Using C Language Extensions
for Developing Embedded
Software - A Case Study

Markus Volter voelter@acm.org
Arie van Deursen Arie.vanDeursen@tudelft.nl
Stephan Eberle stephan.eberle@itemis.com
Bernd Kolb Bernd.kolb@itemis.de

i,

(How well) do
domain-specific language
extensions work?

And how can we find out?

i,

Domain-Specific Extensions
of C for Embedded Software

An Industrial Case Study

Smart Meter

Measures Voltage and Current
Computes Derived Values
Shows Data on LCD Display
Communicates through Networks

L YL D b t
o

Precision is critical for Certification®
Evolvability is critical for it to be a viable business.

Developed with $§mbeddr, a set of domain-
Specific extensions to C, plus an IDE.

d2enhoddr

.'I 1wy GUUI

An extensible set of integrated languages
for embedded software engineering.

User .
. to be defined by users
Extensions
Test Decision Logging & :
Default Support Tables Tracing -
SSCUEINUEN Compo- Physical State State Machine Decision Component Glossaries USe Cases &
nents Units Machines Verification Tables Contracts Scenarios
Core c99 Model SMT Dataflow Visual- PLE Documen- | Requirements & Reports &
Checking Solving Analysis ization | Variability tation Tracing Assessments
Platform JetBrains MPS
Backend C Compiler, NuSMV Yices CBMC PlantUML | LaTeX
Tool Debugger and Importer

Implementation Concern ' Analysis Concern ' Process Concern '

) DLT645Protocolimpl O unitbeclarations

Events M
dataReceived(uint8 data) section AngleUnits {
idle I[data == DLT645_FRONT_LEADING_BYTE] -> awaking exported unit ° := 1
- N | 3 - —
Error: type boolean is not a subtype of uint8 exPortEd unit T
awaking |JLaata - ULIb45 FRAME STARTFLAG] -> recvFrame exported unit :=
{
send startFrame(idx, data) exported #constant FULL_ROTAT
idx++
} = exported eager conversion ° -
recvFrame [iﬂl < length - 1 &% idx != DLT645_HEADER_DATALENGTH_OFFSET] = val as -> val *
rxQueueHeadIdx ADLT645ProtocolImpl.DLT645ProtocolImpl. rxQue
States rxQueueTailldx ADLT645ProtocolImpl.DLT645ProtocolImpl. rxQue
1aX++; — .
} .
[idx == DLT645_HEADER_DATALENGTH_OFFSET] -> reg exported cs interface IGraphPlotter { ger conversion
- handle newCurve(Color color, string const label) _ 1
{ . void addPoint(handle hCurve, double x, double y) > va
SRhdtatalanaihlidic data) void plot(string const title, handle hCurve)
@) DCFilterTestHarness void plotAll(string const title)
void clear(handle hCurve)
internal instances { void clearAll()
void deleteCurve(handle hCurve) —
void dispose() ‘terInst:
} ‘terImpl
IGraphPlotter

= dcFilterTestRunnerInst: IMetrologyRawSignalSimulator

ST = >
[M— DCFilterTestRunnerImpl IMetrologyRawSignalData > metrologyRawSignalSimulatorIn

MetrologyRawSignalSimulatorIm

IMetrologyRawSignalHandler

Context: Industry Project

very
Rea||st|c Real requirements, real size, real

deadlines, representative developers

maybe not so

Reproducib|e Not so easy to reproduce, because

the source code of Smart Meter is

not available. mbeddr itself is open

source, though:
http://mbeddr.com/

Research Questions

Complexity

Testing

Overhead

Effort

Are the abstractions provided by mbeddr beneficial for
mastering the complexity encountered in a real-world
embedded system? Which additional abstractions would
be needed or useful?

Can the mbeddr extensions help with testing the system?
In particular, is hardware-independent testing possible to
support automated, continuous integration and build? Is
incremental integration and commissioning supported?

Is the low-level C code generated from the mbeddr
extensions efficient enough for it to be deployable onto a
real-world embedded device?

How much effort is required for developing embedded
software with mbeddr?

