
dsl engineering 1

D S L E n g i n e e r i n g
Designing, Implementing and Using

Domain-Specific Languages

Markus Voelter

with
Sebastian Benz

Christian Dietrich
Birgit Engelmann

Mats Helander
Lennart Kats
Eelco Visser

Guido Wachsmuth

(c) 2010 - 2013 Markus Voelter

Feedback, Slides, and other updates at
http://dslbook.org

This PDF book is donationware: while you can get
the PDF for free from dslbook.org, I would highly

appreciate if you used the Donate button on that
website to send over some amount of money you

deem appropriate for what you get from the book.

Thank you!

A printed version of this book is available as well.
Please go to http://dslbook.org to find links to

various Amazon stores where you can buy the print version.

Contents

I Introduction 5

1 About this Book 7
1.1 Thank You! . 7

1.2 This book is Donationware 8

1.3 Why this Book . 9

1.4 What you will Learn 10

1.5 Who should Read this Book 10

1.6 About the Cover . 11

1.7 Feedback, Bugs and Updates 11

1.8 The Structure of the Book 11

1.9 How to Read the Book 12

1.10 Example Tools . 13

1.11 Case Studies and Examples 14

2 Introduction to DSLs 23
2.1 Very Brief Introduction to the Terminology 23

2.2 From General Purpose Languages to DSLs 25

2.3 Modeling and Model-Driven Development 29

2.4 Modular Languages 32

2.5 Benefits of using DSLs 38

2.6 Challenges . 41

2.7 Applications of DSLs 45

2.8 Differentiation from other Works and Approaches 48

II DSL Design 51

3 Conceptual Foundations 55
3.1 Programs, Languages and Domains 55

3.2 Model Purpose . 59

3.3 The Structure of Programs and Languages 61

4 dslbook.org

3.4 Parsing versus Projection 65

4 Design Dimensions 67
4.1 Expressivity . 68

4.2 Coverage . 78

4.3 Semantics and Execution 80

4.4 Separation of Concerns 100

4.5 Completeness . 109

4.6 Language Modularity 114

4.7 Concrete Syntax . 130

5 Fundamental Paradigms 139
5.1 Structure . 139

5.2 Behavior . 147

5.3 Combinations . 156

6 Process Issues 159
6.1 DSL Development 159

6.2 Using DSLs . 166

III DSL Implementation 171

7 Concrete and Abstract Syntax 175
7.1 Fundamentals of Free Text Editing and Parsing . 177

7.2 Fundamentals of Projectional Editing 186

7.3 Comparing Parsing and Projection 187

7.4 Characteristics of AST Formalisms 194

7.5 Xtext Example . 198

7.6 Spoofax Example 205

7.7 MPS Example . 210

8 Scoping and Linking 219
8.1 Scoping in Spoofax 221

8.2 Scoping in Xtext . 227

8.3 Scoping in MPS . 232

9 Constraints 237
9.1 Constraints in Xtext 239

9.2 Constraints in MPS 240

9.3 Constraints in Spoofax 245

10 Type Systems 251
10.1 Type Systems Basics 252

10.2 Type Calculation Strategies 253

dsl engineering 5

10.3 Xtext Example . 258

10.4 MPS Example . 261

10.5 Spoofax Example 265

11 Transformation and Generation 269
11.1 Overview of the approaches 270

11.2 Xtext Example . 272

11.3 MPS Example . 279

11.4 Spoofax Example 288

12 Building Interpreters 295
12.1 Building an Interpreter with Xtext 297

12.2 An Interpreter in MPS 304

12.3 An Interpreter in Spoofax 306

13 IDE Services 311
13.1 Code Completion 311

13.2 Syntax Coloring . 314

13.3 Go-to-Definition and Find References 319

13.4 Pretty-Printing . 321

13.5 Quick Fixes . 325

13.6 Refactoring . 327

13.7 Labels and Icons 331

13.8 Outline . 332

13.9 Code Folding . 334

13.10Tooltips/Hover . 335

13.11Visualizations . 337

13.12Diff and Merge . 339

14 Testing DSLs 341
14.1 Syntax Testing . 342

14.2 Constraints Testing 344

14.3 Semantics Testing 347

14.4 Formal Verification 354

14.5 Testing Editor Services 361

14.6 Testing for Language Appropriateness 365

15 Debugging DSLs 367
15.1 Debugging the DSL Definition 367

15.2 Debugging DSL Programs 374

16 Modularization, Reuse and Composition 391
16.1 Introduction . 391

16.2 MPS Example . 392

6 dslbook.org

16.3 Xtext Example . 412

16.4 Spoofax Example 426

IV DSLs in Software Engineering 437

17 DSLs and Requirements 441
17.1 What are Requirements? 441

17.2 Requirements versus Design versus Implemen-
tation . 443

17.3 Using DSLs for Requirements Engineering 445

17.4 Integration with Plain Text Requirements 448

18 DSLs and Software Architecture 453
18.1 What is Software Architecture? 453

18.2 Architecture DSLs 455

18.3 Component Models 466

19 DSLs as Programmer Utility 475
19.1 The Context . 476

19.2 Jnario Described . 477

19.3 Implementation . 480

19.4 Summary . 485

20 DSLs in the Implementation 487
20.1 Introduction . 487

20.2 Challenges in Embedded Software 489

20.3 The mbeddr Approach 491

20.4 Design and Implementation 499

20.5 Experiences . 509

20.6 Discussion . 516

21 DSLs and Product Lines 519
21.1 Introduction . 519

21.2 Feature Models . 520

21.3 Connecting Feature Models to Artifacts 521

21.4 From Feature Models to DSLs 526

21.5 Conceptual Mapping from PLE to DSLs 532

22 DSLs for Business Users 537
22.1 Intentional Software 537

22.2 The Project Challenge 538

22.3 The DSL-Based Solution 539

22.4 Wrapping Up . 556

Part I

Introduction

1
About this Book

This book is about creating domain-specific languages. It
covers three main aspects: DSL design, DSL implementa-
tion and software engineering with DSLs. The book only
looks at external DSLs and focuses mainly on textual syn-
tax. The book emphasizes the use of modern language work-
benches. It is not a tutorial for any specific tool, but it pro-
vides examples and some level of detail for some of them:
Xtext, MPS and Spoofax. The goal of the book is to provide
a thorough overview of modern DSL engineering. The book
is based on my own experience and opinions, but strives to
be objective.

1.1 Thank You!

Before I do anything else, I want to thank my reviewers. This
book has profited tremendously from the feedback you sent
me. It is a lot of work to read a book like this with sufficient
concentration to give meaningful feedback. All of you did that,
so thank you very much! Here is the list, in alphabetical order:
Alexander Shatalin, Bernd Kolb, Bran Selic, Christa Schwan-
ninger, Dan Ratiu, Domenik Pavletic, Iris Groher, Jean Bezivin,
Jos Warmer, Laurence Tratt, Mats Helander, Nora Ludewig, Se-
bastian Zarnekow and Vaclav Pech.

I also want to thank the contributors to the book. They have
added valuable perspectives and insights that I couldn’t have
delivered myself. In particular:

• Eelco Visser contributed significantly to the DSL design sec-
tion. In fact, this was the part we started out with when we
still had the plan to write the book together. It was initially

10 dslbook.org

his idea to have a section on DSL design that is independent
of implementation concerns and particular tools.

• Guido Wachsmuth and Lennart Kats contributed all the ex-
amples for the Spoofax language workbench and helped
a lot with the fundamental discussions on grammars and
parsing.

• Mats Helander contributed the Business DSL case study with
the Intentional Domain Workbench in Part IV of the book.

• Birgit Engelmann and Sebastian Benz wrote the chapter on
utility DSLs that features the JNario language based on Xtext
and Xbase.

• Christian Dietrich helped me with the language modular-
ization examples for Xtext and Xbase.

Also, Moritz Eysholdt has contributed a section on his Xpext
testing framework. Finally, some parts of this book are based
on papers I wrote with other people. I want to thank these
people for letting me use the papers in the book: Bernd Kolb,
Domenik Pavletic, Daniel Ratiu and Bernhard Schaetz.

A special thank you goes to my girlfriend Nora Ludewig.
She didn’t just volunteer to provide feedback on the book, she
also had to endure all kinds of other discussions around the
topic all the time. Thanks Nora!

Alex Chatziparaskewas, Henk Kolk, Magnus Christerson
and Klaus Doerfler allowed me to use "their" applications as
examples in this book. Thank you very much!

I also want to thank itemis, for whom I have worked as an
independent consultant for the last couple of years. The expe-
rience I gained there, in particular while working with MPS in
the LWES research project, benefitted the book greatly!

Finally, I want to thank my copyeditor Steve Rickaby. I had
worked with Steve on my pattern books and I really wanted to
work with him again on this one – even though no publisher
is involved this time. Luckily he was willing to work with me
directly. Thank you, Steve!

1.2 This book is Donationware

This book is available as a print version and as a PDF version.
You are currently reading the PDF version. The print version

dsl engineering 11

can be acquired Amazon. The specific links are available at
http://dslbook.org.

Donations are much simpler than
paying for the book at the time when
when you get it: you can check out
the contents before you pay, you can
pay whatever you think makes sense
for you, and we all don’t have to deal
with DRM and chasing down "illegal
copies". But it to make this work (and
keep the book project alive), it relies on
you sticking to the rules. Thank you!

This book is not free even though you can download it from
http://dslbook.org without paying for it. I ask you to please
go to the website and donate some amount of money you deem
appropriate for the value you take from the book. You should
also register the book at the website, so I can keep you up-to-
date with new versions.

There is no Kindle version of the book because the layout/-
figures/code do not translate very well into the Kindle format.
However, you can of course read PDFs on a Kindle. I tried us-
ing my Nexus 7 tablet to read the book: if you use landscape
format, it works reasonably well.

Here is some background on why I didn’t go with a real
publisher. Unless you are famous or write a book on a main-
stream topic, you will make maybe one or two euros for each
copy sold if you go through a publisher. So if you don’t sell
tens or hundreds of thousands of copies, the money you can
make out of a book directly is really not relevant, considering
the amount of work you put into it. Going through a publisher
will also make the book more expensive for the reader, so fewer
people will read it. I decided that it is more important to reach
as many readers as possible1.

1 Publishers may help to get a book
advertised, but in a niche community
like DSLs I think that word of mouth,
blog or Twitter is more useful. So I
hope that you the reader will help me
spread the word about the book.

1.3 Why this Book

First of all, there is currently no book available that explicitly
covers DSLs in the context of modern language workbenches,
with an emphasis on textual languages. Based on my experi-
ence, I think that this way of developing DSLs is very produc-
tive, so I think there is a need for a book that fills this gap. I
wanted to make sure the book contains a lot of detail on how
to design and build good DSLs, so it can act as a primer for
DSL language engineering, for students as well as practition-
ers. However, I also want the book to clearly show the benefits
of DSLs – not by pointing out general truths about the ap-
proach, but instead by providing a couple of good examples of
where and how DSLs are used successfully. This is why the
book is divided into three parts: DSL Design, DSL Implemen-
tation and Software Engineering with DSLs.

Since writing the original MDSD book, I
have learned a lot in the meantime, my
viewpoints have evolved and the tools
that are available today have evolved
significantly as well. The latter is a
reflection of the fact that the whole
MDSD community has evolved: ten
years ago, UML was the mainstay for
MDSD, and the relationship to DSLs
was not clear. Today, DSLs are the basis
for most interesting and innovative
developments in MDSD.

Even though I had written a book on Model-Driven Soft-
ware Development (MDSD) before2, I feel that it is time for a

2 M. Voelter and T. Stahl. Model-
Driven Software Development: Technology,
Engineering, Management. Wiley, 2006

12 dslbook.org

complete rewrite. So if you are among the people who read
the previous MDSD book, you really should continue reading.
This book is very different, but in many ways a natural evolu-
tion of the old one. It may gloss over certain details present in
the older book, but it will expand greatly on others.

1.4 What you will Learn

The purpose of this book is to give you a solid overview of the
state of the art of today’s DSLs. This includes DSL design, DSL
implementation and the use of DSLs in software engineering.
After reading this book you should have a solid understanding
of how to design, build and use DSLs. A few myths (good and
bad) about DSLs should also be dispelled in the process.

Part III of the book, on DSL implementation, contains a lot
of example code. However, this part is not intended as a full
tutorial for any of the three tools used in that part. However,
you should get a solid understanding of what these tools – and
the classes of tools they stand for – can do for you.

1.5 Who should Read this Book

Everybody who has read my original book on Model-Driven
Software Development should read this book. This book can be
seen as an update to the old one, even though it is a complete
rewrite.

On a more serious note, the book is intended for developers
and architects who want to implement their own DSLs. I ex-
pect solid experience in object oriented programming as well
as basic knowledge about functional programming and (clas-
sical) modeling. It also helps if readers have come across the
terms grammar and parser before, although I don’t expect any
significant experience with these techniques.

The MDSD book had a chapter on process and organiza-
tional aspects. Except for perhaps ten pages on process-related
topics, this book does not address process and organization as-
pects. There are two reasons for this: one, these topic haven’t
changed much since the old book, and you can read them there.
Second, I feel these aspects were the weakest part of the old
book, because it is very hard to discuss process and organi-
zational aspects in a general way, independent of a particular
context. Any working software development process will work

dsl engineering 13

with DSLs. Any strategy to introduce promising new tech-
niques into an organization applies to introducing DSLs. The
few specific aspects are covered in the ten pages at the end of
the design chapter.

1.6 About the Cover

The cover layout resembles Addison-Wesley’s classic cover de-
sign. I always found this design one of the most elegant book
covers I have seen. The picture of a glider has been chosen
to represent the connection to the cover of the original MDSD
book, whose English edition also featured a glider3. 3 The MDSD book featured a Schleicher

ASW-27, a 15m class racing glider. This
book features a Schleicher ASH-26E, an
18m class self-launching glider.1.7 Feedback, Bugs and Updates

Writing a book such as this is a lot of work. At some point
I ran out of energy and just went ahead and published it. I
am pretty confident that there are no major problems left, but I
am sure there are many small bugs and problems in the book,
for which I am sorry. If you find any, please let me know at
voelter@acm.org. There is also a Google+ community for the
book; you can find it via the website dslbook.org.

One of the advantages of an electronic book is that it is easy
to publish new editions frequently. While I will certainly do
other things in the near future (remember: I ran out of en-
ergy!), I will try to publish an updated and bug-fixed version
relatively soon. In general, updates for the book will be avail-
able via my twitter account @markusvoelter and via the book
website http://dslbook.org.

1.8 The Structure of the Book

The rest of this first part is a brief introduction to DSLs. It de-
fines terminology, looks at the benefits and challenges of devel-
oping and using DSLs, and introduces the notion of modular
languages, which play an important role throughout the book.
This first part is written in a personal style: it presents DSLs
based on my experience, and is not intended to be a scientific
treatment.

Part II is about DSL design. It is a systematic exploration
of seven design dimensions relevant to DSL design: expressiv-
ity, coverage, semantics, separation of concerns, completeness,

14 dslbook.org

language modularization and syntax. It also discusses funda-
mental language paradigms that might be useful in DSLs, and
looks at a number of process-related topics. It uses five case
studies to illustrate the concepts. It does not deal at all with
implementation issues – we address these in part III.

Part III covers DSL implementation issues. It looks at syntax
definition, constraints and type systems, scoping, transforma-
tion and interpretation, debugging and IDE support. It uses
examples implemented with three different tools (Xtext, MPS,
Spoofax). Part III is not intended as a tutorial for any one of
these, but should provide a solid foundation for understanding
the technical challenges when implementing DSLs.

Part IV looks at using DSLs in for various tasks in software
engineering, among them requirements engineering, architec-
ture, implementation and, a specifically relevant topic, product
line engineering. Part IV consists of a set of fairly indepen-
dent chapters, each illustrating one of the software engineering
challenges.

1.9 How to Read the Book

I had a lot of trouble deciding whether DSL design or DSL im-
plementation should come first. The two parts are relatively
independent. As a consequence of the fact that the design part
comes first, there are some references back to design issues
from within the implementation part. But the two parts can be
read in any order, depending on your interests. If you are new
to DSLs, I suggest you start with Part III on DSL implementa-
tion. You may find Part II, DSL Design too abstract or dense if
you don’t have hands-on experience with DSLs.

Some of the examples in Part III are quite detailed, because
we wanted to make sure we didn’t skim relevant details. How-
ever, if some parts become too detailed for you, just skip ahead
– usually the details are not important for understanding sub-
sequent subsections.

The chapters in Part IV are independent from each other and
can be read in any sequence.

Finally, I think you should at least skim the rest of Part I. If
you are already versed in DSLs, you may want to skip some
sections or skim over them, but it is important to understand
where I am coming from to be able to make sense of some of
the later chapters.

dsl engineering 15

1.10 Example Tools

You could argue that this whole business about DSLs is noth-
ing new. It has long been possible to build custom languages
using parser generators such as lex/yacc, ANTLR or JavaCC.
And of course you would be right. Martin Fowler’s DSL book4

4 M. Fowler. Domain-Specific Languages.
Addison Wesley, 2010

emphasizes this aspect.
However, I feel that language workbenches, which are tools

to efficiently create, integrate and use sets of DSLs in powerful
IDEs, make a qualitative difference. DSL developers, as well as
the people who use the DSLs, are used to powerful, feature-rich
IDEs and tools in general. If you want to establish the use of
DSLs and you suggest that your users use vi or notepad.exe,
you won’t get very far with most people. Also, the effort of
developing (sets of) DSLs and their IDEs has been reduced sig-
nificantly by the maturation of language workbenches. This is
why I focus on DSL engineering with language workbenches,
and emphasize IDE development just as much as language de-
velopment.

This is not a tutorial book on tools. However, I will show
you how to work with different tools, but this should be un-
derstood more as representative examples of different tooling
approaches5. I tried to use diverse tools for the examples, but 5 I suggest you read the examples

for all tools, so that you appreciate
the different approaches to solving a
common challenge in language design.
If you want to learn about one tool
specifically, there are probably better
tutorials for each of them.

for the most part I stuck to those I happen to know well and
that have serious traction in the real world, or the potential
to do so: Eclipse Modeling + Xtext, JetBrains MPS, SDF/S-
tratego/Spoofax, and, to some extent, the Intentional Domain
Workbench. All except the last are open source. Here is a brief
overview over the tools.

1.10.1 Eclipse Modeling + Xtext

eclipse.org/XtextThe Eclipse Modeling project is an ecosystem – frameworks
and tools – for modeling, DSLs and all that’s needed or use-
ful around it. It would easily merit its own book (or set of
books), so I won’t cover it extensively. I have restricted my-
self to Xtext, the framework for building textual DSLs, Xtend,
a Java-like language optimized for code generation, as well as
EMF/Ecore, the underlying meta meta model used to repre-
sent model data. Xtext may not be as advanced as SDF/Strat-
ego or MPS, but the tooling is very mature and has a huge user
community. Also, the surrounding ecosystem provides a huge
number of add-ons that support the construction of sophisti-

16 dslbook.org

cated DSL environments. I will briefly look at some of these
tools, among them graphical editing frameworks.

1.10.2 JetBrains MPS

jetbrains.com/mpsThe Meta Programming System (MPS) is a projectional lan-
guage workbench, which means that no grammar and parser is
involved. Instead, editor gestures change the underlying AST
directly, which is projected in a way that looks like text. As
a consequence, MPS supports mixed notations (textual, sym-
bolic, tabular, graphical) and a wide range of language com-
position features. MPS is open source under the Apache 2.0
license, and is developed by JetBrains. It is not as widely used
as Xtext, but supports many advanced features.

1.10.3 SDF/Stratego/Spoofax

strategoxt.org/SpoofaxThese tools are developed at the University of Delft in Eelco
Visser’s group. SDF is a formalism for defining parsers for
context-free grammars. Stratego is a term rewriting system
used for AST transformations and code generation. Spoofax
is an Eclipse-based IDE that provides a nice environment for
working with SDF and Stratego. It is also not as widely used
as Xtext, but it has a number of advanced features for language
modularization and composition.

1.10.4 Intentional Domain Workbench

intentsoft.comA few examples will be based on the Intentional Domain Work-
bench (IDW). Like MPS, it uses the projectional approach to
editing. The IDW has been used to build a couple of very in-
teresting systems that can serve well to illustrate the power of
DSLs. The tool is a commercial offering of Intentional Software.

Many more tools exist. If you are interested, I suggest you look
at the Language Workbench Competition6, where a number of 6 languageworkbenches.net

language workbenches (13 at the time of writing of this book)
are illustrated by implementing the same example DSLs. This
provides a good way of comparing the various tools.

1.11 Case Studies and Examples

I strove to make this book as accessible and practically relevant
as possible, so I provide lots of examples. I decided against

dsl engineering 17

a single big, running example because (a) it becomes increas-
ingly complex to follow, and (b) fails to illustrate different ap-
proaches to solving the same problem. However, we use a set
of case studies to illustrate many issues, especially in Part II,
DSL design. These examples are introduced below. These are
taken from real-world projects.

1.11.1 Component Architecture

This language is an architecture DSL used to define the soft-
ware architecture of a complex, distributed, component-based
system in the transportation domain7. Among other architec- 7 This langauage is also used in the

Part IV chapter on DSLs and software
architecture: Chapter 18.

tural abstractions, the DSL supports the definition of compo-
nents and interfaces, as well as the definition of systems, which
are connected instances of components. The code below shows
interfaces and components. An interface is a collection of meth-
ods (not shown) or collections of messages. Components then
provide and require ports, where each port has a name, an
interface and, optionally, a cardinality.

namespace com.mycomany {
namespace datacenter {

component DelayCalculator {
provides aircraft: IAircraftStatus
provides console: IManagementConsole
requires screens[0..n]: IInfoScreen

}
component Manager {

requires backend[1]: IManagementConsole
}
interface IInfoScreen {

message expectedAircraftArrivalUpdate(id: ID, time: Time)
message flightCancelled(id: ID)

}
interface IAircraftStatus ...
interface IManagementConsole ...

}
}

The next piece of code shows how these components can be
instantiated and connected.

namespace com.mycomany.test {
system testSystem {

instance dc: DelayCalculator
instance screen1: InfoScreen
instance screen2: InfoScreen
connect dc.screens to (screen1.default, screen2.default)

}
}

Code generators generate code that acts as the basis for the
implementation of the system, as well as all the code necessary
to work with the distributed communication middleware. It is
used by software developers and architects and implemented
with Eclipse Xtext.

18 dslbook.org

1.11.2 Refrigerator Configuration

This case study describes a set of DSLs for developing cooling
algorithms in refrigerators. The customer with whom we have
built this language builds hundres of different refrigerators,
and coming up with energy-efficient cooling strategies is a big
challenge. By using a DSL-based approach, the development
and implementation process for the cooling behavior can be
streamlined a lot.

Three languages are used. The first describes the logical
hardware structure of refrigerators. The second describes cool-
ing algorithms in the refrigerators using a state-based, asyn-
chronous language. Cooling programs refer to hardware fea-
tures and can access the properties of hardware elements from
expressions and commands. The third language is used to test
cooling programs. These DSLs are used by thermodynamicists
and are implemented with Eclipse Xtext.

The code below shows the hardware structure definition in
the refrigerator case study. An appliance represents the refrig-
erator. It consists mainly of cooling compartments and com-
pressor compartments. A cooling compartment contains vari-
ous building blocks that are important to the cooling process.
A compressor compartment contains the cooling infrastructure
itself, e.g. a compressor and a fan.

appliance KIR {

compressor compartment cc {
static compressor c1
fan ccfan

}

ambient tempsensor at

cooling compartment RC {
light rclight
superCoolingMode
door rcdoor
fan rcfan
evaporator tempsensor rceva

}
}

The code below shows a simple cooling algorithm. Cooling
algorithms are state-based programs. States can have entry ac-
tions and exit actions. Inside a state we check whether specific
conditions are true, then change the status of various hardware
building blocks, or change the state. It is also possible to ex-
press deferred behavior with the perform ...after keyword.

program Standardcooling for KIR {

start:

dsl engineering 19

entry { state noCooling }

state noCooling:
check (RC->needsCooling && cc.c1->standstillPeriod > 333) {

state rcCooling
}
on isDown (RC.rcdoor->open) {

set RC.rcfan->active = true
set RC.rclight->active = false
perform rcFanStopTask after 10 {

set RC.rcfan->active = false
}

}

state rcCooling:
...

}

Finally, the following code is a test script to test cooling pro-
grams. It essentially stimulates a cooling algorithm by chang-
ing hardware properties and then asserting that the algorithm
reacts in a certain way.

cooling test for Standardcooling {
prolog {

set cc.c1->standstillPeriod = 0
}
// initially we are not cooling
assert-currentstate-is noCooling
// then we say that RC needs cooling, but
// the standstillPeriod is still too low.
mock: set RC->needsCooling = true
step
assert-currentstate-is noCooling
// now we increase standstillPeriod and check
// if it now goes to rcCooling
mock: set cc.c1->stehzeit = 400
step
assert-currentstate-is rcCooling

}

1.11.3 mbeddr C

This case study covers a set of extensions to the C program-
ming language tailored to embedded programming8, devel- 8 This system is also used as the ex-

ample for implementation-level DSLs
in Part IV of the book. It is covered in
Chapter 20.

oped as part of mbeddr.com9. Extensions include state ma-

9 mbeddr.com

chines, physical quantities, tasks, as well as interfaces and com-
ponents. Higher-level DSLs are added for specific purposes.
An example used in a showcase application is the control of a
Lego Mindstorms robot. Plain C code is generated and sub-
sequently compiled with GCC or other target device specific
compilers. The DSL is intended to be used by embedded soft-
ware developers and is implemented with MPS.

20 dslbook.org

Figure 1.1: A simple C module with
an embedded decision table. This is
a nice example of MPS’ ability to use
non-textual notations thanks to its
projectional editor (which we describe
in detail in Part III).

Figure 1.2: This extension to C supports
working with physical units (such as
kg and lb). The type system has been
extended to include type checks for
units. The example also shows the unit
testing extension.

Figure 1.3: This extension shows a
state machine. Notice how regular
C expressions are used in the guard
conditions of the transitions. The inset
code shows how the state machine can
be triggered from regular C code.

1.11.4 Pension Plans

This DSL is used to describe families of pension plans for a
large insurance company efficiently. The DSL supports math-
ematical abstractions and notations to allow insurance mathe-
maticians to express their domain knowledge directly (Fig. 1.5),
as well as higher-level pension rules and unit tests using a ta-

dsl engineering 21

ble notation (Fig. 1.4). A complete Java implementation of the
calculation engine is generated. It is intended to be used by in-
surance mathematicians and pension experts. It has been built
by Capgemini with the Intentional Domain Workbench.

Figure 1.4: This example shows high-
level business rules, together with a
tabular notation for unit tests. The
prose text is in Dutch, but it is not
important to be able to understand it in
the context of this book.

22 dslbook.org

Figure 1.5: Example Code written using
the Pension Plans language. Notice the
mathematical symbols used to express
insurance mathematics.

1.11.5 WebDSL

WebDSL is a language for web programming10 that integrates 10 E. Visser. WebDSL: A case study in
domain-specific language engineering.
In GTTSE, pages 291–373, 2007

languages to address the different concerns of web program-
ming, including persistent data modeling (entity), user in-
terface templates (define), access control11, data validation12, 11 D. M. Groenewegen and E. Visser.

Declarative access control for WebDSL:
Combining language integration and
separation of concerns. In ICWE, pages
175–188, 2008

12 D. Groenewegen and E. Visser.
Integration of data validation and user
interface concerns in a dsl for web
applications. SoSyM, 2011

search and more. The language enforces inter-concern con-
sistency checking, providing early detection of failures13. The

13 Z. Hemel, D. M. Groenewegen,
L. C. L. Kats, and E. Visser. Static con-
sistency checking of web applications
with WebDSL. JSC, 46(2):150–182, 2011

fragments in Fig. 1.6 and Fig. 1.7 show a data model, user inter-
face templates and access control rules for posts in a blogging
application. WebDSL is implemented with Spoofax and is used
in the researchr digital library14.

Figure 1.6: Example Code written
in WebDSL. The code shows data
structures and utility functions.

dsl engineering 23

Figure 1.7: More WebDSL example
code. This example shows access con-
trol rules as well as a page definition.

2
Introduction to DSLs

Domain-Specific Languages (DSLs) are becoming more and
more important in software engineering. Tools are becom-
ing better as well, so DSLs can be developed with relatively
little effort. This chapter starts with a definition of impor-
tant terminology. It then explains the difference between
DSLs and general-purpose languages, as well as the rela-
tionship between them. I then look at the relationship to
model-driven development and develop a vision for modu-
lar programming languages which I consider the pinnacle
of DSLs. I discuss the benefits of DSLs, some of the chal-
lenges for adopting DSLs and describe a few application ar-
eas. Finally, I provide some differentiation of the approach
discussed in this book to alternative approaches.

2.1 Very Brief Introduction to the Terminology

While we explain many of the important terms in the book as
we go along, here are a few essential ones. You should at least
roughly understand those right from the beginning.

I use the term programming language to refer to general-pur-
pose languages (GPLs) such as Java, C++, Lisp or Haskell.
While DSLs could be called programming languages as well
(although they are not general purpose programming languages)
I don’t do this in this book: I just call them DSLs.

I use the terms model, program and code interchangeably be-
cause I think that any distinction is artificial: code can be writ-
ten in a GPL or in a DSL. Sometimes DSL code and program
code are mixed, so separating the two makes no sense. If the

26 dslbook.org

distinction is important, I say "DSL program" or "GPL code". Note that considering programs and
models the same thing is only valid
when looking at executable models, i.e.
models whose final purpose is the cre-
ation of executable software. Of course,
there are models used in systems en-
gineering, for communication among
stakeholders in business, or as approxi-
mations of physical, real-world systems
that cannot be considered programs.
However, these are outside the scope of
this book.

If I use model and program or code in the same sentence, the
model usually refers to the more abstract representation. An
example would be: "The program generated from the model is
. . . ".

If you know about DSLs, you will know that there are two
main schools: internal and external DSLs. In this book I only
address external DSLs. See Section 2.8 for details.

