter experts to become programmers. In this paper
I answer this question with “no”. But at the same time, subject matter
experts have to learn how to communicate clearly and unambiguously to
a computer, and this requires some aspects of what is traditionally called
programming. The main part of this paper discusses what these aspects
are and why learning these does not make people programmers.

Keywords: Domain Specific Language · End-user Programming · Lan-
guage Engineering.

1 The role of subject matter experts

Subject matter experts, or SMEs, own the knowledge and expertise that is the
backbone of software and the foundation of digitalization. But too often this rich
expertise is not captured in a structured way and gets lost when translating it
for software engineers (SEs) when they implement it. With the rate of change
increasing, time-to-market shortening and product variability blooming, this
indirect approach of putting knowledge into software is increasingly untenable: it
causes delays, quality problems and frustration for everyone involved. A better
approach is to empower subject matter experts to capture, understand, and
reason about data, structures, rules, behaviors and other forms of knowledge and
expertise in a precise and unambiguous form by providing them with tailored
software languages (DSLs) and tools that allow them to directly edit, validate,
simulate and test that knowledge. The models created this way are then exe-
cuted either by interpretation or automatic transformed into program code. The
software engineers focus their activities on building these languages, tools and
transformations, plus robust execution platforms for the generated code. Fig. 1
shows the overall process.

2 M. Voelter

2 Can SMEs use DSLs?

This paper is not about justifying the approach from a technical or economical
perspective. I refer the reader to the Subject Matter First manifesto1 Instead
I want to focus on whether the SMEs are able to change from their typically
imprecise, non-formal approach of specifying requirements using Word, Excel,
User Stories or IBM Doors to this DSL-based approach.

Based on my experience over the years [10] my answer to this question is a
clear yes, at least for the majority of subject matter experts I have worked with.
But a key question is: to what extent do the subject matter experts who use
DSLs have to become programmers? Do they have the skills to be programmers
(hint: most do not), and do they want to become programmers (hint: most do
not). But we still expect them to use “languages” and IDE-like tools. So:

Which parts of programming do they have to learn? How is SME’ing
different from programming, and where does it overlap?

I answer this question in Sec. 5. To set the stage we briefly discuss the domains
in which the approach works (Sec. 3) and how languages and applications are
typically architected in such scenarios (Sec. 4). We conclude the paper with a
wrap up in Sec. 7.

Fig. 1. The process from the SME’s brain into software, based on tools and platforms
developed by software engineers.

1 http://subjectmatterfirst.org

http://subjectmatterfirst.org

Programming vs. SME’ing 3

3 (Where) Does this work?

Building the necessary language and IDE tooling and downstream automation
requires investment, and this investment must pay off for the approach to make
economical sense. Which is why this approach only works in domains that have
the following characteristics. First, the subject matter has to have a minimum
size and complicatedness. A consequence of this is often that there are people
in the company who consider themselves experts in that subject matter. It is
they who everybody asks about details in the domain. The second criterion is
that this subject matter as a whole will remain relevant over time and that the
business intends to continue developing software in that domain for a reasonably
long time. Finally, even though the subject matter as a whole r relevant for a
long time, a degree of evolution or variety within the domain is usually needed
for the approach to make sense. I have seen this approach used in the following
domains, among others:

In insurances, DSLs are used by insurance product definition staff to develop
a variety of continuously evolving insurance products [4,7]. With increased differ-
entiation and tailoring of products, these become more and more complicated
while at the same time increasing in variety and number. The company itself is
in the insurance business for the long run.

In healthcare, DSLs are used by medical doctors and other healthcare pro-
fessionals to develop treatment and diagnostics algorithms that run as part of
digital therapeutics apps [11]. My customer, Voluntis, intends to grow over years
and develop a large number of these algorithms and apps. The subject matter is
large and complicated because it captures medical expertise.

In public adminstration, government agencies are certainly in it for the long
run, while legislation for public benefits and tax calculation changes and evolves
regularly. The agencies are full of experts who use DSLs [1] to disambiguate
and formalize the law and its interpretations by courts. Similarly, the service
providers who develop software for tax advisors have the same challenges and
use DSLs as well [6,5].