Data Collected

Complexity

Testing

Overhead

Effort

Qualitative impact of mbeddr and SM
extensions on complexity

Measured Coverage
Test-Specific SMT Code
Commissioning of the system

Compared Size of Binary with Resources of Hardware
Analyzed/Measured Performance
Theoretical Discussion of the Overhead of Extensions

Report and discuss Effort required to build SM separated
by implementation, testing, commissioning and extension
development

Hardware Architecture

-
,DLMS/COSEM
MSP430 F6//91 MSPA430 F6/36
25 MHz 25 MHz
256K Flash ROM 128K Flash ROM

32K RAM 8K RAM

Software Architecture

——————————

————————————

T

————————————

=]

(\ (
I Load profile :
: support :
. I . ’
() {‘_______T__\ U
s Reset function, | -
1 historical data |}
! recording I
& Y N 4 G
(T TTTTITTY W \ (
o {
: Ly tarn_‘f& : I Anti-tampering/ :
: billing periods | : e I L
1 1
‘s___s_ufgclrt___-’ L / ("
———————————— \ ﬁ—————----—\‘
: Magnetic 1 |{ COSEM 1 L
I interference | 1 objects/OBIS]| | 7
1 protection 1 codes I

(Last/average/ ‘I (\ > <
1 .)
I maximum] : Outcpountt:gllay]
. demand) { 1
___________ —
= APPLICATION /7 \———— METROLOGY /
(e~ e N ™)
s 1 I Modem Protocol :
———————— LAl T ———]
) ¢ T T Tt \I (""" A
| Rem. Device I Low-Pass |
I‘ Access Prot'l | : Filter 1
D S S e B D G -
- comm J U : UTIL /
Al Er—————— N\

A\ (T D G A

(
| EEPROM |1 SD24 :: ADC10 :

—————————————————————

No RTOS
Interrupt-Driven

One-Threaded Programming

Required Precision leads to
4096 Hz Sampling Rate

Interrupt-Triggered:

Foreground Tasks:

Example Smart Meter Code

From the processor vendor. But: no tests, bad
structure, buggy, not all features.

Hence:
Phase 1

Phase 2

Reimplement with mbeddr

Two Processors,

Communication between the two processors,
Improved comms infrastructure (multiplexing,
two comm stacksRS485 and IrDa)
an 12C Bus driver
an EEPROM controller
a subset of the required DLMS/COSEM messages
additional application functionality (historical data rec, reset)

Size of the System

Criterion Common | Metro App Total
of Files 134 101 105 340
Total LOC 8,209 | 10,447 | 10,908 | 29,564
Code LOC 4,397 5,900 5,510 | 15,807
Comment LOC 950 2,402 2,620 5,972
Whitespace LOC 2,852 2,145 2,778 7,775

Common code runs on both processors, Metro runs on the

metrology processor and App runs on the application /
communication processor.

+ roughly the same amount again for tests.

Use of Extensions

Category] Concept Count Category Concept Count

Chunks Implementation Modules 382 Product Line Feature Models / Features 4/18

(= Files) Other (Req, Units, etc.) 46 Variability Configuration Models 10

C Constructs Functions 310 Presence Condition 7
Structs / Members 144 /270 Custom Register Definition 387
Enums / Literals 150/ 1,211 Extensions Interrupt Definitions 21
Global Variables 334 Protocol Messages 42
Constants 8,500 Statements Statements total 16,840

Components Interfaces / Operations 80/ 197 Statements in components 6,812
Atomic Components 140 Statements in test cases 5,802
Ports / Runnables 630 / 640 Statements in functions 3,636
Parameters / Values 84 /324 Testing Test Cases / Suites 107 /35
Composite Components 27 Test-Specific Components 56
Component Config Code 1,222 Stub / Mock Components 9/8

State Machines) assert Statements 2,408

Machines States/Transitions/Actions 14/17/23

Physical Unit Declarations 122

Units Conversion Rules 181
Types / Literals with Units 593/1,294

All mbeddr C extensions used a lot.

Some extensions built specifically for SM.