I distinguish between the execution engine and the target
platform. The target platform is what your DSL program has
to run on in the end and is assumed to be something we can-
not change (significantly) during the DSL development pro-
cess. The execution engine can be changed, and bridges the gap
between the DSL and the platform. It may be an interpreter or
a generator. An interpreter is a program running on the target
platform that loads a DSL program and then acts on it. A gen-
erator (aka compiler) takes the DSL program and transforms it
into an artifact (often GPL source code) that can run directly
on the target platform.1. 1 In an example from enterprise sys-

tems, the platform could be JEE and the
execution engine could be an enterprise
bean that runs an interpreter for a DSL.
In embedded software, the platform
could be a real-time operating system,
and the execution engine could be a
code generator that maps a DSL to the
APIs provided by the RTOS.

A language, domain-specific or not, consist of the following
main ingredients. The concrete syntax defines the notation with
which users can express programs. It may be textual, graph-
ical, tabular or a mix of these. The abstract syntax is a data
structure that can hold the semantically relevant information
expressed by a program. It is typically a tree or a graph. It
does not contain any details about the notation – for example,
in textual languages, it does not contain keywords, symbols or
whitespace. The static semantics of a language are the set of
constraints and/or type system rules to which programs have
to conform, in addition to being structurally correct (with re-
gards to the concrete and abstract syntax). Execution semantics
refers to the meaning of a program once it is executed. It is
realized using the execution engine. If I use the term semantics
without any qualification, I refer to the execution semantics,
not the static semantics.

Sometimes it is useful to distinguish between what I call
technical DSLs and application domain DSLs2. The distinction 2 Sometimes also called business DSLs,

vertical DSLs or "fachliche DSLs" in
German.

is not always clear and not always necessary, but generally I
consider technical DSLs to be used by programmers and appli-
cation domain DSLs to be used by non-programmers. This can
have significant consequences for the design of the DSL.

There is often a confusion around meta-ness (as in meta

dsl engineering 27

model) and abstraction. I think these terms are clearly different
and I try to explain my understanding here.

The meta model of a model (or program) is a model that
defines (the abstract syntax of) a language used to describe a
model. For example, the meta model of UML is a model that
defines all those language concepts that make up the UML,
such as classifier, association or property. So the prefix meta
can be understood as the definition of. The reverse direction of
the relationship is typically called instance of or conforms to. It
also becomes clear that every meta model is a model3. A model 3 The reverse statement is of course not

true.m can play the role of a meta model with regards to a set of other
models O, where m defines the language used to express the
models in O.

The notion of abstraction is different, even though it also
characterizes the relationship between two artifacts (programs
or models). An artifact a1 is more abstract than an artifact a2 if
it leaves out some of the details of a2, while preserving those
characteristics of a2 that are important for whatever a1 is used
for – the purpose of a1 informs the the abstractions we use to
approximate a2 with a1. Note that according to this definition,
abstraction and model are synonyms: a simplification of real-
ity for a given purpose. In this sense, the term model can also
be understood as characterizing the relationship between two
artifacts. a1 is a model of a2. Based on this discussion it should be

clear that it does not make sense to say
that the meta model is the model of a model,
a sentence often heard around the
modeling community. model of and meta
model of are two quite distinct concepts.

2.2 From General Purpose Languages to DSLs

General Purpose Programming Languages (GPLs) are a means
for programmers to instruct computers. All of them are Tur-
ing complete, which means that they can be used to imple-
ment anything that is computable with a Turing machine. It
also means that anything expressible with one Turing complete
programming language can also be expressed with any other
Turing complete programming language. In that sense, all pro-
gramming languages are interchangeable.

So why is there more than one? Why don’t we program
everything in Java or Pascal or Ruby or Python? Why doesn’t
an embedded systems developer use Ruby, and why doesn’t a
Web developer use C?

Of course there is the execution strategy. C code is compiled
to efficient native code, whereas Ruby is run by a virtual ma-
chine (a mix between an interpreter and a compiler). But in

28 dslbook.org

principle, you could compile (a subset of) Ruby to native code,
and you could interpret C.

The real reason why these languages are used for what they
are used for is that the features they offer are optimized for the
tasks that are relevant in the respective domains. In C you can
directly influence memory layout (which is important when
communicating with low-level, memory-mapped devices), you
can use pointers (resulting in potentially very efficient data
structures) and the preprocessor can be used as a (very limited)
way of expressing abstractions with zero runtime overhead. In
Ruby, closures can be used to implement "postponed" behav-
ior (very useful for asynchronous web applications); Ruby also
provides powerful string manipulation features (to handle in-
put received from a website), and the meta programming facil-
ity supports the definition of internal DSLs that are quite suit-
able for Web applications (the Rails framework is the example
for that).

So, even within the field of general-purpose programming,
there are different languages, each providing different features
tailored to the specific tasks at hand. The more specific the
tasks get, the more reason there is for specialized languages4. 4 We do this is real life as well. I am

sure you have heard about Eskimos
having many different words for
snow, because this is relevant in their
"domain". Not sure this is actually true,
but it is surely a nice metaphor for
tailoring a language to its domain.

Consider relational algebra: relational databases use tables,
rows, columns and joins as their core abstractions. A special-
ized language, SQL, which takes these features into account
has been created. Or consider reactive, distributed, concurrent
systems: Erlang is specifically made for this environment.

So, if we want to "program" for even more specialized en-
vironments, it is obvious that even more specialized languages
are useful. A Domain-Specific Language is simply a language
that is optimized for a given class of problems, called a do-
main. It is based on abstractions that are closely aligned with
the domain for which the language is built5. Specialized lan- 5 SQL has tables, rows and columns,

Erlang has lightweight tasks, message
passing and pattern matching.

guages also come with a syntax suitable for expressing these
abstractions concisely. In many cases these are textual nota-
tions, but tables, symbols (as in mathematics) or graphics can
also be useful. Assuming the semantics of these abstractions is
well defined, this makes a good starting point for expressing
programs for a specialized domain effectively.

� Executing the Language Engineering a DSL (or any lan-
guage) is not just about syntax, it also has to be "brought to
life" – DSL programs have to be executed somehow. It is im-

dsl engineering 29

portant to understand the separation of domain contents into
DSL, execution engine and platform (see Fig. 2.1):

Figure 2.1: Fixed domain concerns
(black) end up in the platform, variable
concerns end up in the DSL (white).
Those concerns that can be derived by
rules from the DSL program end up in
the execution engine (gray).

• Some concerns are different for each program in the domain
(white circles). The DSL provides tailored abstractions to
express this variability concisely.

• Some concerns are the same for each program in the domain
(black circles). These typically end up in the platform.

• Some concerns can be derived by fixed rules from the program
written in the DSL (gray circles). While these concerns are
not identical in each program in the domain, they are always
the same for a given DSL program structure. These concerns
are handled by the execution engine (or, in some cases, in
frameworks or libraries that are part of the platform).

There are two main approaches to building execution engines:
translation (aka generation or compilation) and interpretation. The
former translates a DSL program into a language for which
an execution engine on a given target platform already exists.
Often, this is GPL source code. In the latter case, you build a
new execution engine (on top of your desired target platforms)
which loads the program and executes it directly.

If there is a big semantic gap between the language abstrac-
tions and the relevant concepts of the target platform (i.e. the
platform the interpreter or generated code runs on), execution
may become inefficient. For example, if you try to store and
query graph data in a relational database, this will be very in-
efficient, because many joins will be necessary to reassemble
the graph from the normalized tabular structure. As another
example, consider running Erlang on a system which only pro-
vides heavyweight processes: having thousands of processes
(as typical Erlang programs require) is not going to be effi-
cient. So, when defining a language for a given domain, you
should be aware of the intricacies of the target platform and
the interplay between execution and language design6.

6 This may sound counterintuitive. Isn’t
a DSL supposed to abstract away from
just these details of execution? Yes, but:
it has to be possible to implement a
reasonably efficient execution engine.
DSL design is a compromise between
appropriate domain abstractions and
the ability to get to an efficient execu-
tion. A good DSL allows the DSL user
to ignore execution concerns, but allows
the DSL implementor to implement a
reasonable execution engine

30 dslbook.org

� Languages versus Libraries and Frameworks At this point you
should to some extent believe that specific problems can be
more efficiently solved by using the right abstractions. But
why do we need full-blown languages? Aren’t objects, func-
tions, APIs and frameworks good enough? What does creating
a language add to the picture?

• Languages (and the programs you write with them), are the
cleanest form of abstraction – essentially, you add a nota-
tion to a conceptual model of the domain. You get rid of all
the unnecessary clutter that an API – or anything else em-
bedded in or expressed with a general-purpose language –
requires. You can define a notation that expresses the ab-
stractions concisely and makes interacting with programs
easy and efficient.

• DSLs sacrifice some of the flexibility to express any pro-
gram (as in GPLs) for productivity and conciseness of rel-
evant programs in a particular domain. In that sense, DSLs
are limited, or restricted. DSLs may be so restricted that
they only allow the creation of correct programs (correct-by-
construction).

• You can provide non-trivial static analyses and checks, and
an IDE that offers services such as code completion, syn-
tax highlighting, error markers, refactoring and debugging.
This goes far beyond what can be done with the facilities
provided by general-purpose languages.

In the end, this is what allows DSLs
to be used by non-programmers, one
of the value propositions of DSLs:
they get a clean, custom, productive
environment that allows them to work
with languages that are closely aligned
with the domain in which they work.

� Differences between GPLs and DSLs I said above that DSLs
sacrifice some of the flexibility to express any program in favor
of productivity and conciseness of relevant programs in a par-
ticular domain. But beyond that, how are DSLs different from
GPLs, and what do they have in common?

The boundary isn’t as clear as it could be. Domain-specificity
is not black-and-white, but instead gradual: a language is more
or less domain specific. The following table lists a set of lan-
guage characteristics. While DSLs and GPLs can have charac-
teristics from both the second and the third columns, DSLs are
more likely to have characteristics from the third column.

Considering that DSLs pick more characteristics from the
third rather than the second column, this makes designing
DSLs a more manageable problem than designing general-pur-

dsl engineering 31

GPLs DSLs

Domain large and complex smaller and well-defined
Language size large small
Turing completeness always often not
User-defined abstractions sophisticated limited
Execution via intermediate GPL native
Lifespan years to decades months to years (driven by context)
Designed by guru or committee a few engineers and domain experts
User community large, anonymous and widespread small, accessible and local
Evolution slow, often standardized fast-paced
Deprecation/incompatible changes almost impossible feasible

Figure 2.2: Domain-specific languages
versus programming languages. DSLs
tend to pick more characteristics from
the third column, GPLs tend to pick
more from the second.

pose languages. DSLs are typically just much smaller and sim-
pler7 than GPLs (although there are some pretty sophisticated

7 Small and simple can mean that the
language has fewer concepts, that the
type system is less sophisticated or that
the expressive power is limited.

DSLs).
There are some who maintain that DSLs are always declar-

ative (it is not completely clear what "declarative" means any-
way), or that they may never be Turing complete. I disagree.
They may well be. However, if your DSL becomes as big and
general as, say, Java, you might want to consider just using
Java8. DSLs often start simple, based on an initially limited 8 Alternatively, if your tooling allows

it, extending Java with domain-specific
concepts.understanding of the domain, but then grow more and more

sophisticated over time, a phenomenon Hudak notes in his ’96

paper9. 9 P. Hudak. Building domain-specific
embedded languages. ACM Comput.
Surv., 28(4es):196, 1996

Ira Baxter suggests only half-jokingly
that as soon as a DSL is really success-
ful, we don’t call them DSLs anymore.

So, then, are Mathematica, SQL, State Charts or HTML ac-
tually DSLs? In a technical sense they are. They are clearly
optimized for (and limited to) a special domain or problem.
However, these are examples of DSLs that pick more charac-
teristics from the GPL column, and therefore aren’t necessar-
ily good examples for the kinds of languages we cover in this
book.

2.3 Modeling and Model-Driven Development

There are two ways in which the term modeling can be under-
stood: descriptive and prescriptive. A descriptive model repre-
sents an existing system. It abstracts away some aspects and
emphasizes others. It is usually used for discussion, commu-
nication and analysis. A prescriptive model is one that can be
used to (automatically) construct the target system. It must be
much more rigorous, formal, complete and consistent. In the
context of this chapter, and of the book in general, we always
mean prescriptive models when we use the term model10. Us-

10 Some people say that models are
always descriptive, and once you
become prescriptive, you enter the
realm of programming. That’s fine
with me. As I have said above, I don’t
distinguish between programming and
modeling, just between more or less
abstract languages and models.

ing models in a prescriptive way is the essence of model-driven
(software) development (MDSD).

32 dslbook.org

Defining and using DSLs is a flavor of MDSD: we create
formal, tool-processable representations of specific aspects of
software systems11. We then use interpretation or code gener- 11 One can also do MDSD without DSLs

by, for example, generating code from
general-purpose modeling languages
such as UML.

ation to transform those representations into executable code
expressed in general-purpose programming languages and the
associated XML/HTML/whatever files. With today’s tools it
is technically relatively simple to define arbitrary abstractions
that represent some aspect of a software system in a meaning-
ful way12. It is also relatively simple to build code generators 12 Designing a good language is another

matter – Part II, DSL Design, provides
some help with this.

that generate the executable artifacts (as long as you don’t need
sophisticated optimizations, which can be challenging). De-
pending on the particular DSL tool used, it is also possible to
define suitable notations that make the abstractions easily un-
derstandable by non-programmers (for example opticians or
thermodynamics engineers).

However, there are also limitations to the classical MDSD
approach. The biggest one is that modeling and programming
often do not go together very well: modeling languages, envi-
ronments and tools are distinct from programming languages,
environments and tools. The level of distinctness varies, but in
many cases it is big enough to cause integration issues that can
make adoption of MDSD challenging.

Let me provide some specific examples. Industry has set-
tled on a limited number of meta meta models, EMF/EMOF
being the most widespread. Consequently, it is possible to
navigate, query and constrain arbitrary models with a com-
mon API. However, programming language IDEs are typically
not built on top of EMF, but come with their own API for rep-
resenting and accessing the syntax tree. Thus, interoperability
between models and source code is challenging – you cannot
treat source code in the same way as models in terms of how
you access the AST programmatically.

A similar problem exists regarding IDE support for model-
code integrated systems: you cannot mix (DSL) models and
(GPL) programs while retaining reasonable IDE support. Again,
this is because the technology stacks used by the two are differ-
ent13. These problems often result in an artificial separation of 13 Of course, an integration can be

created, as Xtext/Xtend/Java shows.
However, this is a special integration
with Java. Interoperability with, say, C
code, would require a new and different
integration infrastructure.

models and code, where code generators either create skeletons
into which source code is inserted (directly or via the genera-
tion gap pattern), or the arcane practice of pasting C snippets
into 300 by 300 pixel sized text boxes in graphical state machine
tools (and getting errors reported only when the resulting in-

dsl engineering 33

tegrated C code is compiled). So what really is the difference
between programming and (prescriptive) modeling today? The
table in Fig. 2.3 contains some (general and broad) statements:

Modeling Programming

Define your own notation/language Easy Sometimes possible to some extent
Syntactically integrate several langs Possible, depends on tool Hard
Graphical notations Possible, depends on tool Usually only visualizations
Customize generator/compiler Easy Sometimes possible based on open compilers
Navigate/query Easy Sometimes possible, depends on IDE and APIs
View Support Typical Almost Never
Constraints Easy Sometimes possible with Findbugs etc.
Sophisticated mature IDE Sometimes, effort-dependent Standard
Debugger Rarely Almost always
Versioning, diff/merge Depends on syntax and tools Standard

Figure 2.3: Comparing modeling and
programming

� Why the Difference? So one can and should ask: why is
there a difference in the first place? I suspect that the primary
reason is history: the two worlds have different origins and
have evolved in different directions.

Programming languages have traditionally used textual con-
crete syntax, i.e. the program is represented as a stream of
characters. Modeling languages traditionally have used graph-
ical notations. Of course there are textual domain-specific lan-
guages (and mostly failed graphical general-purpose languages),
but the use of textual syntax for domain-specific modeling has
only recently become more prominent. Programming languages
have traditionally stored programs in their textual, concrete
syntax form, and used scanners and parsers to transform this
character stream into an abstract syntax tree for further pro-
cessing. Modeling languages have traditionally used editors
that directly manipulate the abstract syntax, and used projec-
tion to render the concrete syntax in the form of diagrams14. 14 This is not something we think

about much. To most of us this is
obvious. If it were different, we’d have
to define grammars that could parse
two-dimensional graphical structures.
While this is possible, it has never
caught on in practice.

This approach makes it easy for modeling tools to define views,
the ability to show the same model elements in different con-
texts, often using different notations. This has never really been
a priority for programming languages beyond outline views,
inheritance trees or call graphs.

Here is one of the underlying premises of this book: there
should be no difference15! Programming and (prescriptive)

15 This is my personal opinion. While
I know enough people who share it, I
also know people who disagree.

modeling should be based on the same conceptual approach
and tool suite, enabling meaningful integration16. In my expe-

16 As we will see in this book, Xtext/
Xbase/Xtend and MPS’ BaseLanguage
and mbeddr C are convincing examples
of this idea.rience, most software developers don’t want to model. They

want to program, but:

34 dslbook.org

at different levels of abstraction: some things may have to be de-
scribed in detail, low level, algorithmically (a sorting algo-
rithm); other aspects may be described in more high-level
terms (declarative UIs)

from different viewpoints: separate aspects of the system should
be described with languages suitable to these aspects (data
structures, persitence mapping, process, UI)

with different degrees of domain-specificity: some aspects of systems
are generic enough to be described with reusable, generic
languages (components, database mapping). Other aspects
require their own dedicated, maybe even project-specific DSLs
(pension calculation rules).

with suitable notations, so all stakeholders can contribute directly
to "their" aspects of the overall system (a tabular notation for
testing pension rules)

with suitable degrees of expressiveness: aspects may be described
imperatively, with functions, or other Turing complete for-
malisms (a routing algorithm), and other aspects may be
described in a declarative way (UI structures)

always integrated and tool processable, so all aspects directly lead
to executable code through a number of transformations or
other means of execution.

This vision, or goal, leads to the idea of modular languages, as
explained in the next section.

2.4 Modular Languages

I distinguish between the size of a language and its scope. Lan-
guage size simply refers to the number of language concepts
in that language. Language scope describes the area of ap-
plicability for the language, i.e. the size of the domain. The
same domain can be covered with big and small languages.
A big language makes use of linguistic abstraction, whereas a
small language allows the user to define their own in-language
abstractions. We discuss the tradeoffs between big and small
languages in detail as part of the chapter on Expressivity (Sec-
tion 4.1), but here is a short overview, based on examples from
GPLs.

dsl engineering 35

Examples of big languages include Cobol (a relatively old
language intended for use by business users) or ABAP (SAP’s
language for programming the R/3 system). Big languages
(Fig. 2.4) have a relatively large set of very specific language
concepts. Proponents of these languages say that they are easy
to learn, since "There’s a keyword for everything". Constraint
checks, meaningful error messages and IDE support are rela-
tively simple to implement because of the large set of language
concepts. However, expressing more sophisticated algorithms
can be clumsy, because it is hard to write compact, dense code.

Figure 2.4: A Big Language has many
very specific language concepts.

Figure 2.5: A Small Language has few,
but powerful, language concepts.

Let us now take a look at small languages (Fig. 2.5). Lisp
or Smalltalk are examples of small GPLs. They have few, but
very powerful language concepts that are highly orthogonal,
and hence, composable. Users can define their own abstrac-
tions. Proponents of this kind of language also say that those
are easy to learn, because "You only have to learn three con-
cepts". But it requires experience to build more complex sys-
tems from these basic building blocks, and code can be chal-
lenging to read because of its high density. Tool support is
harder to build because much more sophisticated analysis of
the code is necessary to reverse engineer its domain semantics.

Figure 2.6: A Modular Language: a
small core, and a library of reusable
language modules.

There is a third option: modular languages (Fig. 2.6). They
are, in some sense, the synthesis of the previous two. A mod-
ular language is made up of a minimal language core, plus a
library of language modules that can be imported for use in
a given program. The core is typically a small language (in
the way defined above) and can be used to solve any prob-
lem at a low level, just as in Smalltalk or Lisp. The extensions
then add first class support for concepts that are interesting
the target domain. Because the extensions are linguistic in na-
ture, interesting analyses can be performed and writing gener-
ators (transforming to the minimal core) is relatively straight-
forward. New, customized language modules can be built and
used at any time. A language module is like a framework or
library, but it comes with its own syntax, editor, type system
and IDE tooling. Once a language module is imported, it be-
haves as an integral part of the composed language, i.e. it is
integrated with other modules by referencing symbols or by
being syntactically embedded in code expressed with another
module. Integration on the level of the type system, the seman-
tics and the IDE is also provided. An extension module may
even be embeddable in different core languages17.

17 This may sound like internal DSLs.
However, static error checking, static
optimizations and IDE support is
what differentiates this approach from
internal DSLs.

36 dslbook.org

This idea isn’t new. Charles Simonyi18 and Sergey Dmitriev19 18 C. Simonyi, M. Christerson, and
S. Clifford. Intentional software. In
OOPSLA, pages 451–464, 2006

19 S. Dmitriev. Language oriented
programming: The next programming
paradigm, 2004

have written about it, so has Guy Steele in the context of Lisp20.

20 G. L. S. Jr. Growing a language. lisp,
12(3):221–236, 1999

The idea of modular and extensible languages also relates very
much to the notion of language workbenches as defined by
Martin Fowler21. He defines language workbenches as tools

21 M. Fowler. Language workbenches:
The killer-app for domain specific
languages?, 2005

where:

• Users can freely define languages that are fully integrated with
each other. This is the central idea for language workbenches,
but also for modular languages, since you can easily argue
that each language module is what Martin Fowler calls a
language. "Full integration" can refer to referencing as well
as embedding, and includes type systems and semantics.

• The primary source of information is a persistent abstract repre-
sentation and language users manipulate a DSL through a pro-
jectional editor. This implies that projectional editing must
be used22. I don’t agree. Storing programs in their abstract

22 Projectional editing means that users
don’t write text that is subsequently
parsed. Instead, user interactions with
the concrete syntax directly change
the underlying abstract syntax. We’ll
discuss this technology much more
extensively in Part III of the book.representation and then using projection to arrive at an ed-

itable representation is very useful, and maybe even the best
approach to achieve modular languages23. However, in the 23 In fact, this is what I think personally.

But I don’t think that this characteristic
is essential for language workbenches.

end I don’t think this is important, as long as languages are
modular. If this is possible with a different approach, such
as scannerless parsers24, that is fine with me.

24 Scannerless parsers do not distinguish
between recognizing tokens and pars-
ing the structure of the tokens, thereby
avoiding some problems with grammar
composability. We’ll discuss this further
in the book as well

• Language designers define a DSL in three main parts: schema, ed-
itor(s) and generator(s). I agree that ideally a language should
be defined "meta model first", i.e. you first define a schema
(aka the meta model or AST), and then the concrete syntax
(editor or grammar), based on the schema: MPS does it this
way. However, I think it is also ok to start with the gram-
mar, and have the meta model derived. This is the typical
workflow with Xtext, although it can do both. From the lan-
guage user’s point of view, it does not make a big difference
in most cases.

• A language workbench can persist incomplete or contradictory in-
formation. I agree. This is trivial if the models are stored in a
concrete textual syntax, but it is not so trivial if a persistent
representation based on the abstract syntax is used.

Let me add two additional requirements. For all the languages
built with the workbench, tool support must be available: syn-
tax highlighting, code completion, any number of static anal-
yses (including type checking in the case of a statically typed

dsl engineering 37

language) and ideally also a debugger25. A final requirement 25 A central idea of language work-
benches is that language definition
always includes IDE definition. The two
should be integrated.

is that I want to be able to program complete systems within
the language workbench. Since in most interesting systems you
will still write parts in a GPL, GPLs must also be available in
the environment based on the same language definition/edit-
ing/processing infrastructure. Depending on the target do-
mains, this language could be Java, Scala or C#, but it could
also be C/C++ for the embedded community. Starting with an
existing general-purpose language also makes the adoption of
the approach simpler: incremental language extensions can be
developed as the need arises.

� Concrete Syntax By default, I expect the concrete syntax of
DSLs to be textual. Decades of experience show that textual
syntax, together with good tool support, is adequate for large
and complex software systems26. This becomes even more true

26 This is not true for all formalisms.
Expressing hierarchical state charts
textually can be a challenge. However,
textual syntax is a good default that can
be used unless otherwise indicated.

if you consider that programmers will have to write less code
in a DSL – compared to expressing the same functionality in a
GPL – because the abstractions available in the languages will
be much more closely aligned with the domain. And program-
mers can always define an additional language module that fits
a domain.

Using text as the default does not mean that it should stop
there. There are worthwhile additions. For example, symbolic
(as in mathematical) notations and tables should be supported.
Finally, graphical editing is useful for certain cases. Examples
include data structure relationships, state machine diagrams or
data flow systems. The textual and graphical notations must be
integrated, though: for example, you will want to embed the
expression language module into the state machine diagram to
be able to express guard conditions.

The need to see graphical notations to gain an overview over
complex structures does not necessarily mean that the program
has to be edited in a graphical form: custom visualizations are
important as well. Visualizations are graphical representations
of some interesting aspect of the program that is read-only, au-
tomatically laid out and supports drill-down back to the pro-
gram (you can double-click on, say, a state in the diagram, and
the text editor selects that particular state in the program text).

� Language Libraries The importance of being able to build
your own languages varies depending on the concern at hand.
Assume that you work for an insurance company and you want

38 dslbook.org

to build a DSL that supports your company’s specific way of
defining insurance contracts. In this case it is essential that the
language is aligned exactly with your business, so you have
to define the language yourself27. There are other similar ex- 27 Examples concepts in the insurance

domain include native types for dates,
times and time periods, currencies,
support for temporal data and the sup-
porting operators, as well as business
rules that are "polymorphic" regarding
their period of applicability

amples: building DSLs to describe radio astronomy observa-
tions for a given telescope, our case study language to describe
cooling algorithms for refrigerators, or a language for describ-
ing telecom billing rules (all of these are actual projects I have
worked on).

However, for a large range of concerns relating to software
engineering or software architecture, the relevant abstractions
are well known. They could be made available for reuse (and
adaptation) in a library of language modules. Examples in-
clude:

• Hierarchical components, ports, component instances and
connectors.

• Tabular data structure definition (as in the relational model)
or hierarchical data structure definition (as in XML and XML
schema), including specifications for persisting that data.

• Definition of rich contracts, including interfaces, pre- and
post conditions, protocol state machines and the like.

• Various communication paradigms, such as message pass-
ing, synchronous and asynchronous remote procedure calls
and service invocations.

• Abstractions for concurrency based on transactional mem-
ory or actors.

This sounds like a lot to put into a programming language.
But remember: it will not all be in one language. Each of those
concerns will be a separate language module that will be used
in a program only if needed.

It is certainly not possible to define all these language mod-
ules in isolation. Modules have to be designed to work with
each other, and a clear dependency structure has to be estab-
lished. Interfaces on language level support "plugging in" new
language constructs. A minimal core language, supporting
primitive types, expression, functions and maybe OO, will act
as the focal point around which additional language modules
are organized.

dsl engineering 39

Many of these architectural concerns interact with frame-
works, platforms and middleware. It is crucial that the ab-
stractions in the language remain independent of specific tech-
nology solutions. In addition, when interfacing with a spe-
cific technology, additional (hopefully declarative) specifica-
tions might be necessary: such a technology mapping should
be a separate model that references the core program that ex-
presses the application logic. The language modules define
a language for specifying persistence, distribution or contract
definition. Technology suppliers can support customized gen-
erators that map programs to the APIs defined by their tech-
nology, taking into account possible additional specifications
that configure the mapping28.

28 This is a little like service provider
interfaces (SPIs) in Java enterprise
technology.

Figure 2.7: A program written in a
modularly extendible C (from the
mbeddr.com project).

� A Vision of Programming For me, this is the vision of pro-
gramming I am working towards. The distinction between
modeling and programming vanishes. People can develop code
using a language directly suitable to the task at hand and aligned
with their role in the overall development project. They can

40 dslbook.org

also build their own languages or language extensions, if that
makes their work easier. Most of these languages will be rel-
atively small, since they only address one aspect of a system,
and typically extend existing languages (Fig. 3.13 shows an ex-
ample of extensions to C). They are not general-purpose: they
are DSLs.

Tools for this implementing this approach exist. Of course MPS is one of them, which is why
I focus a lot on MPS in this book.
Intentional’s Domain Workbench is
another one. Various Eclipse-based
solutions (with Xtext/ Xbase/Xtend at
the core) are getting there as well.

they can become even better, for example in the development
of debuggers or integration of graphical and textual languages,
but we are clearly getting there.

2.5 Benefits of using DSLs

Using DSLs can reap a multitude of benefits. There are also
some challenges you have to master: I outline these in the next
section. Let’s look at the upside first.

2.5.1 Productivity

Once you’ve got a language and its execution engine for a par-
ticular aspect of your development task, work becomes much
more efficient, simply because you don’t have to do the grunt
work manually29. This is the most obviously useful if you can 29 Presumably the amount of DSL code

you have to write is much less than
what you’d have to write if you used
the target platform directly.

replace a lot of GPL code with a few lines of DSL code. There
are many studies that show that the mere amount of code one
has to write (and read!) introduces complexity, independent of
what the code expresses, and how. The ability to reduce that
amount while retaining the same semantic content is a huge
advantage.

You could argue that a good library or framework will do
the job as well. True, libraries, frameworks and DSLs all encap-
sulate knowledge and functionality, making it easily reusable.
However, DSLs provide a number of additional benefits, such
as a suitable syntax, static error checking or static optimizations
and meaningful IDE support.

2.5.2 Quality

The approach can also yield better
performance if the execution engine
contains the necessary optimizations.
However, implementing these is a lot
of work, so most DSLs do not lead to
significant gains in performance.