In payroll, the regulations that govern the deducations from an employee’s
gross salary and the additional taxes and fees they have to pay are just as
complicated, long-lasting and ever changing as tax law (and of course directly
related). Service provides who develop payroll software therefore also employ
whole departments full of experts and benefit from the use of DSLs [12].

For an overview over this approach and a couple of easily readable case studies,
see my InfoQ article [10].

4 Typical DSL Architecture

Many of the DSL I have built follow the general approach that is outlined in Fig.
2. The models created by the SMEs end up as the core of the system, usually

4 M. Voelter

Fig. 2. Typical high-level systems architecture, where the models expressed with DSLs
are transformed into code that forms the core of a larger application.

expressed with functional semantics, either via generation or via interpretation.
That core implements a (manually defined) API that is used by a driver component
to invoke the DSL-derived code. The driver interacts with users and other systems
– potentially via additional architectural building blocks – and is often also
responsible for managing and persisting state. Indeed, many of our DSLs are
“funclarative” [8], where small, simple calculations are expressed with a functional-
style language (so users do not have to care about effects at this level), and when
things get more complicated, the DSL provides declarative first-class concepts to
express those concisely without lots of low-level functional code.

In order to avoid reinventing the wheel with regards to the core functional
expressions, the DSLs often embed (and then extend) a reusable language KernelF.
I usually start by building a few of the domain-specific abstractions “around”
KernelF. Then I iterate, building more abstractions, constraining away parts
from KernelF that are not needed or replacing parts of KernelF with simpler
abstractions. More details on KernelF and its use for DSLs can be found in [13].

If the DSL cannot be scoped to handling only the functional parts and thus
has to manage state, I usually rely on variations of state machines. Generally it
is a good idea to rely on established programming paradigms and DSL-ify them
instead of trying to invent new fundamental paradigms.

5 Difference between programming and SME’ing

In this section we look at the work share between SMEs and SEs. We focus
on what the SMEs do, because this paper is about the degree to which their
activities resemble programming. We discuss the responsibilities of SEs mostly
to contrast their work to that of the SMEs.

Programming vs. SME’ing 5

Fig. 3. Comparing programming (what software engineers do) from whatever not-yet-
named activity subject matter experts should do to directly contribute to software.
Darker shade means “is more relevant”.

5.1 Skills and Responsibilities

Fig. 3 shows the differences in responsibilities of SEs and SMEs. The darker the
shade, the more responsibility the respective community has for that concern.
We start our discussion with the two black and white cases, those where there is
no overlap.

Region 1, SME only Region 1 is completely the responsibility of SMEs. They
have to understand every particular example, case, situation, and exception of
the subject matter they want the software system to handle. This is their natural
responsibility, this is why they exist. SEs on the other hand should not have to
care at all. Achieving this separation – and then optimizing the tasks of both
communities – is the reason for using DSLs and tools in the first place. Related
to this, the SMEs are also in charge of determining what consistutes correct
behavior in the subject matter, they write the tests. SMEs take full responsibility
for what goes into test cases as well as for their completeness.

Region 2, SE only Let us move on to region 2, which is completely the
responsibility of SEs. Setting up and operating automated CI pipelines that build
and package the software and run tests is nothing the SME should be concerned
with, except for being notified if tests fail (after they have run correctly in their
local environment, otherwise they should never reach the CI server).

The same is true for taking care of performance, scalability, safety, security,
robustness and availability, all the operational (aka non-functional) concerns of
the final software system. Keeping the subject matter segregated from these
technical aspects of software is a key benefit of the approach, and it is clear that
this should be handled in platforms, frameworks and code generators – all fully
the domain of SEs.

Finally, the development of the DSLs and tools that will then be used by
the SMEs for capturing, analysing and experimenting with subject matter is

6 M. Voelter

the responsibility of SEs. It might not be the domain of all of the software
engineers, but maybe only of a certain specialization called language engineers
who specialize in developing languages, IDEs, interpreters and generators. Also,
a few of the most experienced subject matter experts – I sometimes refer to them
as gurus – have to help survey, understand, analyse and abstract the domain so
that the language engineers can build the languages. But the regular SME, the
dozens or hundreds that many of our customers employ, are not involved with
this task.