P
The Code

Components (mbeddr)

// ADC 1s the analog-digital converter
interface IADC {

intl6 read(uint8 addr)
}

component ADCDriver {
provides IADC adc
intl6é adc_read(uint8 addr) <= op adc.read {
intl6é val = // low level code to read from addr
return val;

Pl

component CurrentMeasurer {
requires IADC currentADC
internal void measureCurrent() {
intl6 current = currentADC.read(CURR_SENSOR_ADDR) ;
// do something with the measured current value

b}

State Machines (mbeddr)

statemachine FrameParser initial = idle {
var uint8 idx = 0
in event dataReceived(uint8 data)
state idle {
entry { idx = 0; }
on dataReceived [data == LEADING_BYTE] -> wakeup
}
state wakeup {
on dataReceived [data == START_FLAG]
-> receivingFrame { idx++; }
}

state receivingFrame { .. }

// create and 1initialize state machine

FrameParser parser;

parser.init;

// trigger dataReceived event for each byte

for (int i=0; i<data_size; i++) {
parser.trigger(dataReceived|data[i]);

}

Testing & State M. (mbeddr)

testcase testFrameParserl {
FrameParser p;
assert(0) p.isInState(idle);
// invalid byte; stay in 1idle
parser.trigger(dataReceived|42);
assert(0) p.isInState(idle);
// LEADING_BYTE, go to awakeniling

parser.trigger(dataReceived|LEADING_BYTE) ;
assert(0) p.isInState(awakening);

}
testcase testFrameParser2 { ... }
testcase testFrameParser3 { ... }

int32 main(int32 argc, charx argv) {
return test|[testFrameParserl,
testFrameParser?2,
testFrameParser3];

Mocks & Units (mbeddr)

mock component USCIReceiveHandlerMock {
provides ISerialReceiveHandler handler

Handlex hnd;
sequence {

b}

step 0: handler.open { } do { hnd = handle; }
step 0: handler.dataReceived {
assert 0: parameter data:
step 1: handler.dataReceived {
assert 1: parameter data:
step 2: handler.dataReceived { ..
step 3: handler.dataReceived { .. }

Step 4: hanfdlec fincihad [1 dAa [rlacalhndl. 1

data == 1 }

data == 2 }
}

unit
unit

unit

uintlé6

uintlé

return

for voltage
for Amps

for resistance

resistance(uintl6 u, uintile [1] i, uint8 ilen) {

ilen

> ilp]

avg_i= .9
avg i ilen
u Error: type uintl6 /VA(-1) - A/ is not a subtype of uintl6 /Q/

Product Lines (mbeddr)

feature model SMTFeatures
root opt
Data_LEDs opt
DataReadLED
DataWriteLED [DigitalIOPortPin pin]
DISPLAY xor
DISPLAY_V10
DISPLAY_V22
WRITABLE_FLASH_MEMORIES

exported composite component MetrologyPlatformLayer {
provides IWatchdogTimer watchdogTimer

provides IDigitalOutputPin pinl

provides IDigitalOutputPin pin2

RegiSte 'S (smart meter)

exported register8 ADC1OCTLO compute as val * 1000

void calculateAndStore(int8 value) {
int8 result = // some calculation with value
ADC1OCTLO = result; // stores result % 1000 1in

}

reg.

Interrupts (smart meter)

module USCIProcessor {
exported interrupt USCI_Al
exported interrupt RTC

exported component RTCImpl {
void interruptHandler() <- interrupt ({
hw->pRTCPS1CTL &= ~RT1PSIFG;
}ro}

instances usciSubsystem {
instance RTCImpl rtc;
bind RTC -> rtc.interruptHandler

connect ... // ports

}

Messages (smart meter)

// a field repre
uint8[6] f_time

// a field repre
uint8[4] f_value

// a message tha
uint8[5] message

senting a timestamp for 10:20:00
{0x00A, // field type identifier
UNIT_TIME24, // unit used: time

3, // 3 payload bytes follow

10, 20, 00 // the time itself
}i

message CurrentMeasuredValue:42 {

int32 timestamp; // time of measurement
uintl6/A/ value; // measured value in Amps
uintl6 accuracy; // accuracy in 1/100 %