Using DSLs can increase the quality of the created product:
fewer bugs, better architectural conformance, increased main-
tainability. This is the result of the removal of (unnecessary)
degrees of freedom for programmers, the avoidance of dupli-
cation of code (if the DSL is engineered in the right way) and
the consistent automation of repetitive work by the execution

dsl engineering 41

engine30. As the next item shows, more meaningful valida- 30 This is also known as correct-by-
construction: the language only allows
the construction of correct programs.

tion and verification can be performed on the level of DSL pro-
grams, increasing the quality further.

2.5.3 Validation and Verification

Since DSLs capture their respective concern in a way that is not
cluttered with implementation details, DSL programs are more
semantically rich than GPL programs. Analyses are much eas-
ier to implement, and error messages can use more meaningful
wording, since they can use domain concepts. As mentioned
above, some DSLs are built specifically to enable non-trivial,
formal (mathematical) analyses. Manual review and valida-
tion also becomes more efficient, because the domain-specific
aspects are uncluttered, and domain experts can be involved
more directly.

2.5.4 Data Longevity

If done right, models are independent of specific implementa-
tion techniques. They are expressed at a level of abstraction
that is meaningful to the domain – this is why we can ana-
lyze and generate based on these models. This also means that
models can be transformed into other representations if the
need arises, for example, because you are migrating to a new
DSL technology. While the investments in a DSL implementa-
tion are specific to a particular tool (and lost if you change it),
the models should largely be migratable31.

31 This leads to an interesting definition
of legacy code: it is legacy, if you
cannot access the domain semantics of
a data structure, and hence you cannot
automatically migrate it to a different
formalism.

2.5.5 A Thinking and Communication Tool

If you have a way of expressing domain concerns in a language
that is closely aligned with the domain, your thinking becomes
clearer, because the code you write is not cluttered with im-
plementation details. In other words, using DSLs allows you
to separate essential from accidental complexity, moving the
latter to the execution engine. This also makes team communi-
cation simpler.

But not only is using the DSL useful; also, the act of building
the language can help you improve your understanding of the
domain for which you build the DSL. It also helps straighten Building a language requires formal-

ization and decision making: you can’t
create a DSL if you don’t really know
what you’re talking about.

out differences in the understanding of the domain that arise
from different people solving the same problem in different
ways. In some senses, a language definition is an "executable
analysis model"32. I have had several occasions on which cus- 32 Remember the days when "analysts"

created "analysis models"?tomers said, after a three-day DSL prototyping workshop, that

42 dslbook.org

they had learned a lot about their own domain, and that even
if they never used the DSL, this alone would be worth the ef-
fort spent on building it. In effect, a DSL is a formalization of
the Ubiquitous Language in the sense of Eric Evans’ Domain
Driven Design33.

33 E. Evans. Domain-driven design:
tackling complexity in the heart of software.
Addison-Wesley, 2004

2.5.6 Domain Expert Involvement

DSLs whose domain, abstractions and notations are closely
aligned with how domain experts (i.e. non-programmers) ex-
press themselves, allow for very good integration between de-
velopers and domain experts: domain experts can easily read,
and often write program code, since it is not cluttered with
implementation details irrelevant to them. And even when do-

Of course, the domain (and the people
working in it) must be suitable for for-
malization, but once you start looking,
it is amazing how many domains fall
into this category. Insurance contracts,
hearing aids and refrigerators are just
some examples you maybe didn’t ex-
pect. On the other hand, I once helped
build a DSL to express enterprise gover-
nance and business policies. This effort
failed, because the domain was much
too vague and too "stomach driven" for
it to be formalizable.

main experts aren’t willing to write DSL code, developers can
at least pair with them when writing code, or use the DSL
code to get domain experts involved in meaningful validation
and reviews (Fowler uses the term "business-readable DSLs" in
this case). At the very least you can generate visualizations,
reports or even interactive simulators that are suitable for use
by domain experts.

2.5.7 Productive Tooling

In contrast to libraries, frameworks, and internal DSLs (those
embedded into a host language and implemented with host
language abstractions), external DSLs can come with tools, i.e.
IDEs that are aware of the language. This can result in a much
improved user experience. Static analyses, code completion,
visualizations, debuggers, simulators and all kinds of other
niceties can be provided. These features improve the produc-
tivity of the users and also make it easier for new team mem-
bers to become productive34.

34 JetBrains once reported the following
about their webr and dnq Java exten-
sions for web applications and database
persistence: "Experience shows that the
language extensions are easier to learn
than J2EE APIs. As an experiment,
a student who had no experience in
web development was tasked to create
a simple accounting application. He
was able to produce a web application
with sophisticated Javascript UI in
about 2 weeks using the webr and dnq
languages."

2.5.8 No Overhead

If you are generating source code from your DSL program (as
opposed to interpreting it) you can use domain-specific ab-
stractions without paying any runtime overhead, because the
generator, just like a compiler, can remove the abstractions
and generate efficient code. And it generates the same low-
overhead code, every time, automatically. This is very useful
in cases where performance, throughput or resource efficiency
is a concern (i.e. in embedded systems, but also in the cloud,
where you run many, many processes in server farms; energy
consumption is an issue these days).

dsl engineering 43

2.5.9 Platform Independent/Isolation

In some cases, using DSLs can abstract from the underlying
technology platform35. Using DSLs and an execution engine

35 Remember OMG’s MDA? They
introduced the whole model-driven
approach primarily as a means to
abstract from platforms (probably a
consequence of their historical focus
on interoperability). There are cases
where interoperability is the primary
focus: cross-platform mobile develop-
ment is an example. However, in my
experience, platform independence is
often just one driver in many, and it is
typically not the most important one.

makes the application logic expressed in the DSL code inde-
pendent of the target platform36. It is absolutely feasible to

36 This is not necessarily true for archi-
tecture DSLs and utility DSLs, whose
abstractions may be tied relatively
closely to the concepts provided by the
target platform.

change the execution engine and the target platform "under-
neath" a DSL to execute the code on a new platform. Porta-
bility is enhanced, as is maintainability, because DSLs support
separation of concerns – the concerns expressed in the DSL
(e.g. the application logic) is separated from implementation
details and target platform specifics.

Often no single one of the advantages would drive you to us-
ing a DSL. But in many cases you can benefit in multiple ways,
so the sum of the benefits is often worth the (undoubtedly nec-
essary) investment in the approach.

2.6 Challenges

There is no such thing as a free lunch. This is also true for
DSLs. Let’s look at the price you have to pay to get all the
benefits described above.

2.6.1 Effort of Building the DSLs

Before a DSL can be used, it has to be built37. If the DSL 37 If it has been built already, before a
project, then using the DSL is obviously
useful.

has to be developed as part of a project, the effort of build-
ing it has to be factored into the overall cost-benefit analysis.
For technical DSLs38, there is a huge potential for reuse (e.g. a

38 Technical DSLs are those that ad-
dress aspects of software engineering
such as components, state machines
or persistence mappings, not appli-
cation domain DSLs for a technical
domain (such as automotive software or
machine control).

large class of web or mobile applications can be described with
the same DSL), so here the investment is easily justified. On
the other hand, application domain-specific DSLs (e.g. pension
plan specifications) are often very narrow in focus, so the in-
vestment in building them is harder to justify at first glance.
But these DSLs are often tied to the core know-how of a busi-
ness and provide a way to describe this knowledge in a formal,
uncluttered, portable and maintainable way. That should be
a priority for any business that wants to remain relevant! In
both cases, modern tools reduce the effort of building DSLs
considerably, making it a feasible approach in more and more
projects.

There are three factors that make DSL
creation cheaper: deep knowledge
about a domain, experience of the DSL
developer and productivity of the tools.
This is why focussing on tools in the
context of DSLs is important.

44 dslbook.org

2.6.2 Language Engineering Skills

Building DSLs is not rocket science. But to do it well requires
experience and skill: it is likely that your first DSL will not be
great. Also, the whole language/compiler thing has a bad rep-
utation that mainly stems from "ancient times" when tools like
lex/yacc, ANTLR, C and Java were the only ingredients you
could use for language engineering. Modern language work-
benches have changed this situation radically, but of course
there is still a learning curve. In addition, the definition of
good languages – independent of tooling and technicalities – is
not made simpler by better tools: how do you find out which
abstractions need to go into the languages? How do you cre-
ate "elegant" languages? The book provides some guidance in
Part II, DSL Design, but it nevertheless requires a significant
element of experience and practice that can only be build up
over time.

2.6.3 Process Issues

Using DSLs usually leads to work split: some people build
the languages, others use them. Sometimes the languages have
been built already when you start a development project; some-
times they are built as part of the project. In the latter case es-
pecially, it is important that you establish some kind of process
for how language users interact with language developers and
with domain experts39. Just like any other situation in which

39 For some DSLs, the users of the DSL
are the same people who build the
DSL (often true for utility DSLs). This
is great because there is no commu-
nication overhead or knowledge gap
between the domain expert (you) and
the DSL developer (you). It is a good
idea to choose such a DSL as your first
DSL.

one group of people creates something that another group of
people relies on, this can be a challenge40.

40 This is not much different for lan-
guages than for any other shared
artifact (frameworks, libraries, tools in
general), but it also isn’t any simpler
and needs to be addressed.

2.6.4 Evolution and Maintenance

A related issue is language evolution and maintenance. Again,
just like any other asset you develop for use in multiple con-
texts, you have to plan ahead (people, cost, time, skills) for the
maintenance phase. A language that is not actively maintained
and evolved will become outdated over time and will become
a liability. During the phase where you introduce DSLs into an
organization especially, rapid evolution based on the require-
ments of users is critical to build trust in the approach41.

41 While this is an important aspect,
once again it is no worse for DSLs than
it is for any other shared, reused asset.

2.6.5 DSL Hell

Once development of DSLs becomes technically easy, there is
a danger that developers create new DSLs instead of searching
for and learning existing DSLs. This may end up as a large

dsl engineering 45

set of half-baked DSLs, each covering related domains, pos-
sibly with overlap, but still incompatible. The same problem
can arise with libraries, frameworks or tools. They can all be
addressed by governance and effective communication in the
team42.

42 It also helps if DSLs are incrementally
extensible, so an existing language
can be extended instead of creating a
completely new language.

2.6.6 Investment Prison

The more you invest in reusable artifacts, the more productive
you become. However, you may also get locked into a particu-
lar way of doing things. Radically changing your business may
seem unattractive once you’ve become very efficient at the cur-
rent one. It becomes expensive to "move outside the box". To

With the advent of the digital age, we
all know of many businesses that went
bankrupt because they had stuck to a
dying business model. Maybe they just
couldn’t see that things would change,
but maybe it way because they were
so efficient at what they were doing,
they couldn’t invest into new ideas or
approaches for fear of canibalizing their
mainstream business.

avoid this, keep an open mind and be willing to throw things
away and come up with more appropriate solutions.

2.6.7 Tool Lock-in

Many of the DSL tools are open source, so you don’t get locked
into a vendor. But you will still get locked into a tool. While it
is feasible to exchange model data between tools, there is es-
sentially no interoperability between DSL tools themselves, so
the investments in DSL implementation are specific to a single
tool.

2.6.8 Cultural Challenges

Statements like "Language Engineering is complicated", "De-
velopers want to program, not model", "Domain experts aren’t
programmers" and "If we model, we use the UML standard" are
often-overheard prejudices that hinder the adoption of DSLs. I
hope to provide the factual and technical arguments for fight-
ing these in this book. But an element of cultural bias may
still remain. You may have to do some selling and convincing
that is relatively independent of the actual technical arguments.
Problems like this always arise if you want to introduce some-
thing new into an organization, especially if it changes signif-
icantly what people do, how they do it or how they interact.
A lot has been written about introducing new ideas into orga-
nizations, and I recommend reading Fearless Change by Rising
and Manns43 if you’re the person who is driving the introduc-

43 L. Rising and M. L. Manns. Fearless
Change: Patterns for Introducing New
Ideas: Introducing Patterns into Organiza-
tions. Addison-Wesley, 2004tion of DSLs into your organization.

Of course there are other things that can go wrong: your DSL
or generator might be buggy, resulting in buggy systems. You

46 dslbook.org

might have the DSL developed by external parties, giving away
core domain knowhow. The person who built the DSL may
leave the company. However, these things are not specific to
DSLs: they can happen with anything, so we don’t address
them as challenges in the context of DSLs specifically.

� Is it worth it? Should you use DSLs? The only realistic
answer is: it depends. With this book I aim to give you as
much help as possible. The better you understand the topic,
the easier it is to make an informed decision. In the end, you
have to decide for yourself, or maybe ask for the help of people
who have done it before.

Let us look at when you should not use DSLs. If you don’t
understand the domain you want to write a DSL for, or if you
don’t have the means to learn about it (e.g. access to somebody
who knows the domain), you’re in trouble. You will identify
the wrong abstractions, miss the expectations of your future
users and generally have to iterate a lot to get it right, mak-
ing the development expensive44. Another sign of problems is 44 If everyone is aware of this, then

you might still want to try to build a
language as a means of building the
understanding about the domain. But
this is risky, and should be handled
with care.

this: if you build your DSL iteratively and over time and the
changes requested by the domain experts don’t become fewer
and smaller, and concern more and more detailed points, then
you know you are in trouble, because it seems there is no com-
mon understanding about the domain. It is hard to write a DSL
for a set of stakeholders who can’t agree on what the domain
is all about.

Another problem is an unknown target platform. If you
don’t know how to implement a program in the domain on
the target platform manually, you’ll have a hard time imple-
menting an execution engine (generator or interpreter). You
might want to consider writing (or inspecting) a couple of rep-
resentative example applications to understand the patterns
that should go into the execution engine.

DSLs and their tooling are sophisticated software programs
themselves. They need to be designed, tested, deployed and
documented. So a certain level of general software develop-
ment proficiency is a prerequisite. If you are struggling with
unit testing, software design or continuous builds, then you
should probably master these challenges before you address
DSLs. A related topic is the maturity of the development pro-
cess. The fact that you introduce additional dependencies (in
the form of a supplier-consumer relationship between DSL de-

dsl engineering 47

velopers and DSL users) into your development team requires
that you know how to track issues, handle version manage-
ment, do testing and quality assurance and document things
in a way accessible to the target audience. If your development
team lacks this maturity, you might want to consider first intro-
ducing those aspects into the team before you start using DSLs
in a strategic way – although the occasional utility DSL is the
obvious exception.

2.7 Applications of DSLs

So far we have covered some of the basics of DSLs, as well
as the benefits and challenges. This section addresses those
aspects of software engineering in which DSLs have been used
successfully. Part IV of the book provides extensive treatment
of most of these.

2.7.1 Utility DSLs

One use of DSLs is simply as utilities for developers. A devel-
oper, or a small team of developers, creates a small DSL that
automates a specific, usually well-bounded aspect of software
development. The overall development process is not based on
DSLs, it’s a few developers being creative and simplifying their
own lives45. 45 Often, these DSL serve as a "nice

front end" to an existing library or
framework, or automates a particularly
annoying or intricate aspect of software
development in a given domain.

Examples include the generation of array-based implemen-
tations for state machines, any number of interface/contract
definitions from which various derived artifacts (classes, WSDL,
factories) are generated, or tools that set up project and code
skeletons for given frameworks (as exemplified in Rails’ and
Roo’s scaffolding). The Jnario language for behavior-driven
development is discussed as an example of a utility DSL in
Chapter 19.

2.7.2 Architecture DSLs

A larger-scale use of DSLs is to use them to describe the archi-
tecture (components, interfaces, messages, dependencies, pro-
cesses, shared resources) of a (larger) software system or plat-
form. In contrast to using existing architecture modeling lan-
guages (such as UML or the various existing architecture de-
scription languages (ADLs)), the abstractions in an architec-
ture DSL can be tailored specifically to the abstractions rele-
vant to the particular platform or system architecture. Much

48 dslbook.org

more meaningful analyses and generators are possible in this
way. From the architecture models expressed in the DSL, code
skeletons are generated into which manually written applica-
tion code is inserted. The generated code usually handles the
integration with the runtime infrastructure. Often, these DSLs
also capture non-functional constraints such as timing or re-
source consumption. Architecture DSLs are usually developed
during the architecture exploration phase of a project. They
can help to ensure that the system architecture is consistently
implemented by a potentially large development team.

For example in AUTOSAR46, the architecture is specified in 46 AUTOSAR is an architectural stan-
dard for automotive software develop-
ment.

models, then the complete communication middleware for a
distributed component infrastructure is generated. Examples
in embedded systems in general abound: I have used this ap-
proach for a component architecture in software-defined ra-
dio, as well as for factory automation systems, in which the
distributed components had to "speak" an intricate protocol
whose handlers could be generated from a concise specifica-
tion. Finally, the approach can also be used well in enter-
prise systems that are based on a multi-tier, database-based
distributed server architecture. Middleware integration, server
configuration and build scripts can often be generated from
relatively concise models.

We discuss an example architecture DSL for distributed, com-
ponent-based systems as one of the case studies in Part II of the
book, and also in Chapter 18.

2.7.3 Full Technical DSLs

For some domains, DSLs can be created that don’t just embody
the architectural structure of the systems, but their complete
application logic as well, so that 100% of the code can be gen-
erated. DSLs like these often consist of several language mod-
ules that play together to describe all aspects of the underlying
system. I emphasize the word "technical", since these DSLs are
used by developers, in contrast to application domain DSLs.

Examples include DSLs for some types of Web application,
DSLs for mobile phone apps, as well as DSLs for developing
state-based or dataflow-based embedded systems. As an ex-
ample of this class of DSLs we discuss mbeddr, a set of exten-
sions to C for embedded software development as an example
in Part II and in Chapter 20.

dsl engineering 49

2.7.4 Application Domain DSLs

In this case the DSLs describe the core business logic of an ap-
plication system independent of its technical implementation.
These DSLs are intended to be used by domain experts, usually
non-programmers. This leads to more stringent requirements
regarding notation, ease of use and tool support. These also
typically require more effort in building the language, since a
"messy" application domain first has to be understood, struc-
tured and possibly "re-taught" to the domain experts47. 47 In contrast, technical DSLs are often

much easier to define, since they are
guided very much by existing formal
artifacts (architectures, frameworks,
middleware infrastructures).

Examples include DSLs for describing pension plans, a DSL
for describing the cooling algorithms in refrigerators, a DSL for
configuring hearing aids or DSLs for insurance mathematics.
We discuss the pension plan example in Part II, and discuss a
DSL for defining health monitoring applications in Chapter 22.

2.7.5 DSLs in Requirements Engineering

A related topic to application domain DSLs is the use of DSLs
in the context of requirements engineering. Here, the focus of
the languages is not so much on automatic code generation,
but rather on a precise and checkable complete description of
requirements. Traceability to other artifacts is important. Of-
ten, the DSLs need to be embedded or otherwise connected
to prose text, to integrate them with "classical" requirements
approaches.

Examples include a DSL for helping with the trade analy-
sis for satellite construction, or pseudo-structured natural lan-
guage DSLs that assume some formal meaning for domain en-
tities and terms such as should or must48. We discuss the con-

48 The latter kind of DSLs, also called
Controlled Natural Language, is quite
different from the kinds of DSLs we
cover in this book. I will not cover it
any furter.

nection of DSLs and requirements engineering in Chapter 17.

2.7.6 DSLs used for Analysis

Another category of DSL use is as the basis for analysis, check-
ing and proofs. Of course, checking plays a role in all use cases
for DSLs – you want to make sure that the models you release
for downstream use are "correct" in a sense that goes beyond
what the language syntax already enforces. But in some cases,
DSLs are used to express concerns in a formalism that lends
itself to formal verification (safety, scheduling, concurrency, re-
source allocation). While code generation is often a part of
it, code generation is not the driver for the use of this type
of DSL. This is especially relevant in complex technical sys-
tems, or in systems engineering, where we look beyond only

50 dslbook.org

software and consider a system as a whole (including mechani-
cal, electric/electronic or fluid-dynamic aspects). Sophisticated
mathematical formalisms are used here – I will cover this as-
pect only briefly in this book, as part of the Semantics chapter
(Section 4.1).

2.7.7 DSLs used in Product Line Engineering

At its core, PLE is mainly about expressing, managing and then
later binding variability between a set of related products. De-
pending on the kind of variability, DSLs are a very good way of
capturing the variability, and later, in the DSL code, of describ-
ing a particular variant. Often, but not always, these DSLs are
used more for configuration than for "creatively constructing"
a solution to a problem.

Examples include the specification of refrigerator models as
the composition of the functional layout of a refrigerator and a
cooling algorithm, injected with specific parameter values. We
look at the relationship of DSLs and PLE in Chapter 21.

2.8 Differentiation from other Works and Approaches

2.8.1 Internal versus External DSLs

Internal DSLs are DSLs that are embedded into general-purpose
languages. Usually, the host languages are dynamically typed
and the implementation of the DSL is based on meta program-
ming (Scala is an exception here, since it is a statically typed
language with type inference). The difference between an API
and an internal DSL is not always clear, and there is a middle
ground called a Fluent API. Let’s look at the three:

• We all know what a regular object-oriented API looks like.
We instantiate an object and then call a sequence of methods
on the object. Each method call is packaged as a separate
statement.

• A fluent API essentially chains method calls. Each method
call returns an object on which subsequent calls are possible.
This results in more concise code, and, more importantly, by
returning suitable intermediate objects from method calls, a
sequence of valid subsequent method calls can be enforced
(almost like a grammar – this is why it could be consid-
ered a DSL). Here is a Java/Easymock example, taken from
Wikipedia:

dsl engineering 51

Collection coll = EasyMock.createMock(Collection.class);
EasyMock.expect(coll.remove(null)).andThrow(new NullPointerException()).

atLeastOnce();

• Fluent APIs are chained sequences of method calls. The
syntax makes this obvious, and there is typically no way to
change this syntax, as a consequence of the inflexible syntax
rules of the host language. Host languages with more flex-
ible syntax can support internal DSL that look much more
like actual, custom languages. Here is a Ruby on Rails ex-
ample49, which defines a data structure (and, implicitly, a 49 taken from rubyonrails.org

database table) for a blog post:

class Post < ActiveRecord::Base
validates :name, :presence => true
validates :title, :presence => true,

:length => { :minimum => 5 }
end

While I recognize the benefits of fluent APIs and internal DSLs,
I think they are fundamentally limited by the fact that an im-
portant ingredient is missing: IDE support50. In classical inter-

50 Note that with modern language
workbenches, you can also achieve
language extension or embedding,
resulting in the same (or even a some-
what cleaner) syntax. However, these
extensions and embeddings are real lan-
guage extensions (as opposed to meta
programs) and do come with support
for static constraint checking and IDE
support. We cover this extensively in
the book.

nal DSLs, the IDE is not aware of the grammar, constraints or
other properties of the embedded DSL beyond what the type
system can offer, which isn’t much in the case of dynamically
typed languages. Since I consider IDE integration an impor-
tant ingredient to DSL adoption, I decided not to cover internal
DSLs in this book51.

51 In addition, I don’t have enough real-
world experience with internal DSLs to
be able to talk about them in a book.2.8.2 Compiler Construction

Language definition, program validation and transformation
or interpretation are obviously closely related to compiler con-
struction – even though I don’t make this connection explicit
in the book all the time. And many of the techniques that are
traditionally associated with compiler construction are appli-
cable to DSLs. However, there are also significant differences.
The tools for building DSLs are more powerful and convenient
and also include IDE definition52, a concern not typically as-

52 There are universities who teach com-
piler construction based on language
workbenches and DSLs.sociated with compiler construction. Compilers also typically

generate machine code, whereas DSLs typically transform to
source code in a general-purpose language. Finally, a big part
of building compilers is the implementation of optimizations
(in the code generator or interpreter), a topic that is not as
prominent in the context of DSLs. I recommend reading the
"Dragon Book"53 or Appel’s Modern Compiler Construction54.

53 A. V. Aho, M. S. Lam, R. Sethi, and
J. D. Ullman. Compilers: Principles,
Techniques, and Tools (2nd Edition).
Addison Wesley, August 2006

54 A. W. Appel. Modern Compiler
Implementation in Java. Cambridge
University Press, 1998

52 dslbook.org

2.8.3 UML

So what about the Unified Modeling Language – UML? I de-
cided not to cover UML in this book. I focus on mostly tex-
tual DSLs and related topics. UML does show up peripherally
in a couple of places, but if you are interested in UML-based
MDSD, then this book is not for you. For completeness, let us
briefly put UML into the context of DSLs.

When I wrote my "old" book on MDSD,
UML played an important role. At
the time, I really did use UML a lot
for projects involving models and
code generation. Over the years, the
importance of UML has diminished
significantly (in spite of the OMG’s
efforts to popularize both UML and
MDA), mainly because of the advent of
modern language workbenches.UML is a general-purpose modeling language. Like Java

or Ruby, it is not specific to any domain (unless you consider
software development in general to be a domain, which ren-
ders the whole DSL discussion pointless), so UML itself does
not count as a DSL55. To change this, UML provides profiles, 55 UML can be seen as an integrated

collection of DSLs that describe various
aspects of software systems: class
structure, state based behavior, or
deployment. However, these DSLs still
address the overall domain of software.

which are a (limited and cumbersome) way to define variants
of UML language concepts and to effectively add new ones. It
depends on the tool you choose how well this actually works
and how far you can adapt the UML syntax and the modeling
tool as part of profile definition. In practice, most people use
only a very small part of UML, with the majority of concepts
defined via profiles. It is my experience that because of that, it
is much more productive, and often less work, to build DSLs
with "real" language engineering environments, as opposed to
using UML profiles.

So is UML used in MDSD? Sure. People build profiles and
use UML-based DSLs, especially in large organizations where
the (perceived) need for standardization is para- mount56.

56 It is interesting to see that even
these sectors increasingly embrace
DSLs. I know of several projects in
the aerospace/defense sector where
UML-based modeling approaches
were replaced with very specific and
much more productive DSLs. It is
also interesting to see how sectors
define their own standard languages.
While I hesitate to call it a DSL, the
automotive industry is in the process
of standardizing on AUTOSAR and its
modeling languages.

2.8.4 Graphical versus Textual

This is something of a religious war, akin to the statically-typed
versus dynamically-typed languages debate. Of course, there
is a use for both flavors of notation, and in many cases, a mix is
the best approach. In a number of cases, the distinction is even
hard to make: tables or mathematical and chemical notations
are both textual and graphical in nature57. 57 The ideal tool will allow you to use

and mix all of them, and we will see in
the book how close existing tools come
to this ideal.

However, this book does have a bias towards textual nota-
tions, for several reasons. I feel that the textual format is more
generally useful, that it scales better and that the necessary
tools take (far) less effort to build. In the vast majority of cases,
starting with textual languages is a good idea – graphical visu-
alizations or editors can be built on top of the meta model later,
if a real need has been established. If you want to learn more
about graphical DSLs, I suggest you read Kelly and Tolvanen’s
book Domain Specific Modeling 58.

58 S. Kelly and J.-P. Tolvanen. Domain-
Specific Modeling: Enabling Full Code
Generation. Wiley-IEEE Computer
Society Press, March 2008

Part II

DSL Design

dsl engineering 55

This part of the book has been written together with Eelco
Visser of TU Delft. You can reach him at e.visser@tudelft.nl.

Throughout this part of the book we refer back to the five case
studies introduced in Part I of the book (Section 1.11). We use
a the following labels:

Component Architecture: This refers to the component
architecture case study described in Section 1.11.1. J

Refrigerators: This refers to the refrigerator configuration
case study described in Section 1.11.2. J

mbeddr C: This refers to the mbeddr.com extensible C case
study described in Section 1.11.3. J

Pension Plans: This refers to the pension plans case study
described in Section 1.11.4. J

WebDSL: This refers to the WebDSL case study described
in Section 1.11.5. J

Note that in this part of the book the examples will only be
used to illustrate DSL design and the driving design decisions.
Part III of the book will then discuss the implementation as-
pects.

Some aspects of DSL design have been formalized with math-
ematical formulae. These are intended as an additional means
of explaining some of the concepts. Formulae are able to state
properties of programs and languages in an unambiguous way.
However, I want to emphasize that reading or understanding
the formulae is not essential for understanding the language
design discussion. So if you’re not into mathematical formu-
lae, just ignore them.

This part consists of three chapters. In Chapter 3 we intro-
duce important terms and concepts including domain, model
purpose and the structure of programs and languages. In Chap-
ter 4 we discuss a set of seven dimensions that guide the design
of DSLs: expressivity, coverage, semantics, separation of con-
cerns, completeness, language modularization and syntax. Fi-
nally, in Chapter 5 we look at well-known structural and behav-
ioral paradigms (such as inheritance or state based behaviour)
and discuss their applicability to DSLs.

3
Conceptual Foundations

This chapter provides the conceptual foundations for the
discussion of the design dimensions. It consists of three sec-
tions. The first one, Program, Languages and Domain
defines some of the terminology around DSL design we will
use in the rest of this chapter. The second section briefly ad-
dress the Purpose of programs as a way of guiding their de-
sign. And the third section briefly introduces parser-based
and projectional editing, since some design considerations
depend on this rather fundamental difference in DSL im-
plementation.

3.1 Programs, Languages and Domains

Domain-specific languages live in the realm of programs, lan-
guages and domains. So we should start by explaining what
these things are. We will then use these concepts throughout
this part of the book.

As part of this book’s treatment of DSLs, we are primarily in-
terested in computation, i.e. we are aimed at creating executable
software1. So let’s first consider the relation between programs 1 This is opposed to just communicating

among humans or describing complete
systems.

and languages. Let’s define P to be the set of all conceivable
programs. A program p in P is the conceptual representation
of some computation that runs on a universal computer (Turing
machine). A language l defines a structure and notation for ex-
pressing or encoding programs from P. Thus, a program p in P
may have an expression in L, which we will denote as pl .

There can be several languages l1 and l2 that express the
same conceptual program p in different way pl1 and pl2 (fac-

58 dslbook.org

torial can be expressed in Java and Lisp, for example). There
may even be multiple ways to express the same program in
a single language l (in Java, factorial can be expressed via
recursion or with a loop). A transformation T between lan-
guages l1 and l2 maps programs from their l1 encoding to their
l2 encoding, i.e. T(pl1) = pl2 .