Note that in order to be able to build the languages, the SEs have to understand
the domain at the meta level. Together with the gurus, they have to understand
how to describe the structures, rules, behaviors and other forms of knowledge in
the domain. But they do not have to know all the instances which are subsequently
expressed by the SMEs using the DSL. This distinction is crucial and is often
perceived as a contradiction with the goal of the approach of separating the work
of the SMEs and SEs.

Region 3, Testing Let us now look at region 3, one that apparently has full
shared responsibility. However, in this case the illustration is a bit misleading.
Indeed, both communities have to understand the purpose of testing, what a
test case is, and appreciate the notion of coverage, i.e., understanding when they
have enough tests to be (reasonably) sure that there are no more (reasonably
few) bugs in the logic. But of course the SMEs care about this only for the
subject matter expressed with the DSL, whereas the SEs care about it only in
the platform, frameworks, language implementation and generators. So they both
have to understand testing, but there are no artifacts for which they have shared
responsibility.

Region 4, shared skills This is the most interesting part: all the items in
this region are native to programming and software engineering. So SEs care.
But they are also relevant, to different degrees, to SMEs when they use DSLs.
Let us explore them in detail.

Of course the SMEs have to understand the conceptual abstractions of the
domain, because otherwise they cannot use the language. Understanding abstrac-
tions is not easy in general, but because in a DSL these abstractions are closely
aligned with the subject matter, the SMEs – in my experience – are able to
understand them. Maybe not every little detail (which is why the box is dark
grey and not black) but sufficiently well to use the language. The SEs have to
understand these abstractions as well, especially the language engieneers. Those
who build the execution platform can usually deal with a black-box view of the
generated code.

A note: the fact that there is shared understanding about the core abstractions
of the subject matter in the domain for which the SMEs and the SEs co-create
software is a major reason why DSLs are so useful here. The language definition,
and its conceptual cousins, the core abstractions, are an unambiguous and clearly-
scoped foundation for productive collaboration between the two communities.
So when I write “xyz is the responsibility of SME/SE”, it does not mean that
there is not a joint overall responsibility of both communities together to deliver

Programming vs. SME’ing 7

useful (in terms of subject matter) and robust (in terms of operational concerns)
software.

Back to region 4. No real-world subject-matter focused DSL I have ever seen
can make do without understanding the notion of values, and some notion of
functions (entities that produce new values from inputs). It does not matter
whether we are talking specifically about (textual) functions, (Excel-style) decision
tables or (graphical) dataflow diagrams. The good thing is that essentially
everybody has come across these at school or at university, even though using
functions to assemble larger functionality from pieces and the explicit use of types
is new to many. In practice, teaching the use of functions, at least in limited
complexity situations, is feasible.

Similarly, the understanding of dot expressions to mean the member X of
entity Y or do Z with entity Y is very hard to avoid, because working with
parts of things or performing activities on things is ubiquitous. For many SMEs,
this is harder to get used to. We’ve experimented with literally writing <member>
of <object> instead of <object>.<member> but this results in less useful IDE
support: with the latter syntax, one can easily scope the code completion menu
to members of object because users write the object first. In contrast, with the
former syntax, the code completion for the member has to show all members of
all objects in the system because the context object is not yet specified.

In essentially every domain SMEs have to express decisions and calculations.
So another set of constructs that is hard to avoid is arithmetic, logical and
and comparison operators (together with types like number), as well as notion
of a conditional, such as if ...then or switch{case, case, case} and the
associated Boolean type – independent of their concrete syntax (text, symbolic
or graphical). Once again, most SMEs have come across these operators at school
or university, so using them is not a big challenge.

The reason why these two lines are grey for SMEs and not totally black is
because the complexity of the expressions built with these language concepts
should (and usually can) be kept lower for SMEs. For example, for complicated
decisions, we can support graphical decision tables of various forms which are
much easier to grasp than nested if statements or the some form of switch-like
statements.