}

message ... { }

T uses tne TwOo T1eLlds

atomic component CoreMeasurer {
field uintl6/A/ lastValue 0;
message data 42 {:currentTime, &lastValue, 100};
void measure() {
lastValue = // perform actual measurement
b}

Answers to RQs

RQ Complexity

The developers naturally think in terms of

extensions, and suggested additional ones during
the project.

mbeddr components help structure the overall
architecture and enable reuse and configurability.

mbeddr extensions facilitate strong static checking,

improve readability and help avoid low-level
mistakes.

RQ Testing

mbeddr components are instrumental in improving
testability through clear interfaces and small units,
leading to 80% test coverage for core components.

The custom extensions and the components

facilitate hardware-independent testing,
continuous integration and automated dry runs of

the certification process.

The modularization facilitated by components helps
track down problems during commissioning.

RQ Overhead

The memory requirements of SMT are low enough
for it to run on the intended hardware, with room
for growth.

Componentization enables deployment of only the
functionality necessary for a variant, conserving
resources.

The performance overhead is low enough to achieve

the required 4,096 Hz sample rate on the given
hardware.

Development Tasks Effort % Total
Implementation 200 PD 66%
Reimplementation 145 PD 48%
Additional Functionality 55 PD 18%
Tests, Stmulators 48 PD 16%
Integration & Commissioning 38 PD 13%
Custom Language Extensions 14 PD 5%

The effort for the additional functionality,
integration and commissioning is lower than what is
common in embedded software.

The effort for building the extensions is low enough
for it to be absorbed in a real project.

Overall, using mbeddr does not lead to significant
effort overrun, while resulting in better-structured
software.

Discussion

Validity

Internal Bias, Team Expertise
Example Smart Meter Code

Conclusion Design of mbeddr

Cognitive Dimensions of N.
Concepts vs. Language
Language vs. Tool

External Beyond SM

Beyond the Team
Beyond the mbeddr Extensions
Beyond mbeddr‘s MPS Implementation

Debugging on the DSL Level
an on the generated level

Code Quality Readable to build Trust

Readable for Debugging
MISRA Compliant: 25% automatic

Maintainability No long term experience

But good indications:
additional functionality

Drawbacks and Challenges

Limited Generator optimizations
same execution paradigm, not a problem vyet.

2.5 X Longer Build Times
Tool Lock in: no way without MPS

Diff/Merge in MPS only
Learning Curve
Language Engineering Skills to build new L

Other
Approaches

How is it different from...
Model-Driven-*

Fully open and exensible
Multiple paradigms, not one-size-fits-all
Mix of ,Model and Code”

How is it different from...
Macros

More syntactic flexibility

Higher Expressivity (do more than with Macros)
Type Checking

Generally better IDE support

How is it different from...
C++

Requires no C++ Compiler
Components more suitable for Embedded
Different Features: units, state machines
TMP: Better IDE support

Better Error Messages

LE better done in LWB

Conclusions

Specific:
mbeddr & Smart Meter

The extensions help master com-
plexity and lead to software that is
more testable, easier to integrate
and commission and is more
evolvable.

Specific:
mbeddr & Smart Meter

Despite the abstractions intro-
duced by mbeddr, the additional

overhead is very low and accept-
able in practice.

Specific:
mbeddr & Smart Meter

The development effort is re-
duced, particularly regarding
evolution and commissioning.

Generic:
Language Extensions

Based on mbeddr and Smart
Meter, we consider language
extension a very fruitful approach.

We have also used it in other domains,
including robot control, engine management
and insurance product definition.

Generic:
Case Study Research

Using real industry projects as case
studies yields practically meaning-
ful results, despite the drawbacks.

Language
Extension
Works!

Using C Language Extensions for Developing
Embedded Software - A Case Study

Markus Volter voelter@acm.org
Arie van Deursen Arie.vanDeursen@tudelft.nl
Stephan Eberle stephan.eberle@itemis.com
Bernd Kolb Bernd.kolb@itemis.de