Notice that this transformation only
changes the language used to express
the program. The conceptual program
does not change. In other words, the
transformation preserves the semantics
of pl1 . We will come back to this notion
as we discuss semantics in more detail
in Section 4.3.It may not be possible to encode all programs from P in a

given language l. We denote as Pl the subset of P that can
be expressed in l. More importantly, some languages may be Turing-complete languages can by

definition express all of Pbetter at expressing certain programs from P: the program may
be shorter, more readable or more analyzable.

Pension Plans: The pension plan language is very good at
representing pension calculations, but cannot practically
be used to express other software. For example, user de-
fined data structures and loops are not supported. J

� Domains What are domains? We have seen one way of
defining domains in the previous paragraph. When we said
that a language l covers a subset of P, we can simply call this
subset the domain covered with l. However, this is not a very
useful approach, since it equates the scope of a domain trivially
with the scope of a language (the subset of P in that domain PD

is equal to the subset of P we can express with a language l Pl).
We cannot ask questions like: "Does the language adequately
cover the domain?", since it always does, by definition.

There are two more useful approaches. In the inductive or
bottom-up approach we define a domain in terms of existing
software used to address a particular class of problems or prod-
ucts. That is, a domain D is identified as a set of programs with
common characteristics or similar purpose. Notice how at this
point we do not imply a special language to express them. They
could be expressed in any Turing-complete language. Often
such domains do not exist outside the realm of software.

An especially interesting case of the inductive approach is
where we define a domain as a subset of programs written in
a specific language Pl instead of the more general set P. In this
case we can often clearly identify the commonalities among the
programs in the domain, in the form of their consistent use of
a set of domain-specific patterns or idioms2. This makes build-

2 Some people have argued for a
long time that the need to use id-
ioms or patterns in a language is a
smell, and should be understood
as hints at missing language fea-
tures: c2.com/cgi/wiki?AreDesign
PatternsMissingLanguageFeatures

ing a DSL for D relatively simple, because we know exactly
what the DSL has to cover, and we know what code to gener-
ate from DSL programs.

dsl engineering 59

mbeddr C: The domain of this DSL has been defined bottom-
up. Based on idioms commonly employed when using
C for embedded software development, linguistic abstrac-
tions have been defined that provide a "shorthand" for
those idioms. These linguistic abstractions form the basis
of the language extensions. J

The above examples can be considered relatively general – the
domain of embedded software development is relatively broad.
In contrast, a domain may also be very specific, as is illustrated
by the refridgerator case study.

Refrigerators: The cooling DSL is tailored specifically to-
wards expressing refrigerator cooling programs for a very
specific organization. No claim is made for broad appli-
cability of the DSL. However, it perfectly fits into the way
cooling algorithms are described and implemented in that
particular organization. J

The second approach for defining a domain is deductive or top-
down. In this approach, a domain is considered a body of
knowledge about the real world, i.e. outside the realm of soft-
ware. From this perspective, a domain D is a body of knowl-
edge for which we want to provide some form of software sup-
port. PD is the subset of programs in P that implement inter-
esting computations in D. This case is much harder to address
using DSLs, because we first have to understand precisely the
nature of the domain and identify the interesting programs in
that domain.

Pension Plans: The pensions domain has been defined
in this way. The customer had been working in the field
of old-age pensions for decades and had a detailed un-
derstanding of that domain. That knowledge was mainly
contained in the heads of pension experts, in pension plan
requirements documents, and, to a limited extent, encoded
in the source of existing software. J

Figure 3.1: The programs relevant
to a domain PD and the programs
expressible with a language PL are both
subsets of the set of all programs P. A
good DSL has a large overlap with its
target domain (PL ≈ PD).

In the context of DSLs, we can ultimately consider a domain
D by a set of programs PD, whether we take the deductive or
inductive route. There can be multiple languages in which we
can express PD programs. Possibly, PD can only be partially
expressed in a language l (Figure 3.1).

� Domain-Specific Languages We can now understand the no-
tion of a domain-specific language. A domain-specific language

60 dslbook.org

lD for a domain D is a language that is specialized for encoding
programs from PD. That is, lD is more efficient3 in represent- 3 There are several ways of measuring

efficiency. The most obvious one is
the amount of code a developer has
to write to express a problem in the
domain: the more concise, the more
efficient. We will discuss this in more
detail in Section 4.1.

ing PD programs than other languages, and thus, is particularly
well suited for PD. It achieves this by using abstractions suitable
to the domain, and avoiding details that are irrelevant to pro-
grams in D (typically because they are similar in all programs
and can be added automatically by the execution engine).

It is of course possible to express programs in PD with a
general-purpose language. But this is less efficient – we may
have to write much more code, because a GPL is not special-
ized to that particular domain. Depending on the expressivity
of a DSL, we may also be able to use it to describe programs
outside of the D domain4. However, this is often not efficient 4 For example, you can write any pro-

gram with some dialects of SQL.at all, because, by specializing a DSL for D, we also restrict
its efficiency for expressing programs outside of D. This is
not a problem as long as we have scoped D correctly. If the
DSL actually just covers a subset of PD, and we have to express
programs in D for which the DSL is not efficient, we have a
problem.

This leads us to the crucial challenge in DSL design: finding
regularity in a non-regular domain and capturing it in a lan-
guage. Especially in the deductive approach, membership of
programs in the domain is determined by a human and is, in
some sense, arbitrary. A DSL for the domain hence typically
represents an explanation or interpretation of the domain, and
often requires trade-offs by under- or over-approximation (Fig-
ure 3.2). This is especially true while we develop the DSL: an
iterative approach is necessary that evolves the language as our
understanding of the domain becomes more and more refined
over time. In a DSL l that is adequate for the domain, the sets
Pl and PD are the same.

Figure 3.2: Languages L1 and L2 under-
approximate and over-approximate
domain D.

� Domain Hierarchy In the discussion of DSLs and progres-
sively higher abstraction levels, it is useful to consider domains
organized in a hierarchy5, in which higher domains are a sub-

5 In reality, domains are not always
as neatly hierarchical as we make it
seem here. Domains may overlap, for
example. Nonetheless, the notion of a
hierarchy is very useful for discussing
many of the advanced topics in this
book. In terms of DSLs, overlap may
be addressed by factoring the com-
mon aspects into a separate language
module that can be used in both the
overlapping domains.

set (in terms of scope) of the lower domains (Fig. 3.3).
At the bottom we find the most general domain D0. It is the

domain of all possible programs P. Domains Dn, with n > 0,
represent progressively more specialized domains, where the
set of interesting programs is a subset of those in Dn−1 (ab-
breviated as D−1). We call D+1 a subdomain of D. For ex-
ample, D1.1 could be the domain of embedded software, and

dsl engineering 61

D1.2 could be the domain of enterprise software. The progres-
sive specialization can be continued ad infinitum, in principle.
For example, D2.1.1 and D2.1.2 are further subdomains of D1.1:
D2.1.1 could be automotive embedded software and D2.1.2 could
be avionics software6.

6 At the top of the hierarchy we find
singleton domains that consist of a
single program (a non-interesting
boundary case).

Figure 3.3: The domain hierarchy.
Domains with higher index are called
subdomains of domains with a lower
index (D1 is a subdomain of D0).
We use just D to refer to the current
domain, and D+1 and D−1 to refer to
the relatively more specific and more
general ones.

Languages are typically designed for a particular domain D.
Languages for D0 are called general-purpose languages7. Lan- 7 We could define D0 to be those pro-

grams expressible with Turing ma-
chines, but using GPLs for D0 is a more
useful approach for this book.

guages for Dn with n > 0 become more domain-specific for
growing n. Languages for a particular Dn can also be used
to express programs in Dn+1. However, DSLs for Dn+1 may
add additional abstractions or remove some of the abstractions
found in languages for Dn. To get back to the embedded sys-
tems domain, a DSL for D1.1 could include components, state
machines and data types with physical units. A language for
D2.1.1, automotive software, will retain these extensions, but
in addition provide direct support for the AUTOSAR standard
and prohibit the use of void* to conform to the MISRA-C stan-
dard.

mbeddr C: The C base language is defined for D0. Exten-
sions for tasks, state machines or components can argued
to be specific to embedded systems, making those sit in
D1.1. Progressive specialization is possible; for example, a
language for controlling small Lego robots sits on top of
state machines and tasks. It could be allocated to D2.1.1. J

3.2 Model Purpose

We have said earlier that there can be several languages for the
same domain. These languages differ regarding the abstrac-
tions they make use of. Deciding which abstractions should
go into a particular language for D is not always obvious. The
basis for the decision is to consider the model purpose. Mod-

62 dslbook.org

els8, and hence the languages to express them, are intended 8 As we discuss below, we use the terms
program and model as synonyms.for a specific purpose. Examples of model purpose include

automatic derivation of a D−1 program, formal analysis and
model checking, platform-independent specification of func-
tionality or generation of documentation9. The same domain 9 Generation of documentation is

typically not the main or sole model
purpose, but may be an important
secondary one. In general, we consider
models that only serve communication
among humans to be outside the scope
of this book, because they don’t have
to be formally defined to achieve their
purpose.

concepts can often be abstracted in different ways, for differ-
ent purposes. When defining a DSL, we have to identify the
different purposes required, and then decide whether we can
create one DSL that fits all purposes, or create a DSL for each
purpose10.

10 Defining several DSLs for a single
domain is especially useful if different
stakeholders want to express different
aspects of the domain with languages
suitable to their particular aspect. We
discuss this in the section on View-
points (Section 4.4)

mbeddr C: The model purpose is the generation of an ef-
ficient low-level C implementation of the system, while at
the same time providing software developers with mean-
ingful abstractions. Since efficient C code has to be gen-
erated, certain abstractions, such as dynamically growing
lists or runtime polymorphic dispatch, are not supported
even though they would be convenient for the user. The
state machines in the statemachines language have an
additional model purpose: model checking, i.e. proving
certain properties about the state machines (e.g., proving
that a certain state is definitely going to be reached after
some event occurs). To make this possible, the action code
used in the state machines is limited: it is not possible, for
example, to read and write the same variable in the same
action. J

Refrigerators: The model purpose is the generation of effi-
cient implementation code for various different target plat-
forms (different types of refrigerators use different elec-
tronics). A secondary purpose is enabling domain experts
to express the algorithms and experiment with them us-
ing simulations and tests. The DSL is not expected to be
used to visualize the actual refrigerator device for sales or
marketing purposes. J

Pension Plans: The model purpose of the pension DSL is
to enable insurance mathematicians and pension plan de-
velopers (who are not programmers) to define complete
pension plans, and to allow them to check their own work
for correctness using various forms of tests. A secondary
purpose is the generation of the complete calculation en-
gine for the computing center and the website. J

dsl engineering 63

The purpose of a DSL may also change over time. Conse-
quently, this may require changes to the abstractions or no-
tations used in the language. From a technical perspective, this
is just like any other case of language evolution (discussed in
Chapter 6).

3.3 The Structure of Programs and Languages

The discussion above is relatively theoretical, trying to cap-
ture somewhat precisely the inherently imprecise notion of do-
mains. Let us now move into the field of language engineering.
Here we can describe the relevant concepts in a much more
practical way.

Figure 3.4: Concrete and abstract syntax
for a textual variable declaration.
Notice how the abstract syntax does not
contain the keyword var or the symbols
: and ;.

The abstract syntax is very similar to a
meta model in that it represents only
a data structure and ignores notation.
The two are also different: the abstract
syntax is usually automatically derived
from a grammar, whereas a meta model
is typically defined first, independent
of a notation. This means that, while
the abstract syntax may be structurally
affected by the grammar, the meta
model is "clean" and represents purely
the structure of the domain. In practice,
the latter isn’t strictly true either, since
editing and tool considerations typically
influence a meta model as well. In
this book, we consider the two to be
synonyms.

� Concrete and Abstract Syntax Programs can be represented
in their abstract syntax and the concrete syntax forms. The con-
crete syntax is the notation with which the user interacts as he
edits a program. It may be textual, symbolic, tabular, graphical
or any combination thereof. The abstract syntax is a data struc-
ture that represents the semantically relevant data expressed by
a program (Fig. 3.4 shows an example of both). It does not con-
tain notational details such as keywords, symbols, white space
or positions, sizes and coloring in graphical notations. The ab-
stract syntax is used for analysis and downstream processing of
programs. A language definition includes the concrete and the
abstract syntax, as well as rules for mapping one to the other.
Parser-based systems map the concrete syntax to the abstract
syntax. Users interact with a stream of characters, and a parser
derives the abstract syntax by using a grammar and mapping
rules. Projectional editors go the other way round: user interac-
tions, although performed through the concrete syntax, directly
change the abstract syntax. The concrete syntax is a mere pro-
jection (that looks and feels like text when a textual projection
is used). No parsing takes place. Spoofax and Xtext are parser-
based tools, MPS is projectional.

Figure 3.5: A program is a tree of
program elements, with a single root
element.

While concrete syntax modularization and composition can
be a challenge and requires a discussion of textual concrete
syntax details, we will illustrate most language design concerns
based on the abstract syntax. The abstract syntax of programs
are primarily trees of program elements. Each element is an in-
stance of a language concept, or concept for short. A language is
essentially a set of concepts (we’ll come back to this below). Ev-
ery element (except the root) is contained by exactly one parent

64 dslbook.org

element. Syntactic nesting of the concrete syntax corresponds
to a parent-child relationship in the abstract syntax. There may
also be any number of non-containing cross-references between
elements, established either directly during editing (in projec-
tional systems) or by a name resolution (or linking) phase that
follows parsing and tree construction.

� Fragments A program may be composed from several pro-
gram fragments. A fragment is a standalone tree, a partial pro-
gram. Conversely, a program is a set of fragments connected by
references (discussed below). E f is the set of program elements
in a fragment f .

Figure 3.6: A fragment is a program
tree that stands for itself and potentially
references other fragments.

� Languages A language l consists a set of language concepts
Cl and their relationships11. We use the term concept to refer

11 In the world of grammars, a concept
is essentially a Nonterminal. We will
discuss the details about grammars in
the implementation section of this book

to all aspects of an element of a language, including concrete
syntax, abstract syntax, the associated type system rules and
constraints as well as some definition of its semantics. In a
fragment, each element e is an instance of a concept c defined
in some language l.

Figure 3.7: A language is a set of
concepts.

mbeddr C: In C, the statement int x = 3; is an instance
of the LocalVariableDeclaration concept. int is an in-
stance of IntType, and the 3 is an instance of Number-

Literal. J

Figure 3.8: The statement int x
= 3; is an instance of the Local-
VariableDeclaration. co returns the
concept for a given element.

� Functions We define the concept-of function co to return
the concept of which a program element is an instance: co ⇒
element→ concept (see Fig. 3.8). Similarly we define the language-
of function lo to return the language in which a given con-

dsl engineering 65

cept is defined: lo ⇒ concept → language. Finally, we define a
fragment-of function f o that returns the fragment that contains
a given program element: f o ⇒ element→ fragment (Fig. 3.9).

Figure 3.9: f o returns the fragment for a
given element.

� Relationships We also define the following sets of relation-
ships between program elements. Cdnf is the set of parent-
child relationships in a fragment f . Each c ∈ Cdn has the
properties parent and child (see figure Fig. 3.10; Cdn are all the
parent-child "lines" in the picture).

mbeddr C: In int x = 3; the local variable declaration is
the parent of the type and the init expression 3. The con-
cept Local- VariableDeclaration defines the contain-
ment relationships type and init, respectively. J

Figure 3.10: f o returns the fragment for
a given element.

Refsf is the set of non-containing cross-references between pro-
gram elements in a fragment f . Each reference r in Refsf has
the properties f rom and to, which refer to the two ends of the
reference relationship (see figure Fig. 3.10).

mbeddr C: For example, in the x = 10; assignment, x is
a reference to a variable of that name, for example, the
one declared in the previous example paragraph. The con-
cept LocalVariableRef has a non-containing reference re-
lationship var that points to the respective variable. J

Finally, we define an inheritance relationship that applies the
Liskov Substitution Principle (LSP) to language concepts. The
LSP states that,

In a computer program, if S is a subtype of T, then objects of
type T may be replaced with objects of type S (i.e., objects of
type S may be substitutes for objects of type T) without altering
any of the desirable properties of that program (correctness, task
performed, etc.)

The LSP is well known in the context of object-oriented pro-
gramming. In the context of language design it implies that a
concept csub that extends another concept csuper can be used in
places where an instance of csuper is expected. Inhl is the set of
inheritance relationships for a language l. Each i ∈ Inhl has the
properties super and sub.

Figure 3.11: Concepts can extend other
concepts. The base concept may be
defined in a different language.

mbeddr C: The LocalVariableDeclaration introduced
above extends the concept Statement. This way, a local
variable declaration can be used wherever a Statement is
expected, for example, in the body of a function, which is
a StatementList. J

66 dslbook.org

� Independence An important concept is the notion of inde-
pendence. An independent language does not depend on other
languages. This means that for all parent/child, reference and
inheritance relationships, both ends refer to concepts defined
in the same language. Based on our definitions above we can
define an independent language l as a language for which the
following hold12:

12 Formulae like these are not essential
for understanding. You may ignore
them if you like.

∀r ∈ Refsl | lo(r.to) = lo(r.from) = l (3.1)

∀s ∈ Inhl | lo(s.super) = lo(s.sub) = l (3.2)

∀c ∈ Cdnl | lo(c.parent) = lo(c.child) = l (3.3)

Independence can also be applied to fragments. An independent
fragment is one in which all non-containing cross-references
Re f s f point to elements within the same fragment:

∀r ∈ Refsf | fo(r.to) = fo(r.from) = f (3.4)

Notice that an independent language l can be used to construct
dependent fragments, as long as the two fragments just contain
elements from this single language l. Vice versa, a dependent
language can be used to construct independent fragments. In
this case we just have to make sure that the non-containing
cross references are "empty" in the elements in fragment f .

Refrigerators: The hardware definition language is inde-
pendent, as are fragments that use this language. In con-
trast, the cooling algorithm language is dependent. Buil-
dingBlockRef declares a reference to the BuildingBlock

concept defined in the hardware language (Fig. 3.12). Con-
sequently, if a cooling program refers to a hardware setup
using an instance of BuildingBlockRef, the fragment be-
comes dependent on the hardware definition fragment that
contains the referenced building block. J

Figure 3.12: A BuildingBlockRef
references a hardware element from
within a cooling algorithm fragment.

� Homogeneity We distinguish homogeneous and heterogeneous
fragments. A homogeneous fragment is one in which all ele-
ments are expressed with the same language (see formula 1.5).
This means that for all parent/child relationships (Cdn f), the
elements at both ends of the relationship have to be instances
of concepts defined in one language l (1.6):

An independent language can only
express homogeneous fragments.
However, a homogeneous fragment
can be expressed with a dependent
language if the dependencies all come
via the Re f s relationship.

∀e ∈ E f | lo(co(e)) = l (3.5)

∀c ∈ Cdnf | lo(co(c.parent)) = lo(co(c.child)) = l (3.6)

dsl engineering 67

mbeddr C: A program written in plain C is homogeneous.
All program elements are instances of the C language. Us-
ing the state machine language extension allows us to em-
bed state machines in C programs. This makes the respec-
tive fragment heterogeneous (see Fig. 3.13). J

Figure 3.13: An example of a het-
erogeneous fragment. This module
contains global variables (from the core
language), a state machine (from the
statemachines language) and a test case
(from the unittest language). Note how
concepts defined in the statemachine
language (trigger, isInState and
test statemachine) are used inside a
TestCase.

3.4 Parsing versus Projection

This part of the book is not about implementation techniques.
However, the decision of whether to build a DSL using a pro-
jectional editor instead of the more traditional parser-based ap-
proach can have some consequences for the design of the DSL.

68 dslbook.org

So we have to provide some level of detail on the two at this
point.

Figure 3.14: In parser-based systems,
the user only interacts with the concrete
syntax, and the AST is constructed from
the information in the text.

In the parser-based approach, a grammar specifies the se-
quence of tokens and words that make up a structurally valid
program. A parser is generated from this grammar. A parser is
a program that recognizes valid programs in their textual form
and creates an abstract syntax tree or graph. Analysis tools
or generators work with this abstract syntax tree. Users enter
programs using the concrete syntax (i.e. character sequences)
and programs are also stored in this way. Example tools in this
category include Spoofax and Xtext.

Figure 3.15: In projectional systems,
the user sees the concrete syntax, but
all editing gestures directly influence
the AST. The AST is not extracted from
the concrete syntax, which means the
concrete syntax does not have to be
parsable.

Projectional editors (also known as structured editors) work
without grammars and parsers. A language is specified by
defining the abstract syntax tree, then defining projection rules
that render the concrete syntax of the language concepts de-
fined by the abstract syntax. Editing actions directly modify
the abstract syntax tree. Projection rules then render a textual
(or other) representation of the program. Users read and write
programs through this projected notation. Programs are stored
as abstract syntax trees, usually as XML. As in parser-based
systems, backend tools operate on the abstract syntax tree.

Projectional editing is well known from graphical editors;
virtually all of them use this approach13. However, they can

13 You could argue that they are not
purely projectional because the user
can move the shapes around and
the position information has to be
persistent. Nonetheless, graphical
editors are fundamentally projectional.also be used for textual syntax14. Example tools in this cat-

14 While in the past projectional text
editors have acquired a bad reputation
mostly because of bad usability, as
of 2011, the tools have become good
enough, and computers have become
fast enough to make this approach
feasible, productive and convenient to
use.

egory include the Intentional Domain Workbench15 and Jet-

15 www.intentsoft.com

Brains MPS.
In this section, we do not discuss the relative advantages

and drawbacks of parser-based versus projectional editors in
any detail (although we do discuss the trade-offs in the chap-
ter on language implementation, Section 7). However, we will
point out if and when there are different DSL design options
depending on which of the two approaches is used.

4
Design Dimensions

This chapter has been written in association with Eelco Visser
of TU Delft. You can contact him via e.visser@tudelft.nl.

DSLs are powerful tools for software engineering, because
they can be tailor-made for a specific class of problems.
However, because of the large degree of freedom in design-
ing DSLs, and because they are supposed to cover the in-
tended domain, consistently, and at the right abstraction
level, DSL design is also hard. In this chapter we present
a framework for describing and characterizing domain spe-
cific languages. We identify seven design dimensions that
span the space within which DSLs are designed: expressiv-
ity, coverage, semantics, separation of concerns, complete-
ness, language modularization and syntax.

We illustrate the design alternatives along each of these dimen-
sions with examples from our case studies. The dimensions
provide a vocabulary for describing and comparing the design
of existing DSLs, and help guide the design of new ones. We
also describe drivers, or forces, that lead to using one design al-
ternative over another. This chapter is not a complete method-
ology. It does not present a recipe that guarantees a great DSL
if followed. I don’t believe in methodologies, because they pre-
tend precision where there isn’t any. Building a DSL is a craft.
This means that, while there are certain established approaches
and conventions, building a good DSL also requires experience
and practice.

70 dslbook.org

4.1 Expressivity

One of the fundamental advantages of DSLs is increased ex-
pressivity over more general programming languages. Increased
expressivity typically means that programs are shorter, and
that the semantics are more readily accessible to processing
tools (we will return to this). By making assumptions about
the target domain and encapsulating knowledge about the do-
main in the language and in its execution strategy (and not just
in programs), programs expressed using a DSL can be signifi-
cantly more concise.

Refrigerators: Cooling algorithms expressed with the cool-
ing DSL are approximately five times shorter than the C
version that users would have to write instead. J

While it is always possible to produce short but incomprehen-
sible programs, in general shorter programs require less ef-
fort to read and write than longer programs, and are therefore
be more efficient in software engineering. We will thus as-
sume that, all other things being equal, shorter programs are
preferable over longer programs.1. We use the notation |pL|

1 The size of a program may not be
the only relevant metric to asses the
usefulness of a DSL. For example, if the
DSL requires only a third of the code to
write, but it takes four times as long to
write the code per line, then there is no
benefit for writing programs. However,
often when reading programs, less code
is clearly a benefit. So it depends on
the ratio between writing and reading
code as to whether a DSL’s conciseness
is important.

to indicate the size of program p as encoded in language L2.

2 We will not concern ourselves with
the exact way to measure the size of
a program, which can be textual lines
of code or nodes in a syntax tree, for
example.

The essence is the assumption that, within one language, more
complex programs will require larger encodings. We also as-
sume that pL is the smallest encoding of p in L, i.e. does not
contain dead or convoluted code. We can then qualify the ex-
pressivity of a language relative to another language.

A language L1 is more expressive in domain D
than a language L2 (L1 ≺D L2),

if for each p ∈ PD ∩ PL1 ∩ PL2 , |pL1 | < |pL2 |.

A weaker but more realistic version of this statement requires
that a language is mostly more expressive, but may not be in
some obscure special cases: DSLs may optimize for the com-
mon case and may require code written in a more general lan-
guage to cover the corner cases3. 3 We discuss this aspect in the section

on completeness (Section 4.5).Compared to GPLs, DSLs (and the programs expressed with
them) are more abstract: they avoid describing details that are
irrelevant to the model purpose. The execution engine then
fills in the missing details to make the program executable on
a given target platform, based on knowledge about the domain
encoded in the execution engine. Good DSLs are also declar-
ative: they provide linguistic abstractions for relevant domain

dsl engineering 71

concepts that allow processors to "understand" the domain se-
mantics without sophisticated analysis of the code. Linguistic
abstraction means that a language contains concepts for the
abstractions relevant in the domain. We discuss this in more
detail below.

Note that there is a trade-off between expressivity and the
scope of the language. We can always invent a language with
exactly one symbol Σ that represents exactly one single pro-
gram. It is extremely expressive! It is trivial to write a code
generator for it. However, the language is also useless, because
it can only express one single program, and we’d have to create a
new language if we wanted to express a different program. So
in building DSLs we are striving for a language that has max-
imum expressivity while retaining enough coverage (see next
chapter) of the target domain to be useful.

DSLs have the advantage of being more expressive than GPLs
in the domain they are built for. But there is also a disadvan-
tage: before being able to write these concise programs, users
have to learn the language4. This task can be separated into 4 While a GPL also has to be learned,

we assume that there is a relatively
small number of GPLs and developers
already know them. There may be a
larger number of DSLs in any given
project or organization, and new team
members cannot be expected to know
them.

learning the domain itself, and learning the syntax of the lan-
guage. For people who understand the domain, learning the
syntax can be simplified by using good IDEs with code com-
pletion and quick fixes, as well as with good, example-based
documentation. In many cases, DSL users already understand
the domain, or would have to learn the domain even if no DSL
were used to express programs in it: learning the domain is in-
dependent of the language itself. It is easy to see, however, that,
if a domain is supported by well-defined language, this can be
a good reference for the domain itself. Learning a domain can
be simplified by working with a good DSL5. In conclusion, the 5 This can also be read the other way

round: a measure for the quality of
a DSL is how long it takes domain
experts to learn it.

learning overhead of DSLs is usually not a huge problem in
practice.

Pension Plans: The users of the pension DSL are pension
experts. Most of them have spent years describing pension
plans using prose, tables and (informal) formulas. The
DSL provides formal languages to express the same thing
in a way that can be processed by tools. J

The close alignment between a domain and the DSL can also
be exploited during the construction of the DSL. While it is not
a good idea to start building a DSL for a domain about which

72 dslbook.org

we don’t know much, the process of building the DSL can help
deepen the understanding about a domain. The domain has to
be scoped, fully explored and systematically structured to be
able to build a language.

Refrigerators: Building the cooling DSL has helped the
thermodynamicists and software developers to understand
the details of the domain, its degrees of freedom and the
variability in refrigerator hardware and cooling algorithms
in a much more structured and thorough way than before.
Also, the architecture of the generated C application that
will run on the device became much more well-structured
as a consequence of the separation between reusable frame-
works, device drivers and generated code. J

4.1.1 Expressivity and the Domain Hierarchy

In the section on expressivity above we compare arbitrary lan-
guages. An important idea behind domain-specific languages
is that progressive specialization of the domain enables pro-
gressively more specialized and expressive languages. Pro-
grams for domain Dn ⊂ Dn−1 expressed in a language LDn−1

typically use a set of characteristic idioms and patterns. A lan-
guage for Dn can provide linguistic abstractions for those id-
ioms or patterns, which makes their expression much more
concise and their analysis and translation less complex.

mbeddr C: Embedded C extends the C programming lan-
guage with concepts for embedded software including state
machines, tasks and physical quantities. The state machine
construct, for example, has concepts representing states,
events, transitions and guards. Much less code is required
compared to switch/case statements or cross-indexed in-
teger arrays, two typical idioms for state machine imple-
mentation in C. J

WebDSL: WebDSL entity declarations abstract over the
boilerplate code required by the Hibernate6 framework for 6 www.hibernate.org/

annotating Java classes with object-relational mapping an-
notations. This reduces code size by an order of magni-
tude 7. J 7 E. Visser. WebDSL: A case study in

domain-specific language engineering.
In GTTSE, pages 291–373, 20074.1.2 Linguistic versus In-Language Abstraction

There are two major ways of defining abstractions. Abstrac-
tions can be built into the language (in which case they are

dsl engineering 73

called linguistic abstractions), or they can be expressed by con-
cepts available in the language (in-language abstractions). DSLs
typically rely heavily on linguistic abstraction, whereas GPLs
rely more on in-language abstraction.

� Linguistic Abstraction A specific domain concept can be
modeled with the help of existing abstractions, or one can in-
troduce a new abstraction for that concept. If we do the lat-
ter, we use linguistic abstraction. By making the concepts of D
first-class members of a language LD, i.e. by defining linguistic
abstractions for these concepts, they can be uniquely identi-
fied in a D program and their structure and semantics is well
defined. No semantically relevant8 idioms or patterns are re- 8 By "semantically relevant" we mean

that the tools needed to achieve the
model purpose (analysis, translation)
have to treat these cases specially.

quired to express interesting programs in D. Consider these
two examples of loops in a Java-like language:

int[] arr = ... int[] arr = ...
for (int i=0; i<arr.size(); i++) { OrderedList<int> l = ...

sum += arr[i]; for (int i=0; i<arr.size(); i++) {
} l.add(arr[i]);

}

The loop in the left-hand example can be parallelized, since
the order of summing up the array elements is irrelevant. The
right-hand one cannot, since the order of the elements in the
OrderedList class is relevant. A transformation engine that
translates and optimizes these programs must perform (so-
phisticated, and sometimes impossible) program analysis to
determine that the left-hand loop example can indeed be par-
allelized. The following alternative expression of the same
behavior uses better linguistic abstractions, because it is clear
without analysis that the first loop can be parallelized and the
second cannot:

for (int i in arr) { seqfor (int i in arr) {
sum += i; l.add(arr[i]);

} }

The property of a language LD of having first-class concepts for
abstractions relevant in D is often called declarativeness: no so-
phisticated pattern matching or program flow analysis is nec-
essary to capture the semantics of a program (relative to the
purpose) and treat it correspondingly. The decision can simply
be based on the language concept used (for versus seqfor)9.