Several of the DSLs I have built require an understanding of parametrization.
For example, in function-like constructs, the values passed into the function
are mapped (by position or by name) to parameters in the function signature
that are then used in the body of the function. Most SMEs have no problems
with this – again, school experience – but some do. Often parametrization is the
threshold where the need for education and training starts (beyond building the
shared understanding about the core concepts of a domain). A related concept
is instantiation, where, usually, each instance has separate values for its state
and can evolve independently. This is not taught in school, and it is not taught
outside of computer science at university, so training is needed. On the other
hand, many DSLs can do without instantiation which is why this box is a lighter
shade of gray.

8 M. Voelter

Fig. 4. SMEs make different trade-offs than software engineers regarding the languages
and tools they want to work with.

We are getting to more advanced concepts that are increasingly harder to
grasp for many SMEs, but they are also not necessary in all DSLs (though
unavoidable in some). The notion of specialization or subtyping is key here. While
everybody understands subtyping intuitively (“an eagle isa bird isa animal isa
living thing isa object”), many SMEs struggle with the consequences. Especially
the mental assembly of everything that is in a subtype by (mentally) going
through all its supertypes is hard: “we are not seeing the big picture” is what I
often hear. Practice helps, but so can tools that optionally show all the inherited
members inline in the subtype’s definition.

For complex subject matter – tax calculation comes to mind – the models
created with the DSLs become large, and complexity often rises along with
size. Notions like delineating module boundaries, explicitly defined interfaces,
reduction of unnecessary dependencies, and more generally, cohesion, coupling
and reuse become an issue. Most SMEs struggle here. But on the other hand,
95% of the work of an SME can proceed without caring about these big picture
concerns, except during initial design or downstream review phases, where SE or
guru involvement can help to sort things out. Considering it is only 5% of the
total work, such involvement is usually feasible.

The final ingredient in region 4 is discovering and then defining new ab-
stractions. This is often not the strong suit of SMEs. Those that are good at
it are usually the gurus who help with language definition, or they have been
assimilated wholly by the software development team. But luckily it is quite
rare that SMEs are required to define new abstractions, because those that are
relevant in the domain should be available first-class in the DSL – or retrofitted
for the next version once the need becomes obvious.

5.2 Different Emphasis

In my experience, (most) SMEs prioritize the features of languages and IDEs
different from (most) developers. In this section we’ll look at some of the more
prominenet differences, Fig. 4 summarizes them.

Notation Developers prefer textual notations, both for their conciseness, but
also for reasons of homogeneity with regards to storing, editing, diffing and

Programming vs. SME’ing 9

merging code. SMEs, in contrast, tend to emphasize readability and fit of the
notation with established representations in the domain (e.g., tables in the tax
law documents) over these efficiency concerns. Therefore, if you can build DSLs
that are more diverse in notation – and not just colored text with curly braces
and indentation – SME buy-in is usually easier to obtain.

Selecting vs. Creating Developers love the creative freedom of coming
up with an algorithm and crafting their own suitable abstractions from small,
flexible building blocks. SMEs – because of their often limited experience with
building their own abstractions – prefer picking from options and selecting
alternatives. In my experience SMEs usually accept that they have to read a
bit more documentation that (hopefully!) explains what the different options or
alternatives mean. Consequently DSLs often contain many first-class concepts for
the various needs of the domain, even if this requires the users to first understand
what each of them means. The approach is usually also benefitial for domain-
related semantic analysis (more first class concepts makes it easier to analyze
programs) and it is easier to have a nice notation (because you can associate
specific notations with these first-class concepts). In contrast, programming
languages emphasize orthogonality and composability of their (fewer) first-class
concepts.

Guidance A related topic is guidance. Developers are happy with opening an
empty editor and starting to write code. Code completion guides them a little
bit. SMEs prefer more guidance, almost to the point where skeleton programs
are pre-created after selection from a menu. DSLs that feel like a mix between a
form-based application and program code seem to be particularly appreciated by
many SMEs.

Tool Support Taking this further, SEs prefer a toolbox approach, where the
tool offers lots and lots of actions and it is the developer’s job to use each action at
the right time, in the right way. SMEs are more use-case oriented. They want tool
support for their typical workflows and process steps, and specific tool support
for each. To give an extreme example: I have built DSLs that included wizard-like
functionality in the IDE, where using the wizard required more input gestures
than just code-completion supported typing. Still the wizard was preferred by
the SMEs.