9 Without linguistic abstraction, the
processor has to analyze the program
to "reverse engineer" the semantics
to be able to act on it. With linguistic
abstraction, we rely on the language
user to use the correct abstraction. We
assume that the user is able to do this!
The trade-off makes sense in DSLs
because we assume that DSL users are
familiar with the domain, and we often
don’t have the budget or experience
to build the sophisticated program
analyses that could do the semantic
reverse engineering.

mbeddr C: State machines are represented with first class
concepts. This enables code generation, as well as mean-
ingful validation. For example, it is easy to detect states
that are not reached by any transition and report this as an

74 dslbook.org

error. Detecting this same problem in a low-level C imple-
mentation requires sophisticated analysis on the switch-
case statements or indexed arrays that constitute the im-
plementation of the state machine10. J

10 This approach assumes that the
generator works correctly – we’ll
discuss this problem in Section 4.3 on
semantics.

Figure 4.1: Example component dia-
gram. The top half defines components,
their ports and the relationship of
these ports to interfaces. The bottom
half shows instances whose ports are
connected by a connector.

mbeddr C: Another good example is optional ports in
components. Components (see Fig. 20.6) define required
ports that specify the interfaces they use. For each com-
ponent instance, each required port is connected to a pro-
vided port of another instance (that has a compatible in-
terface). Required ports may be optional11, so for a given

11 The terminology may be a little
confusing here: required means that the
component invokes operations on the
port (as opposed to providing them for
other to invoke); optional refers to the
fact that, for any given instance of that
component, the port may be connected
or not.

instance, an optional port may be connected or not. Invok-
ing an operation on an unconnected required port would
result in an error, so this has to be prevented. This can
be done by enclosing the invocation on a required port in
an if statement, checking whether the port is connected.
However, an if statement can contain any arbitrary Boolean
expression as its condition (e.g., if (isConnected(rp) ||

somethingRandom()) { port.doSomething(); }). So
checking statically that the invocation only happens if the
port is connected is impossible. A better solution based on
linguistic abstraction is to introduce a new language con-
cept that checks for a connected port directly: with port

(rp) { rp.doSomething(); }. The with port statement
doesn’t use an expression as its argument, but only a refer-
ence to an optional required port (Fig. 4.2). In this way the
IDE can check that an invocation on a required optional
port rp is only done inside of a with port statement ref-
erencing that same port. J

Figure 4.2: The with port statement is
required to surround an invocation on
an optional required port; otherwise,
an error is reported in the IDE. If the
port is not connected for any given
instance, the code inside the with
port is not executed. It acts like an if
statement, but since it cannot contain an
expression as its condition, the correct
use of the with port statement can be
statically checked.

dsl engineering 75

Linguistic abstraction also means that no details irrelevant to
the model purpose are expressed. Once again, this increases
conciseness, and avoids the undesired specification of unin-
tended semantics (over-specification). Overspecification is usu-
ally bad because it limits the degrees of freedom available to a
transformation engine. In the example with the parallelizable
loops, the first loop is over-specified: it expresses ordering of
the operations, although this is (most probably) not intended
by the person who wrote the code.

mbeddr C: State machines can be implemented as switch/-
case blocks or as arrays indexing into each other. The DSL
program does not specify which implementation should
be used and the transformation engine is free to chose the
more appropriate representation, for example based on de-
sired program size or performance characteristics. Also,
log statements and task declarations can be translated in
different ways depending on the target platform. J

� In-Language Abstraction Conciseness can also be achieved
by a language that provides facilities to allow users to define
new (non-linguistic) abstractions in programs. Well-known GPL
concepts for building new abstractions include procedures, clas-
ses, or functions and higher-order functions, generics, traits
and monads. It is not a sign of a bad DSL if it has in-language It is worth understanding these to

some extent, so that you can make an
informed decision which of these – if
any – are useful in a DSL.

abstraction mechanisms as long as the abstractions created don’t
require special treatment by analysis or processing tools – at
which point they should be refactored into linguistic abstrac-
tions. An example of such special treatment would be if the
compiler of the above example language knew that the Ordered-
List library class is actually ordered, and that, consequently,
the respective loop cannot be parallelized. Another example of
special treatment can be constructed in the context of the op-
tional port example. If we had solved the problem by having
a library function isConnected(port), we could enforce a call
on an optional port to be surrounded by an if (isConnected

(port)) without any other expression in the condition. In this
case, the static analyzer would have to treat isConnected spe-
cially12. In-language abstraction can, as the name suggests, 12 Treating program elements specially

is dangerous because the semantics of
isConnected or OrderedList could be
changed by a library developer without
changing the static analyzer of code
generator in a consistent way.

provide abstraction, but it cannot provide declarativeness: a model
processor has to "understand" what the user wanted to express
by building the in-language abstraction, in order to be able to
act on it.

76 dslbook.org

Refrigerators: The language does not support the con-
struction of new abstractions since its user community con-
sists of non-programmers who are not familiar with defin-
ing abstractions. As a consequence, the language had to
be modified several times during development, as new re-
quirements came from the end users which had to be inte-
grated directly into the language. J

mbeddr C: Since C is extended, C’s abstraction mecha-
nisms (functions, structs, enums) are available. Moreover,
we added new mechanisms for building abstractions, in-
cluding interfaces and components. J

WebDSL: WebDSL provides template definitions to capture
partial web pages, including rendering of data from the
database and form request handling. User defined tem-
plates can be used to build complex user interfaces. J

� Standard Library If a language provides support for in-
lang- uage abstraction, these facilities can be used by the lan-
guage developer to provide collections of domain specific ab-
stractions to language users. Instead of adding language fea-
tures, a standard library is deployed along with the language
to all its users. It contains abstractions relevant to the domain, This approach is of course well known

from programming languages. All of
them come with a standard library,
and the language can hardly be used
without relying on it. It is effectively a
part of the language

expressed as in-language abstractions. This approach keeps the
language itself small, and allows subsequent extensions of the
library without changing the language definition and process-
ing tools.

Refrigerators: Hardware building blocks have properties.
For example, a fan can be turned on or off, and a compres-
sor has a speed (rpm). The set of properties available for
the various building blocks is defined via a standard li-
brary and is not part of the language (see code below).
The reason why this is not a contradiction to what we dis-
cussed earlier is this: as a consequence of the structure of
the framework used on the target platform, new proper-
ties can be added to hardware elements without the need
to change the generator. They are not treated specially! J

lib stdlib {
command compartment::coolOn
command compartment::coolOff
property compartment::totalRuntime: int readonly
property compartment::needsCooling: bool readonly
property compartment::couldUseCooling: bool readonly
property compartment::targetTemp: int readonly
property compartment::currentTemp: int readonly

dsl engineering 77

property compartment::isCooling: bool readonly
}

Some languages treat certain abstractions defined in the stan-
dard library specially. For example, Java’s WeakReference has
special semantics for garbage collection. While an argument
can be made that special treatment is acceptable for a standard
library (after all, it can be considered an essential companion to
the language itself), it is still risky and dangerous. Considering
that, in the case of DSLs, we can change the language rela-
tively easily, I would suggest avoiding special treatment even
in a standard library and recommend providing linguistic ab-
stractions for these cases.

� Comparing Linguistic and In-Language Abstraction A lang-
uage that contains linguistic abstractions for all relevant do-
main concepts is simple to process; the transformation rules
can be tied to the identities of the language concepts. It also
makes the language suitable for domain experts, because rele-
vant domain concepts have a direct representation in the lan-
guage. Code completion can provide specific and meaning-
ful support for "exploring" how a program should be written.
However, using linguistic abstractions extensively requires that
the relevant abstractions be known in advance, or frequent evo-
lution of the language is necessary. It can also lead to languages
that feel large, bloated or inelegant. In-language abstraction is
more flexible, because users can build just those abstractions
they actually need. However, this requires that users are ac-
tually trained to build their own abstractions. This is often
true for programmers, but it is typically not true for domain
experts.

Using a standard library may be a good compromise, in
which one set of users develops the abstractions to be used
by another set of developers. This is especially useful if the
same language is to be used for several, related, projects or
user groups. Each can build their own set of abstractions in the
library.

Modular language extension, as dis-
cussed later in Section 4.6.2, provides
a middle ground between the two ap-
proaches. A language can be flexibly
extended, while retaining the advan-
tages of linguistic abstraction.

Note that languages that provide good support for in-lang-
uage abstraction feel different from those that use a lot of lin-
guistic abstraction (compare Scala or Lisp to Cobol or ABAP).
Make sure that you don’t mix the two styles unnecessarily: the
resulting language may be judged as being ugly, especially by
programmers.

78 dslbook.org

4.1.3 Language Evolution Support

If a language uses a lot of linguistic abstraction, it is likely,
especially during the development of the language, that these
abstractions will change. Changing language constructs may
break existing models, so special care has to be taken regard-
ing language evolution. This requires any or all of the follow-
ing: a strict configuration management discipline, versioning
information in the models to trigger compatible editors and
model processors, keeping track of the language changes as a
sequence of change operations that can be "replayed" on ex-
isting models, or model migration tools to transform models
based on the old language into the new language.

Whether model migration is a challenge or not depends on
the tooling. There are tools that make model evolution very
smooth, but many environments don’t. Consider this when In parser-based languages, you can

always at the very least open the file
in a text editor and run some kind
of global search/replace to migrate
the program. In a projectional editor,
special care has to be taken to enable
the same functionality.

deciding on the tooling you want to use!
It is always a good idea to minimize those changes to a

DSL that break existing models13. Backward compatibility and

13 This is especially true if you don’t
have access to all programs to migrate
them in one fell swoop: you have to
deploy migration scripts with the lan-
guage, or rely on the users to perform
the migration manually.

deprecation are techniques well worth keeping in mind when
working with DSLs. For example, instead of just changing an
existing concept in an incompatible way, you may add a new
concept in addition to the old one, along with deprecation of
the old one and a migration script or wizard. Note that you
might be able to instrument your model processor to collect
statistics on whether deprecated language features continue to
be used. Once no more instances show up in models, you can
safely remove the deprecated language feature.

If the DSL is used by a closed, known user community that
is accessible to the DSL designers, it will be much easier to
evolve the language over time, because users can be reached,
making them migrate to newer versions14. Alternatively, the

14 The instrumentation mentioned above
may even report uses of deprecated
language features after the official
expiration date.

set of all models can be migrated to a newer version using a
script provided by the language developers. In cases where
the set of users, and the DSL programs, are not easily accessi-
ble, much more effort must be put into maintaining backward
compatibility, and the need for coordinated evolution should
be kept minimal15.

15 This is the reason why many GPLs
can never get rid of deprecated lan-
guage features.

4.1.4 Precision versus Algorithm

We discussed earlier the fact that some DSLs may be Turing
complete (and feel more like a programming language), whereas
others are purely declarative and maybe just describe facts,

dsl engineering 79

structures and relationships in a domain. The former may not
be usable by domain users (i.e. non-programmers). They are
often able to formally and precisely specify facts, structures
and relationships about their domain, but they are often not
able to define algorithmic behavior.

In this case, a DSL has to be defined that abstracts far enough
to hide these algorithmic details. Alternatively, you can create
an incomplete language (Section 4.5) and have developers fill
in the algorithmic details in GPL code. One way to do this is to
provide a set of predefined behaviors (in some kind of library)
which are then just parametrized or configured by the users.

Pension Plans: Pension rules are at the boundary between
being declarative and algorithmic. The majority of the
models define data structures (customers, pension plans,
payment schedules). However, there are also mathemati-
cal equations and calculation rules. These are algorithmic,
but in the pension domain, the domain users are well able
to deal with these. J

4.1.5 Configuration Languages

Configuration languages are purely declarative. They consist
of a well-defined set of configuration parameters and constraints
among them. "Writing programs" boils down to setting val-
ues for these parameters. In many cases, the parameters are
Booleans, in which case a program is basically a selection of
a subset of the configuration switches. Feature models consti-
tute a well-known configuration language. We discuss config-
uration languages in more detail in the chapter on DSLs and
Product Line Engineering (Section 21).

4.1.6 Platform Influence

In theory, the design of the abstractions used in a language
should be independent of the execution engine and the plat-
form. However, this is not always the case16. There are two 16 It is obviously not the case for ar-

chitecture DSLs where you build a
language that resembles the architec-
tural abstractions in a platform. But
that’s not what we’re talking about
here.

reasons why the platform may influence the language.

� Runtime Efficiency In most systems, the resulting system
has to execute in a reasonably efficient way. Efficiency can
mean performance, scalability, as well as resource consumption
(memory, disk space, network bandwidth). Depending on the
semantic gap between the platform and the language, building
efficient code generators can be a lot of work (we discuss this in

80 dslbook.org

some detail in the section on semantics (Section 4.3)). Instead
of building the necessary optimizers, you can also change the
language to use abstractions that make global optimizations
simpler to build. 17. 17 While this may be considered "cheat-

ing", it may be the only practical way
given project constraints.mbeddr C: The language does not support dynamically

growing lists, because it is hard to implement them in an
efficient way considering we are targeting embedded soft-
ware. Dynamic allocation of memory is often not allowed,
and even if it were, the necessary copying of existing list
data into a new, bigger buffer is too expensive for practi-
cal use. The incurred overhead is also not obvious to the
language user (he just increases list size or adds another
element that triggers list growth), making it all the more
dangerous. J

mbeddr C: Another example includes floating point arith-
metic. If the target platform has no floating point unit
(FPU), floating point arithmetic is expensive to emulate.
We had to build the language in a way that could prevent
the use of float and double types if the target platform
had no FPU. J

� Platform Limitations The platform may have limitations re-
garding the size of data structures, the memory or disk space,
or the bandwidth of the network, that limit or otherwise influ-
ence language design.

Refrigerators: In the cooling language we had to intro-
duce time units (seconds, minutes, hours) into the DSL
after we’d noticed that the time periods relevant for cool-
ing algorithms were so diverse that no single unit could
fit all necessary values into the available integer types. If
we had used only seconds, the days or months periods
would not fit into the available ints. Using only hours or
days obviously would not let us express the short periods
without using fractions of floating point data types. So the
language now has the ability to express periods, as in 3s

or 30d. J

4.2 Coverage

Note that we can achieve full coverage
by making L too general. Such a lan-
guage, may, however, be less expressive,
resulting in bigger (unnecessarily big)
programs. Indeed this is the reason
for designing DSLs in the first place:
general purpose languages are too
general.

A language L always defines a domain D such that PD = PL.
Let’s call this domain DL, i.e. the domain determined by L.

dsl engineering 81

This does not work the other way around: given a (deductively
defined) domain D, there is not necessarily a language that
fully covers that domain unless we revert to a universal lan-
guage at a D0 (cf. the hierarchical structure of domains and
languages).

A language L fully covers domain D if for each program p rel-
evant to the domain PD a program pL can be written in L. In
other words, PD ⊆ PL.

Full coverage is a Boolean predicate: a language either fully
covers a domain or it does not. In practice, many languages do
not fully cover their respective domain. We would like to indi-
cate the coverage ratio. The domain coverage ratio of a language
L is the portion of programs in a domain D that it can express.
We define CD(L), the coverage of domain D by language L, as:

CD(L) =
number o f PD programs expressable by L

number o f programs in domain D

At first glance, an ideal DSL will cover all of its domain (CD(L)
is 100%). It requires, however, that the domain is well-defined
and we can actually know what full coverage is. Also, over
time, it is likely that the domain will evolve and grow, and the
language has to be continuously evolved to retain full coverage.

As the domain evolves, language
evolution has to keep pace, requiring
responsive DSL developers. This is an
important process aspect to keep in
mind!

In addition to the evolution-related reason given above, there
are two reasons for a DSL not to cover all of its own domain D.
First, the language may be deficient and need to be redesigned.
This is especially likely for new and immature DSLs. Scoping
the domain for which to build a DSL is an important part of
DSL design.

Second, the language may have been defined expressly to
cover only a subset of D, typically the subset that is most com-
monly used. Covering all of D may lead to a language that is
too big or complicated for the intended user community be-
cause of its support for rarely used corner cases of the do-
main18. In this case, the remaining parts of D may have to 18 Incremental language extension

provides a third option: you can put the
common parts into the base language
and the support for the corner cases
into optionally included language
modules.

be expressed with code written in D−1 (see also Section 4.5).
This requires coordination between DSL users and D−1 users,
if this not the same group of people.

WebDSL: WebDSL defines web pages through "page def-
initions" which have formal parameters. navigate state-
ments generate links to such pages. Because of this styl-
ized idiom, the WebDSL compiler can check that internal

82 dslbook.org

links are to existing page definitions, with arguments of
the right type. The price that the developer pays is that
the language does not support free-form URL construc-
tion. Thus, the language cannot express all types of URL
conventions and does not have full coverage of the domain
of web applications. J

Refrigerators: After trying to write a couple of algorithms,
we had to add a perform ...after t statement to run a
set of statements after a specified time t has elapsed. In
the initial language, this had to be done manually with
events and timers. Over time we noticed that this is a very
typical case, so we added first-class support. J

mbeddr C: Coverage of this set of languages is full, al-
though any particular extension to C may only cover a part
of the respective domain. However, even if no suitable lin-
guistic abstraction is available for some domain concept, it
can be implemented in the D0 language C, while retaining
complete syntactic and semantic integration. Also, addi-
tional linguistic abstractions can be easily added because
of the extensible nature of the overall approach. J

4.3 Semantics and Execution

Semantics can be partitioned into static semantics and execu-
tion semantics. Static semantics are implemented by the con-
straints and type system rules. Execution semantics denote the
observable behavior of a program p as it is executed. We look
at both aspects in this section; but we refer to execution seman-
tics if we don’t explicitly say otherwise.

There are also a number of approaches
for formally defining semantics inde-
pendent of operational mappings to
target languages. However, they don’t
play an important role in real-world
DSL design, so we don’t address them
in this book.

Using a function OB that defines this observable behavior,
we can define the semantics of a program pLD by mapping it to
a program q in a language for D−1 that has the same observable
behavior:

semantics(pLD) := qLD−1 where OB(pLD) == OB(qLD−1)

Equality of the two observable behaviors can be established
with a sufficient number of tests, or with model checking and
proof (which takes a lot of effort and is hence rarely done).
This definition of semantics reflects the hierarchy of domains
and works both for languages that describe only structure, as
well as for those that include behavioral aspects.

dsl engineering 83

The technical implementation of the mapping to D−1 can be
provided in two different ways: a DSL program can literally be
transformed into a program in an LD−1, or an interpreter can
be written in LD−1 or LD0 to execute the program. Before we
spend the rest of this section looking at these two options in
detail, we first briefly look at static semantics.

4.3.1 Static Semantics/Validation

Before establishing the execution semantics by transforming or
interpreting the program, its static semantics has to be vali-
dated. Constraints and type systems are used to this end and
we describe their implementation in Part III of the book. Here
is a short overview.

� Constraints Constraints are simply Boolean expressions that
check some property of a model. For example, one might verify
that the names of a set of attributes of some entity are unique.
For a model to be statically correct, all constraints have to eval-
uate to true. Constraint checking should only be performed
for a model that is structurally/syntactically correct19.

19 In projectional systems you cannot
build structurally/syntactically incor-
rect programs in the first place. For
parser-based systems, the AST, on
which the constraint checks are per-
formed, often is not constructed unless
the syntactic structure is correct. This
automatically leads to constraint checks
being performed only on structural-
ly/syntactically correct models.

Sometimes constraints are used instead
of grammar rules. For example, instead
of using a 1..n multiplicity in the
grammar, I often use 0..n together with
a constraint that checks that there is at
least one element. The reason for using
this approach is that if the grammar
mechanism is used, a possible error
message comes from the parser. That
error message may read something
like expecting SUCH_AND_SUCH,
found SOMETHING_ELSE. This is not
very useful to the DSL user. If a more
tolerant (0..n) grammar is used, the
constraint error message can be made
to express a real domain constraint
(e.g., at least one SUCH_AND_SUCH is
required, because . . .).

Figure 4.3: An example state machine
with a dead end state, a state that cannot
be left once entered (no outgoing
transitions).

mbeddr C: One driver in selecting the linguistic abstrac-
tions that go into a DSL is the ability to easily implement
meaningful constraints. For example, in the state machine
extension it is trivial to find states that have no outgoing
transitions (dead end, Fig. 4.3). In a functional language,
such a constraint could be written in the way shown in the
code below. J

states
.select(s|!s.isInstanceOf(StopState))
.select(s|s.transitions.size == 0)

When defining languages and transformations, developers of-
ten have a set of constraints in their mind that they consider
obvious. They assume that no one would ever use the lan-
guage in a particular way. However, DSL users may be creative
and actually use the language in that way, leading the transfor-
mation to crash or create non-compilable code. Make sure that
all constraints are actually implemented. This can sometimes
be hard. Only extensive (automated) testing can prevent these
problems from occurring.

In many cases, a multi-stage transformation is used in which
a model expressed in L3 is transformed into a model expressed
in L2, which is then in turn transformed into a program ex-

84 dslbook.org

pressed in L1
20. In this case it is important that every valid 20 Note how this also applies to the

classical case in which L2 is your
DSL and L1 is a GPL which is then
compiled.

program in L3 leads to a valid program in L2. If the process-
ing of L2 fails with an error message using abstractions from
L2 (e.g., compiler errors), users of L3 will not be able to under-
stand them; they may have never seen the programs generated
in L2. Again, automated testing is the way to address this issue.

If many or complex constraints (or type system rules) are
executed on a large model, performance may become an issue.
Even if the DSL tool is clever about this and only revalidates the
constraints for those program elements that changed, it can still
be a problem if some kind of whole-model validation is tied to
a particular element. To solve this problem, many DSL tools
allow users to classify the constraints according to their cost
(i.e. performance overhead). Cheap constraints are executed
for each changing program element, in real-time, as it changes.
Progressively more expensive constraints are checked, for ex-
ample, as a fragment is saved or only upon explicit request by
the user.

� Type Systems Type systems are a special kind of constraint.
Consider the example of var int x = 2 * someFunction(

sqrt(2));. The type system constraint may check that the type
of the variable is the same or a supertype of the type of the ini-
tialization expression. However, establishing the type of the
init expression is non-trivial, since it can be an arbitrarily com-
plex expression. A type system is a formalism or framework
for defining the rules to establish the types of arbitrary expres-
sions, as well as type checking constraints. It is a form of con-
straint checking. We cover the implementation of type systems
in Part III of the book (Section 10).

When designing constraints and type systems in a language, a
decision has to be made between one of two approaches: (a)
declaration of intent and checking for conformance, and (b)
deriving characteristics and checking for consistency. Consider
the following examples.

mbeddr C: For variables, the type has to be specified ex-
plicitly. A type specification expresses the intent that this
variable be, for example, of type int. Alternatively, a type
system could be built to automatically derive the type of
the variable declaration based on the type of the init ex-
pression, an approach known as type inference. This would

dsl engineering 85

allow the following code: var x = 2 * someFunction(

sqrt(2));. Since no type is explicitly specified, the type
system will infer the type of x to be the type calculated for
the init expression. J

mbeddr C: State machines that are supposed to be veri-
fied by the model checker have to be marked as verified. In
that case, additional constraints kick in that report specific
ways of writing actions as invalid, because they cannot be
handled by the model checker. An alternative approach
could check a state machine for whether these "unverifi-
able" ways of writing actions are used, and if so, mark the
state machine as not verifiable. J

Pension Plans: Pension plans can inherit from another
plan (called the base plan). If a pension calculation rule
overrides a rule in the base plan, then the overriding rule
has to be marked as overrides. In this way, if the rule in
the base plan is removed or renamed, validation of the
sub-plan will report an error. An alternative design would
simply infer the fact that a rule overrides another one if
they have the same name and signature. J

Note how in all three cases the constraint checking is done in
two steps. First we declare an intent (variable is intended to
be int, this state machine is intended to be verifiable, a rule is
intended to override another one). We then check whether the
program conforms to this intention. The alternative approach
would infer the fact from the program (the variable’s type is
whatever the expression’s type evaluates to, state machines are
verifiable if the "forbidden" features aren’t used, rules override
another rule if they have the same name and signature) without
any explicitly specified intent.

When designing constraints and type systems, a decision
has to be made regarding when to use which approach. Here
are some trade-offs. The specification/conformance approach
requires more code to be written, but results in more meaning-
ful and specific error messages. A message can express that fact
that one part of a program does not conform to a specification
made by another part of the program21. The derivation/con- 21 It also reduces the chance that users

do something they do not intend by
mistake. For example, a user might
not want to override a method from
the base class, but it might happen just
because the user uses the same name
and parameters.

sistency approach is less effort to write and can hence be seen
to be more convenient, but it requires more effort in constraint
checking, and error messages may be harder to understand be-
cause of the missing, explicit "hard fact" about the program.

86 dslbook.org

The specification/conformance approach can also be used to
"anchor" the constraint checker, because a fixed fact about the
program is explicitly given instead of having to be derived from
a (possibly large) part of the program. This decouples models
and can increase scalability. Consider the following example.
A program contains a function call, and the type checker needs
to check the typing for this call. To do so, it has to determine
the type of the called function. Assume this function does not
specify the return type explicitly, instead it is inferred from the
returned expressions. These expressions may be calls to other
functions, so the process repeats. In the worst case, a whole
chain of function calls must be followed in this way to calculate
the type of the function initially called by your program. Notice
that this requires accessing all the downstream programs, so
these all have to be loaded and type checked! In large systems,
this can lead to serious performance and scalability issues22. If, 22 We have seen such problems in

practice with large-scale models.instead, the type of the called function were given explicitly, no
downstream models need to be accessed or loaded.

� Multi-Level Constraints Several sets of constraints can be
used to enforce multiple levels of correctness/strictness/com-
pliance for models. The first level typically consists of basic
constraints (such as name uniqueness) and typing rules. These
are checked for every program. Additional levels are often op-
tional. They are triggered either by a configuration switch or
by using the programs for a given purpose. Additional levels
always constrain programs further relative to more basic levels.

mbeddr C: A nice example of multi-level constraints can
be seen in the state machines extension to C. Structural
and type system correctness (for C and for state machines)
is always checked for every program. However, if a state
machine is marked as verifiable, then the action code
is further restricted via additional constraints. For exam-
ple, it is not allowed to read and write the same variable
during a single state change (i.e. in all of the code in the
exit actions of the current state, the transition actions and
entry actions of the target state). This is necessary to keep
the complexity of the generated model checker input code
within limits. J

mbeddr C: Another example concerns the use of float-
ing point types. Some target devices may not have float-
ing point units (FPUs), which means that floating point

dsl engineering 87

types (float, double) cannot be used in programs that
should be deployed on such a target device. So, as the
user changes the target device in the build configuration,
additionawritel constraints are checked that report floating
point types as errors if the target has no FPU. J

4.3.2 Establishing the Correctness of the Execution Engine

Earlier we defined the meaning of the program p at Dn as the
equivalent observable behavior of a program q at Dn−1. This
essentially defines the transformation or interpreter to be cor-
rect. However, this is useless in practice. As the language de-
veloper, we have a specific behavior in mind, and we want to
make sure that the executing DSL program exhibits this behav-
ior. We have to make sure that the execution engine executes
the DSL program accordingly.

Figure 4.4: Test code tests the appli-
cation code based on a single under-
standing of the requirements for the
system.

In classical programming, we write the GPL code based on
our understanding of the requirements. We then write unit
tests, based on the same understanding, which test that code
(Fig. 4.4).

Figure 4.5: Using DSLs, a test written
on D− 1 tests the D program as well as
the transformation from D to D− 1.

In DSL testing, we write the DSL, the DSL program and the
execution engine based on our understanding of the require-
ments for the system. We can still write unit tests (in the GPL)
based on this understanding to check for the correctness of the
executing DSL program (Fig. 4.5).

Writing one DSL program and one unit test ensures that
this one program executes correctly regarding the test case.
Our goal here is, however, to ensure that the transformation
is correct for all programs we can write with the DSL. This can
be achieved by writing many DSL programs and many tests –
enough to make sure that every branch of the transformation is
covered at least once23. As always in testing, we encounter the 23 For the Xpand code generator there

is a coverage analysis tool that can be
used to make sure that for a given test
suite, all branches of the transformation
template had been executed at least
once.

coverage problem: we have to write enough example programs
and tests to cover all aspects of the language and the execution
engine. In particular, we have to first think of the corner cases to
write tests for them24.

24 The coverage problem can be solved
in some cases by automatic test case
generation and formal verification. We
discuss this later in this chapter.

A variant of this approach is to express the test cases in the
DSL (after extending the DSL with a way to express tests) and
then executing the application code and the test code on the
target platform together (Fig. 4.6). This is often more conve-
nient, since the tests can be formulated more concisely on the
level of the DSL. As we will see later, this approach is espe-
cially useful if we have several execution engines: we write the

88 dslbook.org

Figure 4.6: Test cases can also be ex-
pressed with the DSL and then exe-
cuted on the target platform together
with the application code.

test once and then execute it on all execution engines.
Note that the GPL program may have additional, unintended

behaviors not prescribed by the DSL. These can often be ex-
ploited maliciously and are known as safety or security prob-
lems. These will not be found by testing the GPL code based on
the requirements, but only by "trying to exploit" the program
(known as penetration testing).

We will elaborate more on ensuring the correctness of the
execution semantics in this chapter, as well as in the Part III
chapter on DSL testing (Chapter 14), where we discuss the im-
plementation aspects of DSL and IDE testing.

4.3.3 Transformation

Transformations define the execution semantics of a DSL by
mapping it to another language. In the vast majority of cases
a transformation for LD recreates those patterns and idioms in
LD−1 for which it provides linguistic abstraction. The result
may be transformed further, until a level is reached for which
a language with an execution infrastructure exists – often D0.
Code generation, the case in which we generate GPL code from
a DSL, is thus a special case in which LD0 code is generated.

Figure 4.7: The robot control DSL is
embedded in C program modules and
provides linguistic abstractions for
controlling a small Lego car. It can
accelerate, decelerate and turn left and
right.

mbeddr C: The semantics of state machines are defined by
their mapping back to C switch statements. This is re-
peated for higher D languages. The semantics of the robot
control DSL (Fig. 4.7) is defined by its mapping to state
machines and tasks (Fig. 4.8). To explain the semantics to
the users, prose documentation is available as well. J Figure 4.8: Robot control programs are

mapped to state machines and tasks.
State machines are mapped to C, and
tasks are mapped to C as well as to op-
erating system configuration files (the
OIL file). In the end, everything ends up
in text for downstream processing by
existing tools.

Component Architecture: The component architecture DSL
describes only structures: interfaces, components and sys-
tems. Many constraints about structural integrity are en-
forced, and a mapping to a distribution middleware is im-
plemented. The formal definition of the semantics are im-
plied by the mapping to the executable code. J

dsl engineering 89

DSL programs may be mapped to multiple languages at the
same time. Typically, there is one primary language that is
used for execution of the DSL program (C in Fig. 4.9). The
other languages may be used to configure the target platform
(generated XML files) or provide input for verification tools
(NuSMV in Fig. 4.9). In this case, one has to make sure that the
semantics of all generated representations is actually the same.
We discuss this problem in Section 4.3.7.

Figure 4.9: From the C state machine
extensions, we generate low-level C
code (for execution) as well an input
file for the NuSMV model checker (for
verification).

mbeddr C: The state machines can be transformed to a
representation in NuSMV, which is a model checker that
can be used to establish properties of state machines by
exhaustive search. Examples properties include freedom
from deadlocks, assuring liveness and specific safety prop-
erties such as "It will never happen that the out events
pedestrian light green and car light green are set
at the same time". J

� Multi-staged Transformation There are several reasons why
the gap between a language at D and its target platform may
not be bridged by a single transformation. Instead, the over-
all transformation becomes a chain of subsequent transforma-
tions, an approach also known as cascading.

Multi-staged transformation is a form of modularization,
and so the reason for doing it is the same reason we always
use for modularization: breaking down a big problem into a
set of smaller problems that can be solved independently. In
the case of transformations, this "big problem" is a big seman-
tic gap between the DSL and the target language25. Modular-

25 One could measure this semantic
gap between two languages: how
many constructs do two languages
share, how many "synonyms" exist,
how many constructs are the same but
have different meanings? In practice,
the size of the gap is intuited by the
transformation designer.

ization breaks down this big semantic gap into several smaller
ones, making each of them easier to understand, test and main-
tain26. 26 This approach can only be used if the

tools support multi-staged transforma-
tion well. This is not true for all DSL
tools.

Another reason for multi-stage transformations is the poten-
tial for reuse of each of the stages (Fig. 4.10). Reusing lower
D languages and their subsequent transformations also im-
plies reuse of potentially non-trivial analyses or optimizations
that can be done at that particular abstraction level27. Con-

27 This is one of the reasons why we
usually generate GPL source code
from DSLs, and not machine code or
byte code: we want to reuse existing
transformations and optimizations
provided by the GPL compiler.

sider GPL compilers as an example. They can be retargetted
relatively easily by exchanging the backends (machine code
generation phases) or the frontend (programming language
parsers and analyzers). For example, GCC can generate code
for many different processor architectures (exchangeable back-
ends), and it can generate backend code for several program-

90 dslbook.org

ming languages, among them C, C++ and Ada (exchangeable
frontends). The same is possible for DSLs. The same high D
models can be executed differently by exchanging the lower
D intermediate languages and transformations. Or the same
lower D languages and transformations can be used for differ-
ent higher D languages, by mapping these different languages
to the same intermediate language.

Figure 4.10: Left: Backend reuse. Dif-
ferent languages (L3/L2 and L5) are
transformed to the same intermediate
language L1, reusing its backend gen-
erator to L0. Right: Frontend reuse. L3
is mapped to L2, which has two sets of
backend generators, reusing the L3 to
L2 transformation.

mbeddr C: The embedded C language (and some of its
higher D extensions) have various translation options, for
several different target platforms (Win32 and Osek), an ex-
ample of backend reuse. All of them are C code, but we
generate different idioms in the code and different make
files. J

Multi-stage transformation can also be a natural consequence
of incremental language extension along the domain hierar-
chy, where we repeatedly build additional higher-level lan-
guages on top of lower-level languages. When transforming
the higher-level languages, it is natural and obvious to trans-
form them onto the next lower level, and not onto a language
at D0.

mbeddr C: The extensions to C are all transformed back
to C idioms during transformation. Higher-level DSLs, for
example, a simple DSL for robot control, are reduced to
C plus some extensions such as state machines and tasks
(Fig. 4.11), reusing the transformations for those abstrac-
tions back to C. J

Figure 4.11: Multi-stage transforma-
tion in mbeddr. MPS supports multi-
stage transformations really well, so
managing the interplay of the set of
transformations is feasible.

A special case of a multi-staged transformation is a preproces-
sor to a code generator. Here, a transformation reduces the set
of used language concepts in a fragment to a minimal core, and
only the minimal core is supported in the code generator. Note
how, in this case, the source and target languages of the trans-

dsl engineering 91

formation are the same. However, the target model only uses
a subset of the concepts defined by the source/target language.
A preprocessor simplifies portability of the actual code gener-
ator: it becomes simpler, since only the subset of the language
has to be mapped to code.

mbeddr C: Consider the case of a state machine to which
you want to be able to add an "emergency stop" feature,
i.e. a new transition from each existing state to a new STOP
state. Instead of handling this case in the code generator,
a model transformation script preprocesses the state ma-
chine model and adds all the new transitions and the new
emergency stop state (Fig. 4.12). Once done, the existing
generator is run unchanged. You have effectively mod-
ularized the emergency stop concern into a preprocessor
transformation. J

Figure 4.12: A transformation adds
an emergency stop feature to a state
machine. A new state is added (Ses),
and a transition from every other state
to that new state is added as well. The
transition is triggered by the emergency
stop event (not shown).

Component Architecture: The DSL describes hierarchical
component architectures (where components are assem-
bled from interconnected instances of other components).
Most component runtime platforms don’t support such hi-
erarchical components, so you need to "flatten" the struc-
ture for execution. Instead of trying to do this in the code
generator, you should consider a model transformation
step to do it, and then write a simpler generator that works
with a flattened, non-hierarchical model. J

Multi-stage transformations can be challenging. It becomes
harder to understand what is going on in total. Debugging the
overall transformation can become hard, and good tool support
is needed28. 28 MPS addresses this problem by

(optionally) keeping all intermediate
models around for debugging pur-
poses. The language developer can
select a program element in any of the
intermediate models and have MPS
show a trace from and to where the
element was transformed in other (in-
termediate) models. The trace can also
show the transformation code involved
in each step.

� Efficiency and Optimization Transforming from D to D−1

allows the use of sophisticated optimizations, potentially re-
sulting in very efficient code. DSL uses domain-specific ab-
stractions and hence includes a lot of domain semantics, so
optimizations can take advantage of this and produce very ef-
ficient D−1 code. However, building such optimizations can be
very expensive. It is especially hard to build global optimiza-
tions that require knowledge about the structure or semantics
of large or diverse parts of the overall program. Also, an opti-
mization will always rely on some set of rules that determine
when and how to optimize. There will always be corner cases
where an experienced developer will be able to write more ef-

92 dslbook.org

ficient D−1 code manually. However, this requires a competent
developer and, usually, a lot of effort for each specific program. A
tool (i.e. the transformation in this case) will typically address
the 90% case well: it will produce reasonably efficient code
in the vast majority of cases with very little effort (once the
optimizations have been defined). In most cases, this is good
enough – in the remaining corner cases, D−1 has to be written
manually29.

29 This argument in favor of tools is
used in GPLs for garbage collection and
optimizing compilers for higher-level
programming languages.

� Care about Generated Code Ideally, generated code is a throw-
away artifact, like object files in a C compiler. However, that’s
not quite true. At least during development and test of the gen-
erator you may have to read, understand and debug the gener-
ated code. For incomplete DSLs30, i.e. those in which parts of 30 We cover completeness in Section 4.5.

the resulting program have to be written manually in LD−1,
readability and good structure is even more important, be-
cause the manually written code has to be integrated with the
generated parts of the LD−1 program. Hence, generated code
should use meaningful abstractions, should be designed well,
use good names for identifiers, be documented well, and be
indented correctly. In short, generated code should generally
adhere to the same standards as manually written code. This
also helps to diffuse some of the skepticism against code gener-
ation that is still widespread in some organizations. However,

Note that in complete languages (where
100% of the LD−1 code is generated),
the generated code is never seen by
a DSL user. But even in this case,
concerns for code quality apply and
the code has to be understood and
tested during DSL and generator
development.

there are several exceptions to this rule:

• Sometimes generating really well-structured code makes the
generator much more complicated. You then have to decide
whether you want to live with some less nicely structured
generated code, or whether you want to increase genera-
tor complexity – a valid trade-off, since the generator also
needs to be maintained! A good example is import state-
ments when generating Java code. It can be a lot of work
to find out exactly which imports are needed in a generated
class. In this case it may be better to keep the generator sim-
ple and use fully qualified class names throughout the code,
and/or to import a few too many classes31. 31 Xtend provides special sup-

port for this problem based on an
ImportManager. It makes generating
the correct imports relatively simple.

• Using a generator opens up additional options you wouldn’t
consider when writing code manually (and which are hence
considered ugly). An example is generated collection classes.
Imagine that your models define entities, and from each en-
tity you generate a Java Bean. In Java version 1.4 and earlier,
Java did not have generics, so in order to work with collec-

dsl engineering 93

tions of entities you would use the generic List class. In
the context of generated code you might want to consider
generating a specific collection class for each entity, with an
API typed to the respective Java Bean. This makes life much
more convenient for those people who write Java code that
uses the generated Beans.

• The third exception to the rule is if the code has to be highly
optimized for reasons of performance and code size. While
you can still indent your code well and use meaningful names,
the structure of the code may be convoluted. Note, however,
that the code would look the same if it were written by hand
in this case.

mbeddr C: The components extension to C supports
components with provided and required ports. A re-
quired port declares which interface it is expected to be
connected to. The same interface can be provided by
different components, implementing the interface dif-
ferently. Upon translation of the component extension,
regular C functions are generated. An outgoing call on
a required port has to be routed to the function that
has been generated to implement the called interface
operation in the target component. Since each compo-
nent can be instantiated multiple times, and each in-
stance can have its required ports connected to different
component instances (implementing the same interface)
there is no way for the generated code to know which
particular function has to be called for an outgoing call
on a required port for a given instance. An indirec-
tion through function pointers is used instead. Conse-
quently, functions implementing operations in compo-
nents take an additional struct as an argument, which
provides those function pointers for each operation of
each required port. A call on a required port is therefore
a relatively ugly affair based on function pointers. How-
ever, to achieve the desired goal, no different, cleaner
code approach is possible in C. It is optionally possi-
ble to restrict a required port to a particular component
(Fig. 4.13). In this case, the target function is known
statically and no function pointer-based indirection is
required. The resulting code is cleaner and more effi-
cient. Programmers trade flexibility for performance. J

94 dslbook.org

Figure 4.13: The required port
lowlevel is not just bound to the
ILowLevel interface, but restricted
to the ll port of the LowLevelCode
component. This way, it is statically
known which C function implements
the behavior and the generated code
can be optimized.

� Platform The complexity can be reduced by splitting the
overall transformation into several steps – see above. Another
approach is to work with a manually implemented, rich do-
main specific platform. This typically consists of middleware,
frameworks, drivers, libraries and utilities that are taken ad-
vantage of by the generated code.

Figure 4.14: Typical layering structure
of an application created using DSLs.

Where the generated code and the platform "meet" depends
on the complexity of the generator, requirements regarding
code size and performance, the expressiveness of the target
language and the potential availability of libraries and frame-
works that can be used for the task. In the extreme case, the
generator just generates code to populate (or configure) the
frameworks (which might already exist, or which you have to
grow together with the generator) or provides statically typed
facades around otherwise dynamic data structures. Don’t go
too far towards this end, however: in cases in which you need
to consider resource or timing constraints, or when the target
platform is predetermined and perhaps limited, code genera-
tion is the better approach: trying to make the platform too
generic or flexible will increase its complexity.

Figure 4.15: Stalagmites and stalactites
in limestone caves as a metaphor for a
generator and a platform: the stalag-
mite represents the platform, it grows
from up the lower abstraction levels.
Stalactites represent the transforma-
tions, which grow down from the high
abstraction level represented by the
DSL.

mbeddr C: For most aspects, we use only a very shallow
platform. This is mostly for performance reasons and for
the fact that the subset of C that is often used for embed-
ded systems does not provide good means of abstraction.
For example, state machines are translated to switch state-
ments. If we were to generate Java code in an enterprise
system, we might populate a state machine framework in-
stead. In contrast, when we translate the component def-
initions to the AUTOSAR target environment, a relatively
powerful platform is used – namely the AUTOSAR APIs,
conventions and generators. J

dsl engineering 95

4.3.4 Interpretation

An interpreter is basically a program that acts on the DSL pro-
gram it receives as an input. How it does that depends on
the particular paradigm used (see Section 5.2). For impera-
tive programs it steps through the statements and executes
their side effects. In functional programs, the interpreter (re-
cursively) evaluates functions. For declarative programs, some
other evaluation strategy, for example based on a solver, may
be used. We describe some of the details about how to design
and implement interpreters in Section 12.

Refrigerators: The DSL also supports the definition of
unit tests for the asynchronous, reactive cooling algorithm.
These tests are executed with an in-IDE interpreter. A sim-
ulation environment allows the interpreter to be used in-
teractively. Users can "play" with a cooling program, step-
ping through it in single steps, watching values change. J

Pension Plans: The pension DSL supports the in-IDE exe-
cution of rule unit tests by an interpreter. In addition, the
rules can be debugged. The rule language is functional, so
the debugger "expands" the calculation tree, and users can
inspect all intermediate results. J

For interpretation, the domain hierarchy could be exploited as
well: the interpreter for LD could be implemented in LD−1.
However, in practice we see interpreters written in LD0 . They
may be extensible, so new interpreter code can be added to deal
with the case where higher-level lanuguages add new language
concepts.

The abstraction level of an interpreter must be decided. One
alternative might ignore for example the use of registers when
performing an assignment, avoiding problems resulting from
parallelism. Alternatively, the interpreter might model every-
thing, taking into account issues related to parallelism. In other
words, an interpreter defines a virtual machine and it is fun-
damental that this virtual machine has an adequate abstraction
level. The users must be aware of exactly what it means for the
execution of the program on the target hardware if the program
runs on the virtual machine.

4.3.5 Transformation versus Interpretation

When defining the execution semantics for a language, a deci-
sion has to be made between transformation (code generation)

96 dslbook.org

and interpretation. Here are some criteria to help with this
decision.

Code Inspection When using code generation, the resulting code
can be inspected to check whether it resembles code that
had previously been written manually in the DSL’s domain.
Writing the transformation rules can be guided by the estab-
lished patterns and idioms in LD−1. Interpreters are meta
programs and as such harder to relate to existing code pat-
terns.

Debugging Debugging generated code is straightforward if the
code is well structured (which is up to the transformation)
and an execution paradigm is used for which a decent de-
bugging approach exists (not the case for many declara-
tive approaches). Debugging interpreters is harder, because,
they are meta programs. For example, setting breakpoints
in the DSL program requires conditional breakpoints in the
interpreter, which are typically cumbersome to use32 32 This is especially useful during the

development of the execution engine.
Once the DSL and the engine are
finished, users should be able to debug
DSL programs on the level of the DSL.
However, since building DSL debuggers
is not directly supported by most
language workbenches, this is a lot of
work – and users are required to debug
on LD−1.

Performance and Optimization The code generator can perform
optimizations that result in small and tight generated code.
The compiler for the generated code may come with its own
optimizations which are used automatically if source code is
generated and subsequently compiled, simplifying the code
generator33. Generally, performance is better in generated

33 For example, it is not necessary to
optimize away calls to empty functions,
if statements that always evaluate
to true, or arithmetic expressions
containing only constants.

environments, since interpreters always imply an additional
layer of indirection during the execution of the program.

Platform Conformance Generated code can be tailored to any
target platform. The code can look exactly as manually writ-
ten code would look; no support libraries are required. This
is important for systems in which the source code (and not
the DSL code) is the basis for a contractual obligations or
for review and/or certification. Also, if artifacts need to be
supplied to the platform that are not directly executable (de-
scriptors, meta data), code generation is more suitable.

Modularization When incrementally building DSLs on top of
existing languages, it is natural to use transformations to
LD−1

34.

34 While it is theoretically possible to
also extend interpreters incrementally
along a hierarchy of languages, I have
not seen this in practice. Interpreters
are typically written in a GPL.

Turnaround Time Turnaround time for interpretation is better
than for generation: no generation, compilation and pack-
aging step is required. For target languages with slow com-
pilers especially, large amounts of generated code can be a
problem.

dsl engineering 97

Runtime Change In interpreted environments, the DSL program
can be changed as the target system runs; the DSL editor can
even be integrated into the target system35. 35 The term data-driven system is often

used in this case.

Refrigerators: There were two reasons for implementing
the interpreter for the cooling programs. The first was that
initially we didn’t have a code generator, because the tar-
get architecture was not yet defined. To be able to execute
cooling programs, we needed an interpreter and simula-
tor. Second, the turn-around time for the domain experts
as they experimented with the DSL programs is much re-
duced compared to generating, compiling and running C
code. The (interpreted) simulator also allowed the domain
experts to run the programs at a speed they could follow.
This proved an important means of understanding and de-
bugging the asynchronous reactive cooling programs. J

mbeddr C: This DSL exploits incremental extension to the
C programming language (inductive DSL definition). In
this case it is natural to use transformation to LD−1 as a
means of defining the semantics of extensions. Also, since
the target domain is embedded software, performance, code
size and reuse of the optimizations provided by the C com-
piler is essential. Interpretation was never an option. J

Component Architecture: The driving factor for using
generation over interpretation was platform conformance.
The reason for the DSL is to automate the generation of
target platform artifacts and thereby make working with
the platform more efficient. J

Pension Plans: Turnaround time was important for the
pension contract specification. Also, the domain experts,
as they created the pension plans, did not have access to
the final execution platform. An in-IDE interpreter was
clearly the best choice. J

WebDSL: Platform conformance was key here. Web appli-
cations have to use the established web standards, and the
necessary artifacts have to be generated. An interpreted
approach would not work in this scenario. J

Combinations between the two approaches are also possible.
For example, transformation can create an intermediate rep-
resentation which is then interpreted. Or an interpreter can

98 dslbook.org

generate code on the fly as a means of optimization. While this
approach is common in GPLs (e.g., the JVM), we have not seen
this approach used for DSLs.

4.3.6 Sufficiency

A program fragment is sufficient for transformation T if the frag-
ment itself contains all the data necessary to executed the trans-
formation. While dependent fragments are by definition not
sufficient without the transitive closure of fragments they de-
pend on, an independent fragment may be sufficient for one
transformation, and insufficient for another.

Refrigerators: The hardware structure is sufficient for a
transformation that generates an HTML document that
describes the hardware. It is insufficient regarding the C
code generator, since the behavior fragment is required as
well. J

Sufficiency is important where large systems are concerned.
An sufficient fragment can be used for code generation without
checking out and/or loading other fragments. This supports
modular, incremental transformations of only the changed frag-
ments, and hence, potentially significant improvements in per-
formance and scalability.

4.3.7 Synchronizing Multiple Mappings

Ensuring the semantics of the execution engine becomes more
challenging if we transform the program to several different tar-
gets using several different transformations. We have to ensure
that the semantics of all resulting programs are identical36. In 36 At least to the extent we care – we

may not care if one of the resulting
programs is faster or more scalable. In
fact, these differences may be the very
reason for having several mappings).

practice, this case often occurs if an interpreter is used in the
IDE for "experimenting" with the models, and a code generator
creates efficient code for execution in the target environment.
To synchronize the semantics in this case, we recommend pro-
viding a set of test cases that are expressed on DSL level, and
that are executed in all executable representations, expecting
them to succeed in all of them. If the coverage of these test
cases is high enough to cover all of the observable behavior,
then it can be assumed with reasonable certainty that the se-
mantics are indeed the same37. 37 Strictly speaking they are just bug-

compatible, i.e. they may all make the
same mistakes.Pension Plans: The unit tests in the pension plans DSL

are executed by an interpreter in the IDE. However, as Java
code is generated from the pension plan specifications, the
same unit tests are also executed by the generated Java

dsl engineering 99

code, expecting the same results as in the interpreted ver-
sion. J

Refrigerators: A similar situation occurs with the cooling
DSL where an IDE-interpreter is used for testing and ex-
perimenting with the models, and a code generator creates
the executable version of the cooling algorithm that actu-
ally runs on the microcontroller in the refrigerator. A suite
of test cases is used to ensure the same semantics. J

4.3.8 Choosing between Several Mappings

Sometimes there are several alternative ways in which a pro-
gram in LD can be translated to a single LD−1, for example
to realize different non-functional requirements (optimizations,
target platform, tracing or logging). There are several ways in
which one alternative may be selected:

• In analogy to compiler switches, the decision can be con-
trolled by additional external data. Simple parameters passed
to the transformation are the simplest case. A more elabo-
rate approach is to have an additional model, called an anno-
tation model, which contains data used by the transforma-
tion to decide how to translate the core program. The trans-
formation uses the LD program and the annotation model as
its input. There can be several different annotation models
for the same core model that define several different trans-
formations, to be used alternatively. An annotation model is
a separate viewpoint (Section 4.4) an can hence be provided
by a different stakeholder than the one who maintains the
core LD program.

• Alternatively, LD can be extended to directly contain addi-
tional data to guide the decision. Since the data controlling
the transformation is embedded in the core program, this
is only useful if the DSL user can actually decide which al-
ternative to choose, and if only one alternative should be
chosen for each program. Annotation models provide more
flexibility.

• Heuristics, based on patterns, idioms and statistics extracted
from the LD program, can be used to determine the applica-
ble transformation as well. Codifying these rules and heuris-
tics can be hard though, so this approach is rarely used.

100 dslbook.org

As we have suggested above in the case of multiple transforma-
tions of the same LD program, here too extensive testing must
be used to make sure that all translations exhibit the same se-
mantics (except for the non-functional characteristics that may
be expected to be different, since they often are the reason for
the different transformations in the first place).

4.3.9 Reduced Expressiveness and Verification

It may be beneficial to limit the expressiveness of a language.
Limited expressiveness often results in more sophisticated an-
alyzability. For example, while state machines are not very
expressive (compared to fully fledged C), sophisticated formal
verification algorithms are available (e.g., model checking us-
ing SPIN38 or NuSMV39). The same is true for first-order logic,

38 spinroot.com

39 nusmv.fbk.eu/

where satisfiability (SAT) solvers40 can be used to check pro-

40 D. G. Mitchell. A sat solver primer.
eatcs, 85:112–132, 2005

grams for consistency. If these kinds of analyses are useful
for the model purpose, then limiting the expressiveness to the
respective formalism may be a good idea, even if it makes ex-
pressing some programs in D more cumbersome41. Possibly a

41 A simple example is to use integers
with ranges int[0..10] x; instead
of general integers. This makes pro-
grams harder to write (ranges must
be specified every time) but easier to
analyze.DSL should be partitioned into several sub-DSLs, where some

of them are verifiable and some are not.

mbeddr C: This is the approach used here: model check-
ing is provided for the state machines. No model check-
ing is available for general-purpose C, so behavior that
should be verifiable must be isolated into a state machine
explicitly. State machines interact with their surround-
ing C program in a limited and well-defined way to iso-
late them and make them checkable. Also, state machines
marked as verifiable cannot use arbitrary C code in its
actions. Instead, an action can only change the values of
variables local to the state machine and set output events
(which are then mapped to external functions or compo-
nent runnables). The key here is that the state machine
is completely self-contained regarding verification: adapt-
ing the state machine to its surrounding C program is a
separate concern and irrelevant to the model checker. J

However, the language may have to be reduced to the point
where domain experts are not able to use the language be-
cause the connection to the domain is too loose. To remedy
this problem, a language with limited expressiveness can be
used at D−1. For analysis and verification, the LD programs
are transformed down to the verifiable LD−1 language. Verifi-

dsl engineering 101

cation is performed on LD−1, mapping the results back to LD.
Transforming to a verifiable formalism also works if the formal-
ism is not at D−1, as long as a mapping exists. The problem
with this approach is the interpretation of analysis results in
the context of the DSL. Domain users may not be able to inter-
pret the results of model checkers or solvers, so they have to
be translated back to the DSL. Depending on the semantic gap
between the generated model checker input program and the
DSL, this can be very hard.

4.3.10 Documentation

Formally, defining semantics happens by mapping the DSL
concepts to D−1 concepts for which the semantics is known.
For DSLs used by developers, and for domains that are defined
inductively (bottom-up), this works well. For application do-
main DSLs, and for domains defined deductively (top-down),
this approach is not necessarily good enough, since the D−1

concepts has no inherent meaning to the users and/or the do-
main. An additional way of defining the meaning of the DSL
is required. Useful approaches include prose documentation42 42 We suggest always writing such

documentation in tutorial style, or as
FAQs. Hardly anyone reads "reference
documentation": while it may be
complete and correct, it is boring to
read and does not guide users through
using the DSL.

as well as test cases or simulators. This way, domain users
can "play" with the DSL and write down their expectations for-
mally in test cases.

mbeddr C: The extensible C language comes with a 100-
page PDF that shows how to use the MPS-based IDE, illus-
trates the changes to regular C, provides examples for all
C extensions and also discusses how to use the integrated
analysis tools. J

Refrigerators: This DSL has a separate viewpoint for defin-
ing test cases where domain experts can codify their expec-
tations regarding the behavior of cooling programs. An
interpreter is available to simulate the programs, observe
their progress and stimulate them to see how they react. J

Pension Plans: This DSL supports an Excel-like tabular
notation for expressing test cases for pension calculation
rules (Fig. 4.16). The calculations are functional, and the
calculation tree can be extended as a way of debugging the
rules. J

102 dslbook.org

Figure 4.16: Test cases in the pension
language allow users to specify test
data for each input value of a rule.
The rules are then evaluated by an
interpreter, providing immediate
feedback about incorrect rules (table
rows are colored red and green – not
visible in the printed version).

4.4 Separation of Concerns

For embedded software, these could
be component and interface definitions
(A), component instantiation and
connections (B), as well as scheduling
and bus allocation (C).

A domain D may be composed from different concerns. Each
concern covers a different aspect of the overall domain. When
developing a system in a domain, all the concerns in that do-
main have to be addressed. Separation into concerns is often
driven by different aspects of the system being specified by
different stakeholders or at different times in the development
process. Fig. 4.17 shows D1.1 composed from the concerns A,
B and C.

Figure 4.17: A domain may consist of
several concerns. A domain is covered
either by a DSL that addresses all of
these concerns, or by a set of related,
concern-specific DSLs.

Two fundamentally different approaches are possible to deal
with the set of concerns in a domain. Either a single, inte-
grated language can be designed that addresses all concerns

dsl engineering 103

of D in one integrated model. Alternatively, separate concern-
specific DSLs can be defined, each addressing one or more of
the domain’s concerns43. A complete program then consists 43 Strictly speaking, this is not quite

true: some concerns are typically also
addressed by the execution engine. We
discuss this below in the section on
Cross-Cutting Concerns.

of a set of dependent, concern-specific fragments that relate
to each other in a well-defined way. Viewpoints support this
separation of domain concerns into separate DSLs. Fig. 4.18

illustrates the two different approaches.

Figure 4.18: Left: An integrated DSL,
where the various concerns (repre-
sented by different line styles) are
covered by a single integrated language
(and consequently, one model). Right:
Several viewpoint languages (and
model fragments), each covering a sin-
gle concern. Arrows in Part B highlight
dependencies between the viewpoints.

mbeddr C: The tasks language module includes the task
implementation as well as task scheduling in one language
construct. Scheduling and implementation are two con-
cerns that could have been separated. We opted against
this, because both concerns are specified by the same per-
son. The language used for implementation code is med.core,
whereas the task constructs are defined in the med.tasks

language. So the languages are modularized, but they are
used together in a single heterogeneous fragment. J

WebDSL: Web programs consists of multiple concerns in-
cluding persistent data, user interface and access control.
WebDSL provides specific languages for these concerns,
but linguistically integrates them into a single language44.

44 Z. Hemel, D. M. Groenewegen,
L. C. L. Kats, and E. Visser. Static con-
sistency checking of web applications
with WebDSL. JSC, 46(2):150–182, 2011

Declarations in the languages can be combined in WebDSL
modules. A WebDSL developer can choose how to factor
declarations into modules; e.g., all access control rules in
one module, or all aspects of some feature together in one
module. J

Component Architecture: The specification of interfaces
and components is done with one DSL in one viewpoint.
A separate viewpoint is used to describe component in-
stantiation and connection. This choice has been made
because the same set of interfaces and components will
be instantiated and connected differently in different usage
scenarios, so separate fragments are useful. J

104 dslbook.org

4.4.1 Viewpoints for Concern Separation

If viewpoints are used, the concern-specific DSLs, and conse-
quently the viewpoint models, should have well-defined de-
pendencies; cycles should be avoided. If dependencies between

The IDE should provide navigational
support: if an element in viewpoint B
points to an element in viewpoint A
then it should be possible to follow this
reference ("Ctrl-Click"). It should also
be possible to query the dependencies
in the opposite direction ("Find the
persistence mapping for this entity"
or "Find all UI forms that access this
entity").

viewpoint fragments are kept cycle-free, the independent frag-
ments may be sufficient for certain transformations; this can be
a driver for using viewpoints in the first place.