Thinking about problems It is almost a defining feature of SEs that they
think about a problem (and its solution) as a complete algorithm that can cover
all possible execution paths. Sure, tests then validate specific scenarios, but
developers think in algorithms. SMEs often think in terms of examples first,
and sometimes exclusively. For example, it is easier for them to deal with a
(hopefully complete) set of sequence diagrams rather than with a state machine
that captures the superset of the sequence diagrams. In terms of DSL design this
means that more emphasis on case distinction in which distinct scenarios are
specified separately (even if this incurs a degree of code duplication) is often a
good idea.

10 M. Voelter

Validation Most developers are good at writing tests, writing them against
APIs for a relatively small-size unit, and then running these tests automatically
continuously. SMEs often think of validation more in terms of “playing with
the system”. They prefer “simulation GUIs” over writing repeatable tests as (a
different kind of) program. So build those simulators first, and then allow the
simulator to record “play sessions” and persist them as generated test cases for
later automatic reexecution.

Recipe vs. Execution A program is a recipe which, when combined with input
data, behaves in a particular way. The specific behavior depends on the input data.
So whenever SEs write code, they continuously imagine (and sometimes try out or
trace with the debugger) how the program behaves for (all possible combinations
of) input data. Many SMEs are not very good at doing this. One reason why Excel
is so popular is because it does not make this distinction between the program
and its execution: the program always runs (or, alternatively, a spreadsheet never
runs, it just “is”). So anything from the universe of live programming is helpful
for DSLs.

Despite these differences, there are lots of commonalities as well. Both communi-
ties want good tools (read: IDE support), relevant analyses with understandable
and precise error messages, refactorings and other ways to make non-local changes
to potentially large programs, low turnaround time plus various ways of illustrat-
ing, tracing and debugging the execution of programs. However, while software
engineers are often willing to compromise on these features if the expressivity of
the language is convincing, SMEs usually will not.

6 Where and how can SMEs learn

So where and how can SMEs learn the skills from the SME column of Fig. 3?

In school and at university In my opinion, everybody should learn these
basics in school and at university. While programming in the strict sense should
be limited to computer science or software engineering curricula, this “SME’ing”
should be mandatory for everybody, just like reading, writing or math. Of course
such courses should not just teach Java or Python. They should emphasize the
specific skills of “thinking like a programmer” with a range of dedicated and
diverse languages and tools.

Programming Basics Course A few years ago, based on the need to educate
and trains a group of SMEs, I created a course called Programming Basics [9] that
teaches these concepts relevant to SMEs step by step. It starts with simple values
as cells of spreadsheets and then covers expressions, testing, types, functions,
structured values, collections, decisions and calculations as well as instantiation.
The course uses different varieties and notations for many of these concepts in
order to try and emphasize the concepts. The course is built on the Jetbrains
MPS language workbench2 and KernelF, and allows extension and customization

2 http://jetbrains.com/mps

http://jetbrains.com/mps

Programming vs. SME’ing 11

on language level towards particular DSLs. We are working on a way to get this
into the browser for easier access.

Hedy Language Felienne Hermans has built Hedy [3], a gradual programming
language. The goal is to teach “normal people” the basics of programming with
a language that grows in capability step by step, with the need for each next
capability motivated by user-understandable limitation in the previous step.
Ultimately, when Hedy is fully developed, it is similar to Python. Hedy is free
and works in the browser.

Computational Thinking In the 2000s, a community of software engineers
came up with the term compuational thinking [2] as the “mental skills and
practices for designing computations that get computers to do jobs for people,
and explaining and interpreting the world as a complex of information processes.”
So the idea is similar to what I am advocating, although the relationship to DSLs
and subject matter is missing. Computational thinking has been critizised as
being just another name for computer science; but my discussions in this paper
should make clear that there’s a big difference between computer science and
that thing SMEs should do.

7 Wrap Up

It is almost not worth saying because it is so obvious: almost all domains,
disciplines, professions and sciences are becoming increasingly computational.
And market forces require companies – especially those in the traditional industrial
countries – to become more efficient. I am confident that providing“CAD programs
for knowledge workers”, i.e., DSL, tools and automation, is an important building
block for future economic success.