The dependent viewpoint fragment (and the language to ex-
press it) have to provide a way of pointing to the referenced
element. This usually means that the referenced element has
to provide a qualified name that can be used in the reference45. 45 In projectional editors one can techni-

cally use the UUID of the target element
for the reference, but for the user, some
kind of qualified name is still necessary.

Separating out a domain concern into a separate viewpoint
fragment can be useful for several reasons. If different concerns
of a domain are specified by different stakeholders, then sep-
arate viewpoints make sure that each stakeholder has to deal
only with the information they care about. The various frag-
ments can be modified, stored and checked in/out separately,
maintaining only referential integrity with the referenced frag-
ment46. The viewpoint separation has to be aligned with the

46 Projectional editors can use a dif-
ferent approach. They can store the
information of all concerns in a single
model, but then use different projec-
tions to address the needs of different
stakeholders. This solves the problem
of referential integrity. However, this
approach does not support separate
store and check in/out.

development process: the order of creation of the fragments
must be aligned with the dependency structure.

A final (very pragmatic) reason for
using viewpoints is when the tooling
used does not support embedding of
a reusable language because syntactic
composition is not supported.

Another reason for separate viewpoints is a 1:n relationship
between the independent and the dependent fragments. If a
single core concern may be enhanced by several different addi-
tional concerns, then it is crucial to keep the core concern inde-
pendent of the information in the additional concerns. View-
points make this possible.

4.4.2 Viewpoints as Annotation Models

A special case of viewpoint separation is annotation models
(already mentioned in Section 4.3.8). An annotation provides
additional, often technical or transformation-controlling data
for elements in a core program47. This is especially useful in 47 For those who know Eclipse EMF:

genmodels are annotation models for
ecore models.

a multi-stage transformation (Section 4.3.3), where additional
data may have to be specified for the result of the first phase to
control the execution of the next phase. Since that intermediate
model is generated, it is not possible to add these additional
specifications to the intermediate model directly. Externalizing
it into an annotation model solves that problem.

Refrigerators: One concern in this DSL specifies the log-
ical hardware structure of refrigerators installations. An-
other one describes the refrigerator cooling algorithm. Both

dsl engineering 105

Figure 4.19: The hardware fragment
is independent, and sufficient for
generation of hardware diagrams
and documentation. The algorithms
fragment depends on the hardware
fragment. The two of them together are
sufficient for generating the controller
code. Tests depend on the algorithm.
There are many test fragments for a
single algorithm fragment.

are implemented as separate viewpoints, where the algo-
rithm DSL references the hardware structure DSL. Using
this dependency structure, different algorithms can be de-
fined for the same hardware structure. Each of these al-
gorithms resides in its own fragment. While the C code
generation requires both behavior and hardware structure
fragments, the hardware fragment is sufficient for a trans-
formation that creates a visual representation of the hard-
ware structures (see Fig. 4.19). J

Example: For example, if you create a relational data model
from an object oriented data model, you might automat-
ically derive database table names from the name of the
class in the OO model. If you need to "change" some of
those names, use an annotation model that specifies an al-
ternate name. The downstream processor knows that the
name in the annotation model overrides the name in the
original model48. J

48 This is a typical example of where
the easiest thing in a projectional
editor would be to just place a field for
holding an overriding table name under
the program element that represents the
table. Users can edit that table name in
a special projection.

4.4.3 Viewpoint Consistency

If viewpoints are used, constraints have to be defined to check
consistency of the viewpoints. A dependent viewpoint frag-
ment contains program elements that reference program ele-
ments in another fragment. It is straightforward to check that
the target elements of these actually exist, since the reference
will break if it does not; in most tools these kinds of checks are
available by default.

The other direction is more interesting. Assume two view-
points: business data structure and persistence mapping. There
may be a constraint that says that every Entity in the busi-
ness data viewpoint has to have exactly one EntityPersis-

106 dslbook.org

tenceMapping element that points to the respective Entity.
It is an error if such an EntityPersistenceMapping does not
exit. Checking this constraint has two problems:

• The first problem may be performance. The whole world has
to be searched to check if a referencing program element
exists somewhere. If the tool supports it, this problem can
be solved by automatically maintained reverse indices49.

49 This data should also be exploited by
the IDE. UI actions should be available
to navigate from the referenced element
(the Entity) to the referencing elements
(the EntityPersistenceMapping).
This is more than a generic Find Us-
ages functionality, since it specifically
searches for certain kinds of usages (the
EntityPersistenceMapping in this
example). Further tool support may
include creation of such referencing
elements based on a policy that deter-
mines into which fragment the created
element should go.

• The second problem is more fundamental: it is not clear
what constitutes the whole world. The fragment with the
persistence mapping for a given Entity may reside on a dif-
ferent machine or be under the control of a different user.
It may not be accessible to the constraint checker when the
user edits the business data fragment. To solve this problem,
it is necessary to define explicitly what the world is, using
some kind of configuration. For example, a C compiler’s in-
clude path or Java’s classpath are ways of defining the scope
within which the overall system description must be com-
plete. This does not necessarily have to be done by each
developer who, for example, works on the business data.
But at the point when the final system is generated or built,
such a "world definition" is essential.

4.4.4 Cross-Cutting Concerns

In the discussion so far we have considered concerns that can
be modularized clearly. Fig. 4.17 emphasizes this: the concern
boxes are neatly arranged next to each other. However, there
may also be concerns that do not fit into the chosen modulariza-
tion approach. These are typically called cross-cutting concerns;
see Fig. 4.20.

Figure 4.20: Cross-cutting concerns
cannot be modularized: they permeate
other concerns.

In the context of DSLs we have to separate several classes of
cross-cutting concerns:

� Handled by Execution Engine If we are lucky, a concern that
is cross-cutting in the domain can be handled completely by the
execution engine. For example the collection of performance

dsl engineering 107

data, billing information or audit logs typically does not have
to be described in the DSL at all. Since every program in the
domain has to address this concern in the same way, the imple-
mentation can be handled by the execution engine by inserting
the respective code at the relevant locations (in the case of a
generator).

Component Architecture: The component architecture DSL
supports the collection of performance data. Using mock
objects, we started running load tests early on. For a load
test, we have to collect the times it takes to execute oper-
ations on components. Based on a configuration switch,
the generator adds the necessary code to collect the per-
formance data automatically. J

� Modularized in DSL Another class of cross-cutting con-
cerns are those that cut across the resulting executable system,
but can be modularized on the DSL level. A good example is
permissions. Specifying users, roles and permissions to access
certain resources in the system can be modularized into a con-
cern, and is typically described in a separate viewpoint. It is
then the job of the execution engine to consider the specified
permissions in all relevant places in the resulting system.

WebDSL: WebDSL has a means of specifying access con-
trol for web pages. The generator injects the necessary
code to check these permissions into the client side and
server side parts of the resulting web application. J

� Cross-Cutting in the DSL The third class is when the con-
cern cross-cuts the programs written in the DSL and can not
be modularized, as in the previous class. In this case we have
to deal with cross-cutting concerns in the same way as we do
today in programming languages: we either have to manually
insert the code in all the relevant places in the DSL program, or
we have to resort to aspect weaving on the DSL level50.

50 Building a (typically relatively lim-
ited) aspect weaver on the DSL’s level
is not a big problem, since we already
have access to the AST, and trans-
forming it in a way where we inject
additional code based on a DSL-specific
pointcut specification is relatively
straightforward.

Component Architecture: We implemented a simple weaver
that is able to introduce additional ports into existing com-
ponents. It was used, among other things, to modular-
ize the monitoring concern: if monitoring was enabled,
this aspect component would add the mon port to all other
components, enabling the MonitoringConsole to connect
to the other components and query monitoring data (see
the code below51). J

51 The * specifies that this aspect ap-
plies to all existing components. Other
selectors could be used instead of the *
to select only a subset).

108 dslbook.org

namespace monitoring feature monitoring {

component MonitoringConsole ...
instance monitor: ...
dynamic connect monitor.devices .. .

aspect (*) component {
provides mon: IMonitoring

}
}

4.4.5 Views on Programs

In projectional editors it is also possible to store the data for all
viewpoints in the same model tree, while using different pro-
jections to show different views onto the model to materialize
the various viewpoints. The particular benefit of this approach
is that additional concern-specific views can be defined later,
after programs have been created. It also avoids the need for

MPS also provides annotations, al-
lowing additional model data to be
"attached" to any model element, and
shown optionally.

defining sophisticated ways of referencing program elements
from other viewpoints.

Pension Plans: Pension plans can be shown in a graphical
notation highlighting the dependency structure (Fig. 4.21).
The dependencies can still be edited in this view, but the
actual content of the pension plans is not shown. J

Figure 4.21: Graphical notation for
dependencies among rules in a pension
plan.mbeddr C: Annotations are used for storing requirements

traces and documentation in the models (Fig. 20.22). The
program can be shown and edited with and without re-
quirements traces and documentation text. J

dsl engineering 109

Figure 4.22: The shaded annotations
are traces into a requirements database.
The program can be edited with and
without these annotations. The annota-
tions language has no dependency on
the languages it annotates.

4.4.6 Viewpoints for Progressive Refinement

There is an additional use case for viewpoint models not re-
lated to the concerns of a domain, but to progressive refine-
ment. Consider the development of complex systems, which
typically proceeds in phases: it starts with requirements, pro-
ceeds to high-level component design and specification of non-
functional properties, and finishes with the implementation of
the components. In each of these phases, models can be used to
represent the system with abstractions that are appropriate for
the phase. An appropriate DSL is needed to represent the mod-
els in each phase (Fig. 4.23). The references between model el-
ements are called traces52. Since the same conceptual elements 52 W. Jirapanthong and A. Zisman.

Supporting product line development
through traceability. In apsec, pages
506–514, 2005

may be represented on different refinement levels (e.g., compo-
nent design and component implementation), synchronization
between the viewpoint models is often required (see the next
subsection).

Figure 4.23: Progressive refinement: the
boxes represent models expressed with
corresponding languages. The dotted
arrows express dependencies, whereas
the solid arrows represent references
between model elements.

4.4.7 Model Synchronization

In the discussion of viewpoints so far we have assumed that
there is no overlap between the viewpoints: every piece of

110 dslbook.org

information lives in exactly one viewpoint. Relationships be-
tween viewpoints are established by references (which means
that the Referencing language composition technique can be
used; this is discussed in Section 4.6.1). However, sometimes
this is not the case, and the same (conceptual) information is
represented in two viewpoint models. Obviously there is a
constraint that enforces consistency between the viewpoints;
the models have to be synchronized53. 53 Thanks are due to the participants

of the MoDELS 2012 workshop on
Multi-Paradigm Modeling who, by
discussing this issue, reminded me that
it is missing from the book.

In some cases the rules for establishing consistency between
viewpoints can be described formally, and hence the synchro-
nization can be automated, if the DSL tool supports such syn-
chronization54. An example occurs in mbeddr C:

54 MPS has a nice way of automatically
executing a quick fix for a constraint
violation. If the constraint detects an
inconsistency between viewpoints, the
quick fix can automatically correct the
problem. This also solves the whole
world problem neatly, since every
dependent fragment is "corrected" as
soon as it is opened in the editor.

mbeddr C: Components implement interfaces. Each com-
ponent provides an implementation for each method de-
fined in each of the interfaces it implements. If a new
method is added to an interface, all components that im-
plement that particular interface must get a new, empty
method implementation. This is an example of model syn-
chronization. J

In this example the synchronization is trivial, for two reasons:
first, there is a clear (unidirectional) dependency between the
method implementation and the operation specification in the
interface, so the synchronization is also unidirectional. Second,
the information represented in both models/places is identical,
so it is easy to detect an inconsistency and fix it. However, there
are several more complicated cases:

• The dependency might be bidirectional, and changes may
be allowed in either model. This means that two transfor-
mations have to be written, one for each direction, or a for-
malism for expressing the transformation has to be used that
can be executed in both directions55. In multi-user scenarios 55 The QVT-R transformation language

has this capability, for example.it is also possible that the two models are changed at the
same time, in an inconsistent way. In this case the changes
have to be merged, or a clear priority (who will win) has to
be established.

• The languages expressing the viewpoints may have been de-
fined independent of each other, with no dependency. This
probably means that it was discovered only after the fact
that some parts of the model have to be synchronized. In
this case the synchronization must be put into some kind of
adapter language. It also means that the synchronization is

dsl engineering 111

not as clean as if it had been "designed into" the languages
(see the next item).

• In the mbeddr example, the information (the signature of
the operation) was simply replicated, so the transformation
was trivial. However, there may not be a 1:1 correspondence
between the information in the two viewpoints. This makes
the transformation more complex to write. In the worst case
it may mean that the synchronization cannot be formally
described and automated.

Sometimes the correspondence between models can only be
expressed on an instance level (as in "This functional block cor-
responds to this software component")56. Consequently, devel- 56 This often happens in the context of

progressive refinement, as discussed in
the previous subsection.

opers have to express the correspondence (the trace links men-
tioned earlier) manually. However, consistency checks (and
possibly automatic synchronization) may still be possible, based
on the manually expressed trace links.

In my work with DSLs I have only encountered the simplest
cases of synchronization, which is why we don’t put much em-
phasis on this topic in the rest of the book. For more details,
see the papers by Diskin57 and Stevens58.

57 Z. Diskin, Y. Xiong, and K. Czarnecki.
From state- to delta-based bidirectional
model transformations. In ICMT, pages
61–76, 2010

58 P. Stevens. Bidirectional model
transformations in qvt: semantic issues
and open questions. SoSyM, 9(1):7–20,
2010

4.5 Completeness

Completeness59 refers to the degree to which a language L can 59 This has nothing to do with Turing
completeness.express programs that contain all necessary information to ex-

ecute them. An program expressed in an incomplete DSL re-
quires additional specifications (such as configuration files or
code written in a lower-level language) to make it executable.

Let us introduce a function G ("code generator") that trans-
forms a program p in LD to a program q in LD−1. For a com-
plete language, p and q have the same semantics, i.e. OB(p) ==

OB(G(p)) == OB(q) (see Section 4.3). For incomplete lan-
guages where OB(G(p)) ⊂ OB(p) we have to write additional
code in LD−1 to obtain a program in D−1 that has the same se-
mantics as intended by the original program in LD. In cases in

Another way of stating this is that G
produces a program in LD−1 that is
not sufficient for a subsequent trans-
formation (e.g., a compiler), only the
manually written LD−1 code leads to
sufficiency.

which we use several viewpoints to represent various concerns
of D, the set of fragments written for these concerns must be
enough for complete D−1 generation.

mbeddr C: The Embedded C language is complete regard-
ing D−1, or even D−m for higher levels of D, since higher
levels are always built as extensions of its D−1. Developers

112 dslbook.org

can always fall back to D−1 to express what is not express-
ible directly with LD. Since the users of this system are
developers, falling back to D−1 or even D0 is not a prob-
lem. J

4.5.1 Compensating for Incompleteness

Integrating the LD−1 in the case of an incomplete LD language
can be done in several ways:

• By calling "black box" code written in LD−1. This requires
concepts in LD for calling D−1 foreign functions. No syntac-
tic embedding of D−1 code is required, beyond the ability to
call functions60.

60 In the simplest case, these functions
don’t even have arguments, so the syn-
tax to call such a function is essentially
just the function name.

• By directly embedding LD−1 code in the LD program. This
is useful if LD is an extension of LD−1, or if the tool provides
adequate support for embedding the D−1 language into LD

programs. Note that LD−1 may not be analyzable, so mixing

Just "pasting text into a text field", an
approach used by several graphical
modeling tools, is not productive, since
no syntactic and semantic integration
between the languages is provided.
In most cases there is no tool support
(syntax highlighting, code completion,
error checking)

LD−1 into LD code may compromise analyzability of the LD

code.

• By using composition mechanisms of LD−1 to "plug in" the
manually written code into the generated code without actu-
ally modifying the generated files (also known as the Gener-
ation Gap61 pattern). Example techniques for realizing this

61 J. Vlissidis. Generation gap. C++
Report, 1996

approach include generating a base class with abstract meth-
ods (requiring the user to implement them in a manually
written subclass) or with empty callback methods which the
user can use to customize in a subclass62. You can delegate,

62 For example, in user interfaces, such
a method could return a position object
for a widget. The default implemen-
tation returns null, indicating to the
framework to use the the generic layout
algorithm. If a position is returned, it
is used instead of the one computed by
the layout algorithm.implement interfaces, use #include, use reflection tricks,

AOP or take a look at the well-known design patterns for
inspiration. Some languages provide partial classes, where
a class definition can be split over a generated file and a
manually written file.

• By inserting manually-written LD−1 code into the LD−1 code
generated from the LD program using protected regions.
Protected regions are areas of the code, usually delimited
by special comments, whose (manually written) contents are
not overwritten during regeneration of the file.

We discourage the use of protected
regions. You’ll run into all kinds of
problems: generated code is not a
throw-away product any more, you
have to check it in leading to funny
situations with your version control
system. Also, often you will accumulate
a "sediment" of code that has been
generated from elements that are
no longer in the model, leading to
compilation errors in the worst case
– even though the code is in fact not
longer required. If you don’t use
protected regions, you can delete the
whole generated source directory from
time to time, cleaning up the sediment.

For DSLs used by developers, incompleteness is usually not
a problem because they are comfortable with writing the D−1

code in a programming language. Specifically, the DSL users
are the same people as those who provide the remaining D−1

code, so coordination between the two roles is not a problem.

dsl engineering 113

Component Architecture: This DSL is not complete. Only
class skeleton and infrastructure integration code is gener-
ated from the models. The component implementation has
to be implemented manually in Java using the Generation
Gap pattern. The DSL is used by developers, so writing
code in a subclass of a generated class is not a problem. J

For DSLs used by domain experts, the situation is different.
Usually, they are not able to write D−1 code, so other people
(developers) have to fill in the remaining concerns. Alterna- This requires elaborate collaboration

schemes, because the domain experts
have to communicate the remaining
concerns via text or verbal communica-
tion.

tively, developers can develop a predefined set of foreign func-
tions that can be called from within the DSL. In effect, devel-
opers provide a standard library (cf. Section 4.1.2) which can
be invoked as black boxes from DSL programs.

WebDSL: The core of a web application is concerned with
persistent data and its presentation. However, web ap-
plications need to perform additional duties outside that
core, for which useful libraries often exist. WebDSL pro-
vides a native interface that allows a developer to call into
a Java library by declaring types and functions from the
library in a WebDSL program. J

Note that a DSL that does not cover all of D can still be complete:
not all of the programs imaginable in a domain may be ex-
pressed with a DSL, but those programs that can be expressed
can be expressed completely, without any manually written
code. Also, the code generated from a DSL program may re-
quire a framework written in LD−1 to run in. That framework
represents aspects of D outside the scope of LD.

Refrigerators: The cooling DSL only supports reactive,
state-based systems that make up the core of the cool-
ing algorithm. The drivers used in the lower layers of
the system, or the control algorithms controlling the ac-
tual compressors in the fridge, cannot be expressed with
the DSL. However, these aspects are developed once and
can be reused without adaptations, so using DSLs is not
sensible. These parts are implemented manually in C. J

� Controlling D−1 Code Allowing users to manually write
D−1 code, and especially if it is actually a GPL in D0, comes
with two additional challenges. Consider the following exam-
ple: the generator generates an abstract class from some model
element. The developer is expected to subclass the generated

114 dslbook.org

class and implement a couple of abstract methods. The man-
ually written subclass needs to conform to a specific naming
convention so that some other generated code can instantiate
the manually written subclass. The generator, however, just
generates the base class and stops: how can you make sure
developers actually do write that subclass, using the correct
name63?

63 Of course, if the constructor of the
concrete subclass is called from another
location of the generated code, and/or
if the abstract methods are invoked,
you’ll get compiler errors. By their
nature, they are on the abstraction
level of the implementation code,
however. It is not always obvious what
the developer has to do in terms of the
model or domain to get rid of these
errors.

To address this issue, make sure there is there a way to make
those conventions and idioms interactive. One way to do this
is to generate checks/constraints against the code base and have
them evaluated by the IDE, for example using Findbugs64 or

64 findbugs.sourceforge.net/similar code checking tools. If one fails, an error message is
reported to the developer. That error message can be worded
by the developer of the DSL, helping the developer understand
what exactly has to be done to solve the problem with the code.

� Semantic Consistency As part of the definition of a DSL
you will implement constraints that validate the DSL program
in order to ensure some property of the resulting system (see
Section 20.5). For example, you might check dependencies be-
tween components in an architecture model to ensure compo-
nents can be exchanged in the actual system. Of course such a
validation is only useful if the manually written code does not
introduce dependencies that are not present in the model. In
that case the "green light" from the constraint check does not
help much.

To ensure that promises made by the models are kept by
the (manually written) code, use one of the following two ap-
proaches. First, generate code that does not allow violation
of model promises. For example, don’t expose a factory that
allows components to look up and use any other component
(creating dependencies), but rather use dependency injection
to supply objects for the valid dependencies expressed in the
model65.

65 A better approach is to build a com-
plete DSL. The language used to express
the behavior (which might otherwise
plugged in manually in the gener-
ated code) is suitably limited and/or
checked to enforce that it does not
lead to inconsistencies. This is a nice
use case for language extension and
embedding.

Component Architecture: The Java code generator gen-
erates component implementation classes that use depen-
dency injection to supply the targets for required ports.
This ensures that the implementation class will have access
to exactly those interfaces specified in the model. An al-
ternative approach would be to simply hand to the imple-
mentation class some kind of factory or registry where a
component implementation can look up instances of com-

dsl engineering 115

ponents that provide the interfaces specified by the re-
quired ports of the current component. However, this way
it would be much harder to make sure that only those de-
pendencies are accessed that are expressed in the model.
Using dependency injection enforces this constraint in the
implementation code. J

A second approach uses code checkers (like the Findbugs men-
tioned above) or architecture analysis tools to validate manu-
ally written code. You can easily generate the relevant checking
rules for those tools from the models.

4.5.2 Roundtrip Transformation

Roundtrip transformation means that an LD program can be
recovered from a program in LD−1 (written from scratch, or
changed manually after generation from a previous iteration
of the LD program). This is challenging, because it requires
reconstituting the semantics of the LD program from idioms
or patterns used in the LD−1 code. This is the general reverse
engineering problem and is not generally possible, although
progress has been made over recent years (see for example66).

66 D. Beyer, T. A. Henzinger, and
G. Theoduloz. Program analysis
with dynamic precision adjustment.
In ASE, pages 29–38, 2008; M. Pistoia,
S. Chandra, S. J. Fink, and E. Yahav. A
survey of static analysis methods for
identifying security vulnerabilities in
software systems. IBMSJ, 46(2):265–
288, 2007; and M. Antkiewicz, T. T.
Bartolomei, and K. Czarnecki. Fast
extraction of high-quality framework-
specific models from application code.
ASE, 16(1):101–144, 2009

Notice that the problem of "under-
standing" the semantics of a program
written at a too-low abstraction level is
the reason for DSLs in the first place:
by providing linguistic abstractions for
the relevant semantics, no "recovery" is
necessary for meaningful analysis and
transformation.

Note that for complete languages roundtripping is generally
not useful, because the complete program can be written in LD

in the first place. Even if recovery of the semantics is possible
it may not be practical: if the DSL provides significant abstrac-
tion over the LD−1 program, then the generated LD−1 program
is so complicated that manually changing the D−1 code in a
consistent and correct way is tedious and error-prone.

Roundtripping has traditionally been used with respect to
UML models and generated class skeletons. In that case, the
abstractions between the model and the code are similar (both
are classes); the tool basically just provides a different concrete
syntax (diagrams). This similarity of abstractions in the code
and the model made roundtripping possible to some extent.
However, it also made the models relatively useless, because
they did not provide a significant benefit in terms of abstrac-
tion over code details. We generally recommend avoiding any
attempt to build support for roundtripping.

mbeddr C: This language does not support roundtripping,
but since all DSLs are extensions of C, one can always add
C code to the programs, alleviating the need for roundtrip-
ping in the first place. J

116 dslbook.org

Refrigerators: Roundtripping is not required here, since
the DSL is complete. The code generators are quite so-
phisticated, and nobody would want to manually change
the generated C code. Since the DSL has proved to provide
good coverage, the need to "tweak" the generated code has
not come up. J

Component Architecture: Roundtripping is not supported.
Changes to the interfaces, operation signatures or com-
ponents have to be performed in the models. This has
not been reported as a problem by the users, since both
the implementation code and the DSL "look and feel" the
same way – they are both Eclipse-based textual editors –
and generation of the derived low-level code happens au-
tomatically on saving a changed model. The workflow is
seamless. J

Pension Plans: This is a typical application domain DSL
where the users never see the generated Java code. Con-
sequently, the language has to be complete and roundtrip-
ping is not useful and would not fit with the development
process. J

4.6 Language Modularity

Reuse of modularized parts makes software development more
efficient, since similar functionality does not have to be devel-
oped over and over again. A similar argument can be made
for languages. Being able to reuse languages, or parts of lan-
guages, in new contexts makes designing DSLs more efficient.

Language modularization and reuse
is often not driven by end user or
domain requirements, but rather,
by the experience of the language
designers and implementers striving for
consistency and avoidance of duplicate
implementation work.

Language composition requires the composition of abstract
syntax, concrete syntax, constraints/type systems and the ex-
ecution semantics67. We discuss all of these aspect in this

67 It requires the composition of the IDE
as well. However, with the language
workbenches used in this book, this is
mostly automatic.section. However, in the discussion of semantic integration,

we consider only the case in which the composed language
uses the same (or closely related) behavioral paradigms68, since 68 The behavioral paradigm is also

known as the Model of Computation.otherwise the composition can become very challenging. We
mostly focus on imperative programs. We discuss behavioral
paradigms in more detail in Section 5.

� Composition Techniques We have identified the following
four composition strategies: referencing, extension, reuse and
embedding. We distinguish them regarding fragment structure

dsl engineering 117

and language dependencies, as illustrated in Fig. 4.24. Fig. 4.25

shows the relationships between fragments and languages in
these cases69.

69 Note how in both cases the language
definitions are modular: invasive mod-
ification of a language definition is
not something we consider language
modularity!

Figure 4.24: We distinguish the four
modularization and composition ap-
proaches regarding their consequences
for fragment structure and language
dependencies.

We consider these two criteria to be relevant for the following
reasons. Language dependencies capture whether a language has
to be designed with knowledge about a particular composition
partner in mind in order to be composable with that partner.
It is desirable in many scenarios that languages be compos-
able without previous knowledge about all possible composi-
tion partners. Fragment Structure captures whether the two
composed languages can be syntactically mixed, or whether
separate viewpoints are used. Since modular concrete syntax
can be a challenge, this is not always possible, though often
desirable.

Figure 4.25: The relationships between
fragments and languages in the four
composition approaches. Boxes rep-
resent fragments, rounded boxes are
languages. Dotted lines are dependen-
cies, solid lines references/associations.
The shading of the boxes represent the
two different languages.

� DSL Hell? Reusing DSL also helps avoid the "DSL Hell"
problem we discussed in the introduction. DSL hell refers to
the danger that developers create new DSLs all the time, result-
ing in a large set of half-baked DSLs, each covering related do-
mains, possibly with overlap, but still incompatible. Language
modularization and reuse can help to avoid this problem. Lan-
guage extension allows users to add new language constructs
to existing languages. They can reuse all the features of the

118 dslbook.org

existing language while still adding their own higher-level ab-
stractions. Language embedding lets language designers em-
bed existing languages into new ones. This is particularly in-
teresting in the case of expression or query languages, which
are relevant in many different contexts.

� More Detailed Examples Part III of the book discusses the
implementation of these modularization techniques with var-
ious tools (Section 16). As part of this discussion we present
much more concrete and detailed examples of the various com-
position techniques. You may want to take a look at those ex-
amples while you read this section.

4.6.1 Language Referencing

Language referencing enables homogeneous fragments with cross-
references among them, using dependent languages (Fig. 4.26).

A fragment f2 depends on f1. f2 and f1 are expressed with
different languages l2 and l1. The referencing language l2 de-
pends on the referenced language l1 because at least one con-
cept in the l2 references a concept from l1. We call l2 the referenc-
ing language, and l1 the referenced language. While equations
(1.2) and (1.3) (see Section 3.3) continue to hold, (1.1) does not.
Instead:

∀r ∈ Refsl2 | lo(r.from) = l2 ∧ (lo(r.to) = l1 ∨ lo(r.to) = l2)
(4.1)

Figure 4.26: Referencing. Language
l2 depends on l1, because concepts in
l2 reference concepts in l1. (We use
rectangles for languages, circles for
language concepts, and UML syntax for
the lines: dotted arrows = dependency,
normal arrows = associations, hollow-
triangle-arrow for inheritance.)

� Viewpoints As we have discussed before in Section 4.4, a
domain D can be composed from different concerns. One way
of dealing with this is to define separate concern-specific DSLs,
each addressing one or more of the domain’s concerns. A pro-
gram then consists of a set of concern-specific fragments, which
relate to each other in a well-defined way using language refer-
encing. This approach has the advantage that different stake-
holders can modify "their" concern independent of others. It
also allows reuse of the independent fragments and languages

dsl engineering 119

with different referencing languages. The obvious drawback is
that for tightly integrated concerns the separation into separate
fragments can be a usability problem.

Referencing implies knowledge about the relationships of
the languages as they are designed. Viewpoints are the clas-
sical case for this. The dependent languages cannot be reused,
because of the dependency on the other language.

Refrigerators: As an example, consider the domain of re-
frigerator configuration. The domain consists of three con-
cerns. The first concern H describes the hardware struc-
ture of refrigerator appliances including compartments,
compressors, fans, valves and thermometers. The second
concern A describes the cooling algorithm using a state-
based, asynchronous language. Cooling programs refer to
hardware building blocks and access their properties in ex-
pressions and commands. The third concern is testing, T.
A cooling test can test and simulate cooling programs. The
dependencies are as follows: A → H and T → A. Each
of these concerns is implemented as a separate language,
with references between them. H and A are separated be-
cause H is defined by product management, whereas A
is defined by thermodynamicists. Also, several algorithms
for the same hardware must be supported, which makes
separate fragments for H and A useful. T is separate from
A because tests are not strictly part of the product defi-
nition and may be enhanced after a product has been re-
leased. These languages have been built as part of a single
project, so the dependencies between them are not a prob-
lem. J

� Progressive Refinement Progressive refinement, also intro-
duced earlier (Section 4.4.6), also makes use of language refer-
encing.