With the comparison of programming and “that thing SMEs should do” in
this paper I hope to make clear that everybody does not have to become a
programmer. But: everybody has to be empowered to communicate the subject
matter of their domain precisely to a computer (using DSLs or other suitable
tools). And therefore, everybody has to learn to think like a programmer at least
a little bit, enough to be able to understand and work with the things in the SME
column of Fig. 3. And we software engineers have to adopt this subject-matter
centric mindset and develop languages and tools that are built in line with the
SME preferences in Fig. 4.

Acknowledgements

Thanks to Yulia Komarov and Federico Tomassetti for providing feedback on an
earlier version of this paper, as well as the anonymous reviewers of the ISOLA
2021 conference.

12 M. Voelter

References

1. D. T. Administration. Challenges of the dutch tax and customs administration
(video). https://www.youtube.com/watch?v=_-XMjfz3RcU, 2018.

2. P. J. Denning and M. Tedre. Computational thinking. MIT Press, 2019.
3. F. Hermans. Hedy, a gradual programming language. https://hedy-beta.

herokuapp.com/, 2020.
4. itemis AG. The business dsl: Zurich insurance. https://blogs.itemis.com/en/

the-business-dsl-zurich-insurance, 2019.
5. Y. K. Markus Voelter. Streamlining der Steuersoftware-Entwicklung bei DATEV

mittels DomÃd’nenspezifischer Sprachen (slides). OOP Conference 2021, http:
//voelter.de/data/presentations/oop2021-steuerDSLStreamlining.pdf,
2021.

6. Y. K. Markus Voelter. Streamlining der Steuersoftware-Entwicklung bei DATEV
mittels DomÃd’nenspezifischer Sprachen (Video). OOP Conference 2021, https:
//youtu.be/q56wzLQkEho, 2021.

7. N. Stotz and K. Birken. Migrating insurance calculation rule descriptions from
word to mps. In A. Bucchiarone, A. Cicchetti, F. Ciccozzi, and A. Pierantonio,
editors, Domain-Specific Languages in Practice, chapter 6, pages 165–194. Springer,
2021.

8. M. Voelter. Fusing modeling and programming into language-oriented programming.
In International Symposium on Leveraging Applications of Formal Methods, pages
309–339. Springer, 2018.

9. M. Voelter. Programming basics: How to think like a programmer. https://
markusvoelter.github.io/ProgrammingBasics/, 2018.

10. M. Voelter. Why dsls? a collection of anecdotes. https://www.infoq.com/
articles/why-dsl-collection-anecdotes, 2020.

11. M. Voelter, B. Kolb, K. Birken, F. Tomassetti, P. Alff, L. Wiart, A. Wortmann,
and A. Nordmann. Using language workbenches and domain-specific languages for
safety-critical software development. Software & Systems Modeling, 18(4):2507–2530,
2019.

12. M. Voelter, S. Koscejev, M. Riedel, A. Deitsch, and a. Andreas Hinkel. A domain-
specific language for payroll calculations: an experience report from datev. In
A. Bucchiarone, A. Cicchetti, F. Ciccozzi, and A. Pierantonio, editors, Domain-
Specific Languages in Practice, chapter 4, pages 93–130. Springer, 2021.

13. M. Völter. The design, evolution, and use of KernelF. In International Conference
on Theory and Practice of Model Transformations, pages 3–55. Springer, 2018.

https://www.youtube.com/watch?v=_-XMjfz3RcU
https://hedy-beta.herokuapp.com/
https://hedy-beta.herokuapp.com/
https://blogs.itemis.com/en/the-business-dsl-zurich-insurance
https://blogs.itemis.com/en/the-business-dsl-zurich-insurance
http://voelter.de/data/presentations/oop2021-steuerDSLStreamlining.pdf
http://voelter.de/data/presentations/oop2021-steuerDSLStreamlining.pdf
https://youtu.be/q56wzLQkEho
https://youtu.be/q56wzLQkEho
https://markusvoelter.github.io/ProgrammingBasics/
https://markusvoelter.github.io/ProgrammingBasics/
https://www.infoq.com/articles/why-dsl-collection-anecdotes
https://www.infoq.com/articles/why-dsl-collection-anecdotes

	Programming vs. That Thing Subject Matter Experts Do