4.6.2 Language Extension

Language extension enables heterogeneous fragments with de-
pendent languages (Fig. 4.27). A language l2 extending l1 adds
additional language concepts to those of l1. We call l2 the ex-
tending language (or language extension), and l1 the base lan-
guage. To allow the new concepts to be used in the context
provided by l1, some of them extend concepts in l1. So, while

120 dslbook.org

l1 remains independent, l2 becomes dependent on l1, since:

∃i ∈ Inh(l2) | i.sub = l2 ∧ i.super = l1 (4.2)

Consequently, a fragment f contains language concepts from
both l1 and l2:

∀e ∈ E f | lo(e) = l1 ∨ lo(e) = l2 (4.3)

In other words, C f ⊂ (Cl1 ∪ Cl2), so f is heterogeneous. For
heterogeneous fragments (1.3) does not hold anymore, since:

∀c ∈ Cdnf | (lo(co(c.parent)) = l1 ∨ lo(co(c.parent)) = l2)∧

(lo(co(c.child)) = l1 ∨ lo(co(c.child)) = l2) (4.4)

Note that copying a language definition
and changing it does not constitute a
case of language extension, because the
extension is not modular, it is invasive.
Also, native interfaces that support
calling one language from another
(like calling C from Perl or Java) is not
language extension; rather it is a form
of language referencing. The fragments
remain homogeneous.

Figure 4.27: Extension: l2 extends l1.
It provides additional concepts B3
and B4. B3 extends A3, so it can be
used as a child of A2, just like A3. This
plugs l2 into the context provided by l1.
Consequently, l2 depends on l2.

Language extension is especially inter-
esting if D0 languages are extended,
making a DSL an extension of a general
purpose language.

Language extension fits well with the hierarchical domains in-
troduced in Section 3.1: a language LB for a domain D may
extend a language LA for D−1. LB contains concepts specific
to D, making analysis and transformation of those concepts
possible without pattern matching and semantics recovery. As
explained in the introduction, the new concepts are often rei-
fied from the idioms and patterns used when using an LA for
D. Language semantics are typically defined by mapping the
new abstractions to just these idioms (see Section 4.3) inline.
This process, also known as assimilation, transforms a hetero-
geneous fragment (expressed in LD and LD+1) into a homoge-
neous fragment expressed only with LD.

Extension is especially useful for bottom-up domains. The
common patterns and idioms identified for a domain can be
reified directly into linguistic abstractions, and used directly in
the language from which they have been embedded. Incom-
plete languages are not a problem, since users can easily fall
back to D−1 to implement the rest. Since DSL users see the
D−1 code all the time anyway, they will be comfortable falling

dsl engineering 121

back to D−1 in exceptional cases. This makes extensions suit-
able only for DSLs used by developers. Domain expert DSLs
are typically not implemented as extensions.

mbeddr C: As an example, consider embedded program-
ming. The C programming language is typically used as
the GPL for D0 in this case. Extensions for embedded pro-
gramming include state machines, tasks or data types with
physical units. Language extensions for the subdomain of
real-time systems may include ways of specifying deter-
ministic scheduling and worst-case execution time. For
the avionics subdomain support for remote communica-
tion using some of the bus systems used in avionics could
be added. J

Extension comes in two flavors. One really feels like extension,
the other feels more like embedding.

• Extension Flavor In the first case we provide (a little, local)
additional syntax to an otherwise unchanged language. For
example, C may be extended with new data types and liter-
als for complex numbers, as in complex c = (3+2i);. The
programs still essentially look like C programs, with specific
extensions in a few places.

• Embedding Flavor The other case is where we create a com-
pletely new language, but reuse some of the syntax provided
by the base language. For example, we could create a state
machine language that reuses C’s expression and types in
guard conditions. This use case feels like embedding (we
embed syntax from the base language in our new language),
but in the classification according to syntactic integration
and dependencies, it is still extension. Embedding would
prevent dependencies between the state machine language
and C.

The embedding flavour is often suitable
for use with DSLs that are used by non-
programmers, since the "embedded"
subset of the language is often small
and simple to understand. Once again,
expression languages are the prime
example for this.

Language extension is also a very useful way to address the
problem of DSLs often starting as simple, but then becoming
more complicated over time, because new corners or intricacies
in the domain are discovered as users gain more experience in
the domain. These corner cases and intricacies can be factored
into a separate language module that extends the core DSL.
The use of these extensions can then initially be restricted to a
few users in order to find out if they are really needed. Dif-
ferent experiments can even be performed at the same time,

122 dslbook.org

with different groups of users using different extensions. Even
once these extensions have proved useful, "advanced" language
features can be restricted in this way to a small group of "ad-
vanced" users who handle the hard cases by using the exten-
sion.

Incremental extension can help to avoid the feared "cus-
tomization cliff". The customization cliff is a term introduced
by Steve Cook70: once you step outside of what is covered by your 70 blogs.msdn.com/b/

stevecook/archive/
2005/12/16/504609.aspx

DSL, you plunge down a cliff onto the rocks of the low-level plat-
form. If DSLs are built as incremental extensions of the next
lower language, then stepping outside any DSL on level D will
only plunge you down to the language for D−1. And presum-
ably you can always create an additional extension that extends
your DSL to cover an additional, initially unexpected aspect.

Defining a D language as an extension of a D−1 language
can also have drawbacks. The language is tightly bound to the
D−1 language it is extended from. While it is possible for a
stand-alone DSL in D to generate implementations for differ-
ent D−1 languages, this is not easily possible for DSLs that are
extensions of a D−1 language. Also, interaction with the D−1

language may make meaningful semantic analysis of complete
programs (using LD and LD−1 concepts) hard. This problem
can be limited if isolated LD sections are used in which inter-
action with LD−1 concepts is limited and well-defined. These
isolated sections remain analyzable.

Restriction is often useful for the
embedding-flavor of extension. For ex-
ample, when embedding C expressions
into the state machine language, we
may want to restrict users from using
the pointer-related expressions.

� Restriction Sometimes language extension is also used to
restrict the set of language constructs available in the subdo-
main. For example, the real-time extensions for C may re-
strict the use of dynamic memory allocation, or the extension
for safety-critical systems may prevent the use of void point-
ers and certain casts. Although the extending language is in
some sense smaller than the extended one, we still consider
this a case of language extension, for two reasons. First, the
restrictions are often implemented by adding additional con-
straints that report errors if the restricted language constructs
are used. Second, a marker concept may be added to the base
language. The restriction rules are then enforced for children
of these marker concepts (e.g., in a module marked as "safe",
one cannot use void pointers and the prohibited casts).

mbeddr C: Modules can be marked as MISRA-compliant,
which prevents the use of those C constructs that are not

dsl engineering 123

allowed in MISRA-C71. Prohibited concepts are reported 71 www.misra.org.uk/
Publications/tabid/57/
Default.aspx#label-c2

as errors directly in the program. J

4.6.3 Language Reuse

Language reuse enables homogenous fragments with independent
languages (Fig. 4.28). Given are two independent languages l2
and l1 and two fragment f2 and f1. f2 depends on f1, so that:

∃r ∈ Refsf2 | fo(r.from) = f2 ∧

(fo(r.to) = f1 ∨ fo(r.to) = f2) (4.5)

Since l2 is independent, it cannot directly reference concepts

One could argue that in this case
reuse is just a clever combination
of referencing and extension. While
this is true from an implementation
perspective, it is worth describing as a
separate approach, because it enables
the combination of two independent
languages by adding an adapter after
the fact, so no pre-planning during the
design of l1 and l2 is necessary.

in l1. This makes l2 reusable with different languages (in con-
trast to language referencing, where concepts in l2 reference
concepts in l1). We call l2 the context language and l1 the reused
language.

One way of realizing dependent fragments while retaining
independent languages is using an adapter language lA where
lA extends l2, and:

∃r ∈ RefslA | lo(r.from) = lA ∧ lo(r.to) = l1 (4.6)

Figure 4.28: Reuse: l1 and l2 are in-
dependent languages. Within an l2
fragment, we still want to be able to
reference concepts in another frag-
ment expressed with l1. To do this,
an adapter language lA is added that
depends on both l1 and l2, using inher-
itance and referencing to adapt l1 to
l2.

While language referencing supports reuse of the referenced
language, language reuse supports the reuse of the referencing
language as well. This makes sense for DSLs that have the po-
tential to be reused in many domains, with minor adjustments.
Examples include role-based access control, relational database
mappings and UI specification.

Example: Consider a language for describing user inter-
faces. It provides language concepts for various widgets,
layout definition and disable/enable strategies. It also sup-
ports data binding, where data structures are associated

124 dslbook.org

with widgets, to enable two-way synchronization between
the UI and the data. Using language reuse, the same UI
language can be used with different data description lan-
guages. Referencing would not achieve this goal, because
the UI language would have a direct dependency on a par-
ticular data description language. Changing the depen-
dency direction to data→ ui doesn’t solve the problem ei-
ther, because this would go against the generally accepted
idiom that UI has dependencies to the data, but not vice
versa (cf. the MVC pattern). J

Generally, the referencing language is built with the knowledge
that it will be reused with other languages, so hooks may be
provided for adapter languages to plug in.

Example: The UI language thus may define an abstract
concept DataMapping, which is then extended by various
adapter languages. J

4.6.4 Language Embedding

Language embedding (Fig. 4.29) enables heterogeneous fragments
with independent languages. It is similar to reuse, in that there
are two independent languages l1 and l2, but instead of estab-
lishing references between two homogeneous fragments, we
now embed instances of concepts from l2 in a fragment f ex-
pressed with l1, so:

∀c ∈ Cdnf | lo(co(c.parent)) = l1 ∧

(lo(co(c.child)) = l1 ∨ lo(co(c.child)) = l2)) (4.7)

Unlike language extension, where l2 depends on l1 because
concepts in l2 extends concepts in l1, there is no such depen-
dency in this case. Both languages are independent. We call
l2 the embedded language and l1 the host language. Again, an
adapter language lA that extends l1 can be used to achieve this,
where:

∃c ∈ CdnlA | lo(c.parent) = lA ∧ lo(c.child) = l1 (4.8)

Embedding supports syntactic composition of independently
developed languages. As an example, consider a state machine
language that can be combined with any number of program-
ming languages such as Java or C. If the state machine language
is used together with Java, then the guard conditions used in
the transitions should be Java expressions. If it is used with

dsl engineering 125

Figure 4.29: Embedding: l1 and l2 are
independent languages. However,
we still want to use them in the same
fragment. To enable this, an adapter
language lA is added. It depends on
both l1 and l2, and uses inheritance and
composition to adapt l1 to l2 (this is
almost the same structure as in the case
of reuse; the difference is that B5 now
contains A3, instead of just referencing
it).

C, then the expressions should be C expressions. The two ex-
pression languages, or in fact, any others, must be embeddable
in the guard conditions. So the state machine language cannot
depend on any particular expression language, and the expres-
sion languages of C or Java obviously cannot be designed with
knowledge about the state machine language. Both have to re-
main independent, and have to be embedded using an adapter
language.

Note that if the state machine lan-
guage is specifically built to "embed"
C expressions, then this is a case of
language Extension, since the state
machine language depends on the C
expression language.

Another example is embedding a database query language
such as Linq or SQL in different programming languages (Java,
C#, C). Again, the query language may not have a dependency
on any programming language (otherwise it would not be em-
beddable in all of them). The problem could be solved by ex-
tension (with embedding flavor), but then the programming
language would have to be invasively changed – it now has to
have a dependency on the query language. Using embedding,
this dependency can be avoided.

When embedding a language, the embedded language must
often be extended as well. In the state machine example, new
kinds of expressions must be added to support referencing
event parameters defined in the host language. In the case
of the query language, method arguments and local variables
should probably me usable as part of the queries (... WHERE

somecolumn = someMethodArg). These additional expressions
will typically reside in the adapter language as well.

Just as in the embedding-flavored extension case (cf. Sec-
tion 4.6.2), sometimes the embedded language must also be
restricted. If you embed the C expression language in state ma-
chine guard conditions, you may want to restrict the user from
using pointer types or all the expressions related to pointers in
C.

126 dslbook.org

WebDSL: In order to support queries over persistent data,
WebDSL embeds the Hibernate Query Language (HQL)
such that HQL queries can be used as expressions. Queries
can refer to entity declarations in the program and to vari-
ables in the scope of the query. J

Pension Plans: The pension workbench DSL embeds a
spreadsheet language for expressing unit tests for pension
plan calculation rules. The spreadsheet language comes
with its own simple expression language to be used inside
the cells. A new expression has been added to reference
pension rule input parameters so that they can be used
inside the cells. J

� Cross-Cutting Embedding, Meta Data A special case of em-
bedding is handling meta data. We define meta data as pro-
gram elements that are not essential to the semantics of the
program, and are typically not handled by the primary model
processor. Nonetheless this data must relate to program ele-
ments, and, at least from a user’s perspective, they often need
to be embedded in programs. Since most of them are rather
generic, embedding is the right composition mechanism: no
dependency to any specific language should be necessary, and
the meta data should be embeddable in any language. Exam-
ple meta data includes:

Documentation , which should be attachable to any program
element, and in the documentation text, other program ele-
ments should be referenceable.

Traces , to capture typed relationships between program ele-
ments, or between program elements and requirements or
other documentation ("this program element implements that
requirement").

Presence Conditions in product line engineering, to describe if
a program element should be available in the program for a
given product configuration ("this procedure is only in the
program in the international variant of the product").

In projectional editors, this meta data can be stored in the pro-
gram tree and shown only optionally, if some global configura-
tion switch is true. In textual editors, meta data is often stored
in separate files, using pointers to refer to the respective model

dsl engineering 127

elements. The data may be shown in hovers or views adjacent
to the editor itself.

mbeddr C: The system supports various kinds of meta
data, including traces to requirements and documenta-
tion. They are implemented with MPS’ attribute mecha-
nism, which is discussed in the part on MPS in Section 16.2.7.
As a consequence of how MPS attributes work, these meta
data can be applied to program elements defined in any
arbitrary language. J

4.6.5 Implementation Challenges and Solutions

The previous subsections discussed four strategies for language
composition. In this section we describe some of the challenges
regarding syntax, type systems and transformations for these
four strategies.

� Syntax Referencing and Reuse keeps fragments homoge-
neous. Mixing of concrete syntax is not required. A reference
between fragments is usually simply an identifier and does not
have its own internal structure for which a grammar would
be required72. The name resolution phase can then create the 72 Sometimes the references use qual-

ified names, in which case the strings
use dots and colons. However, this
is still a trivial token structure, so it
is acceptable to define the structure
separately in both languages.

actual cross-reference between abstract syntax objects.

Refrigerators: The algorithm language contains cross-ref-
erences into the hardware language. Those references are
simple, dotted names such as compartment1.valve. J

Example: In the UI example, the adapter language simply
introduces dotted names to refer to fields of data struc-
tures. J

Extension and embedding requires modular concrete syntax
definitions because additional language elements must be mixed
with programs written with the base/host language. As we
discuss in Part III (mostly in Section 7), combining indepen-
dently developed languages after the fact can be a problem:
depending on the parser technology, the combined grammar
may not be parsable with the parser technology at hand. There
are parser technologies that do not exhibit this problem, and
projectional editors avoid it by definition. However, several
widely used language workbenches have problems in this re-
spect.

mbeddr C: State machines are hosted in regular C pro-
grams. This works because the C language’s Module con-

128 dslbook.org

struct contains a collection of IModuleContents, and the
StateMachine concept implements the IModuleContent

concept interface. This state machine language is designed
specifically to be embedded into C, so it can access and ex-
tend IModuleContent (Fig. 4.30). If the state machine lan-
guage were embeddable in any host language in addition
to C, this dependency on ModuleContent (from the C base
language) would not be allowed. An adapter language
would have to be created which adapts a StateMachine to
IModuleContent. J

Figure 4.30: The core language (above
the dotted line) defines an interface
IModuleContent. Anything that should
be hosted inside a Module has to im-
plement this interface, typically from
another language. StateMachines are
an example.

� Type Systems For referencing, the type system rules and
constraints of the referencing language typically have to take
into account the referenced language. Since the referenced lan-
guage is known when developing the referencing language, the
type system can be implemented with the referenced language
in mind as well.

Refrigerators: In the refrigerator example, the algorithm
language defines typing rules for hardware elements (from
the hardware language), because these types are used to
determine which properties can be accessed on the hard-
ware elements (e.g., a compressor has a property active

that controls whether it is on or off). J

In the case of extension, the type systems of the base language
must be designed in a way that allows adding new typing rules
in language extensions. For example, if the base language de-
fines typing rules for binary operators, and the extension lan-
guage defines new types, then those typing rules may have to
be overridden to allow the use of existing operators with the
new types.

mbeddr C: A language extension provides types with phys-
ical units (as in 100 kg). Additional typing rules are needed
to override the typing rules for C’s basic operators (+, -, *,
/, etc.). MPS supports declarative type system specifica-
tion, so you can just add additional typing rules for the
case in which one or both of the arguments have a type
with a physical unit. J

For reuse and embedding, the typing rules that affect the inter-
play between the two languages reside in the adapter language.
The type systems of both languages must be extensible in the
way described in the previous paragraph on extension.

dsl engineering 129

Example: In the UI example the adapter language will
have to adapt the data types of the fields in the data de-
scription to the types the UI widgets expect. For example,
a combo box widget can only be bound to fields that have
some kind of text or enum data type. Since the specific
types are specific to the data description language (which
is unknown at the time of creation of the UI language), a
mapping must be provided in the adapter language. J

� Transformation In this section we use the terms transforma-
tion and generation interchangeably. In general, transformation
is used if one tree of program elements is mapped to another
tree, while generation describes the case of creating text from
program trees. However, for the discussions in this section, this
distinction is generally not relevant.

Figure 4.31: Referencing: Two separate,
dependent, single-source transforma-
tions

Three cases have to be considered for referencing. The first
one (Fig. 4.31) propagates the referencing structure to the tar-
get fragments. We call these two transformations single-sourced,
since each of them only uses a single, homogeneous fragment
as input and creates a single, homogeneous fragment as out-
put, typically with references between them. Since the referenc-
ing language is created with knowledge about the referenced
language, the generator for the referencing language can be
written with knowledge about the names of the elements that
have to be referenced in the fragment generated from the ref-
erenced fragment. If a generator for the referenced language
already exists, it can be reused unchanged. The two genera-
tors basically share knowledge about the names of generated
elements.

Component Architecture: In the types viewpoint, inter-
faces and components are defined. The types viewpoint
is independent, and it is sufficient for the generation of
the code necessary for implementing component behav-
ior: Java base classes are generated that act as the compo-
nent implementations (expected to be extended by manu-
ally written subclasses). A second, dependent viewpoint
describes component instances and their connections; it
depends on the types viewpoint. A third describes the
deployment of the instances to execution nodes (servers,
essentially). The generator for the deployment viewpoint
generates code that actually instantiates the classes that
implement components, so it has to know the names of

130 dslbook.org

those generated (and hand-written) classes. J

Figure 4.32: A single multi-sourced
transformation.

The second case (Fig. 4.32) is a multi-sourced transformation
that creates one single homogeneous fragment. This typically
occurs if the referencing fragment is used to guide the transfor-
mation of the referenced fragment, for example by specifying
transformation strategies (annotation models). In this case, a
new transformation has to be written that takes the referenc-
ing fragment into account. The possibly existing generator for
the referenced language cannot be reused as is.

Refrigerators: The refrigerator example uses this case. The
code generator that generates the C code that implements
the cooling algorithm takes into account the information
from the hardware description model. A single fragment
is generated from the two input models. The generated
code is C-only, so the fragment remains homogeneous. J

Figure 4.33: A preprocessing trans-
formation that changes the referenced
fragment in a way specified by the
referencing fragment

The third case, an alternative to rewriting the generator, is the
use of a preprocessing transformation (Fig. 4.33), that changes
the referenced fragment in a way consistent with what the ref-
erencing fragment prescribes. The existing transformations for
the referenced fragment can then be reused.

As we have discussed above, language extensions are usually
created by defining linguistic abstractions for common idioms
of a domain D. A generator for the new language concepts can
simply recreate those idioms when mapping LD to LD−1, a pro-
cess also called assimilation. In other words, transformations
for language extensions map a heterogeneous fragment (con-
taining LD−1 and LD code) to a homogeneous fragment that
contains only LD−1 code (Fig. 4.34). In some cases additional
files may be generated, often configuration files. In any case,
the subsequent transformations for LD−1, if any, can be reused
unchanged.

Figure 4.34: Extension: transforma-
tion usually happens by assimilation,
i.e. generating code in the host lan-
guage from code expressed in the ex-
tension language. Optionally, additional
files are generated, often configuration
files.

mbeddr C: State machines are generated down to a func-
tion that contains a switch statement, as well as enums
for states and events. Then the existing C-to-text trans-
formations are reused unchanged. In addition, the state
machines are also transformed into a dot file that is used
to render the state machine graphically via graphviz. J

Sometimes a language extension requires rewriting transfor-
mations defined by the base language. In this case, the transfor-
mation engine must support the overriding of transformations

dsl engineering 131

by transformations defined in another language.

mbeddr C: In the data-types-with-physical-units example,
the language also provides range checking and overflow
detection. So if two such quantities are added, the addi-
tion is transformed into a call to a special add function
instead of using the regular plus operator. This function
performs overflow checking and addition. MPS supports
transformation priorities that can be used to override the
existing transformation with a new one. J

Language extension introduces the risk of semantic interac-
tions. The transformations associated with several indepen-
dently developed extensions of the same base language may
interact with each other. To avoid the problem, transforma-
tions should be built in a way so that they do not "consume
scarce resources" such as inheritance links73.

73 It would be nice if DSL tools would
detect such conflicts statically, or at
least supported a way of marking two
languages or extensions as incompatible.
However, none of the tools I know
support such features.

Example: Consider the (somewhat artificial) example of
two extensions to Java that each define a new statement.
When assimilated to pure Java, both new statements re-
quire the surrounding Java class to extend a specific but
different base class. This won’t work, because a Java class
can only extend one base class. J

Interactions may also be more subtle and affect memory usage
or execution performance. Note that this problem is not spe-
cific to languages; it can occur whenever several independent
extensions of a something can be used together, ad hoc. A more
thorough discussion of the problem of semantic interactions is
beyond the scope of this book.

In the reuse scenario, it is likely that both the reused and the
context language already come with their own generators. If
these generators transform to different, incompatible target lan-
guages, no reuse is possible. If they transform to a common tar-
get languages (such as Java or C) then the potential for reusing
previously existing transformations exists.

Figure 4.35: Reuse: Reuse of existing
transformations for both fragments plus
generation of adapter code.

There are three cases to consider. The first one, illustrated
in Fig. 4.35, describes the case in which there is an existing
transformation for the reused fragment and an existing trans-
formation for the context fragment – the latter being written
with the knowledge that later extension will be necessary. In
this case, the generator for the adapter language may "fill in the
holes" left by the reusable generator for the context language.

132 dslbook.org

For example, the generator of the context language may gener-
ate a class with abstract methods; the adapter may generate a
subclass and implement these abstract methods.

Figure 4.36: Reuse: composing transfor-
mations

In the second case, Fig. 4.36, the existing generator for the
reused fragment has to be enhanced with transformation code
specific to the context language. A mechanism for composing
transformations is needed.

Figure 4.37: Reuse: generating separate
artifacts plus a weaving specification.

The third case, Fig. 4.37, leaves composition to the target
languages. We generate three different independent, homoge-
neous fragments, and a some kind of weaver composes them
into one final, heterogeneous artifact. Often, the weaving spec-
ification is the intermediate result generated from the adapter
language. An example implementation could use AspectJ.

An embeddable language may not come with its own gener-
ator, since, at the time of implementing the embeddable lan-
guage, one cannot know what to generate – its purpose is to
be embedded! In that case, when embedding the language, a
suitable generator has to be developed. It will typically either
generate host language code (similar to generators in the case
of language extension) or directly generate to the same target
language that is generated to by the host language.

Figure 4.38: In transforming embedded
languages, a new transformation has to
be written if the embedded language
does not come with a transformation
for the target language of the host
language transformation. Otherwise
the adapter language can coordinate the
transformations for the host and for the
embedded languages.

If the embeddable language comes with a generator that
transforms to the same target language as the embedding lan-
guage, then the generator for the adapter language can coor-
dinate the two, and make sure a single, consistent fragment is
generated. Fig. 4.38 illustrates this case.

Just as for language extension, language embedding may
also lead to semantic interactions if multiple languages are em-
bedded into the same host language.

4.7 Concrete Syntax

A good choice of concrete syntax is important for DSLs to be
accepted by the intended user community. Especially (but not
exclusively) in business domains, a DSL will only be success-
ful if and when it uses notations that directly fit the domain –
there might even be existing, established notations that should
be reused. A good notation makes expression of common con-
cerns simple and concise and provides sensible defaults. It is
acceptable for less common concerns to require a little more
verbosity in the notation.

dsl engineering 133

4.7.1 Design Concerns for Concrete Syntax

In particular the following concerns may be addressed when
designing a concrete syntax74: 74 These concerns do not just depend on

the concrete syntax, but also on the ab-
stract syntax and the expressiveness of
the language itself (which is discussed
in Section 4.1). However, the concrete
syntax has a major influence, which is
why we discuss it here.)

Writability A writable syntax is one that can be written effi-
ciently. This usually means that the syntax is concise, be-
cause users have to type less. However, a related aspect is
tool support: the degree to which the IDE can provide bet-
ter editing support75 (code completion and quick fixes in 75 See the example of the select state-

ment in Section 4.7.2.particular) makes a difference to readability.

Readability A readable syntax means that it can be read effec-
tively. A more concise syntax is not necessarily more read-
able, because context may be missing76, in particular for 76 A good example of this dilemma are

the APL or M languages: the syntax is
so concise that it is really hard to read.

people other than those who have written the code.

Learnability A learnable syntax is useful to novices in particu-
lar, because it can be "explored", often exploiting IDE sup-
port77. For example, the more the language uses concepts 77 "Just press Ctrl-Space and the tool

will tell you what you can type next."that have a direct meaning in the domain, the easier it is for
domain users to lean the language.

Effectiveness Effectiveness relates to the degree that a language
enables routine users to effectively express typical domain
problems after they have learned the language.

� Tradeoffs It is obvious that some of these concerns are in
conflict. A very writable language may not be very readable. If
a group of stakeholders R uses artifacts developed by another
group W (e.g. by referencing some of the program elements),
it is important that a readable language is used. A learnable
language may feel "annoyingly verbose and cumbersome" to
routine users after a while78. However, creating an effective 78 Note that if a specific DSL is only

used irregularly, then users probably
never become routine users, and have to
relearn the language each time they use
it.

syntax and trying to convince users to adopt the language even
though it is hard(er) to learn may be a challenge.

For DSLs whose programs have a short lifetime (as in script-
ing languages) readability is often not very important, because
the programs are thrown away once they have performed their
particular task.

� Multiple Notations One way to solve these dilemmas is to
provide different concrete syntaxes for the same abstract syn-
tax, and let users choose. For example, beginners can chose
a more learnable one, and switch to a more effective one over

134 dslbook.org

time. However, depending on the tooling used, this can be a
lot of work.

We have the equivalent of multiple
notations for the same language in
the real world. English can be spoken,
written, transported via morse code
or even expressed via sign language.
Each of these is optimized for certain
contexts and audiences.

� Multiple Notations For projectional editors it is relatively
easy to define several notations for the same language con-
cept. By changing the projection rules, existing programs can
be shown in a different way. In addition, different notations
(possibly showing different concerns of the overall program)
can be used for different stakeholders.

mbeddr C: For state machines, the primary syntax is tex-
tual. However, a tabular notation is supported as well.
The projection can be changed as the program is edited,
rendering the same state machine textually or as a table.
A graphical notation will be added in the future, as MPS’
support for graphical notations improves. J

Refrigerators: The refrigerator DSL uses graphical visual-
izations to render diagrams of the hardware structure, as
well as a graphical state charts representing the underly-
ing state machine. J

Another option to resolve the learnability vs. effectiveness
dilemma is to create an effective syntax and help new users by
good documentation, training and/or IDE support (templates,
wizards).

� Reports and Visualization A visualization is a graphical rep-
resentation of a model that cannot be edited. It is created from
the core model using some kind of transformation, and high-
lights a particular aspect of the source program. It is often
automatically laid out79. The resulting diagram may be static

79 Automatic layout requires a good
layout algorithm. The best one is
available commercially in yFiles/yEd.
Sometimes it is necessary manually
adjust the layout of the generated
visualization. Doing so of course
is problematic because the manual
adjustments are lost if the visualization
is regenerated. A better approach is
to create another model that specifies
properties of the visualization, such as the
subset of model elements that should
be in the diagram, semantic coloring or
selecting of shapes or layout hints for
the algorithm.

(i.e. an image file is generated) or interactive (where users can
show, hide and focus on different parts of the diagram). It may
provide drill-down back to the core program (double-clicking
on the figure in the image opens the code editor at the respec-
tive location)80.

80 Graphviz is one of the most
well-known tools for this kind
of visualization. Another is Jan
Koehnlein’s Generic Graph View
at github.com/JanKoehnlein
/Generic-Graph-View.

A report has the same goals (highlighting a particular aspect
of the source program, while not being editable) but uses a
textual notation.

Visualizations and reports are a good way of resolving a po-
tential conflict if the primary DSL users want to use a writable
notation and other stakeholders want a more readable repre-
sentation. Since reports and visualizations are not the primary

dsl engineering 135

notation, it is possible to create several different visualizations
or reports for the source program, highlighting different as-
pects of the core program.

mbeddr C: In the mbeddr components extension, we sup-
port several notations. The first shows interfaces and the
components that provide and require these interfaces. The
second shows component instances and the connections
between their provided and required ports. Finally, there
is a third visualization that applies to all mbeddr models,
not just those that use components: it shows the mod-
ules, their imports (i.e. module dependencies) as well as
the public contents of these modules (functions, structs,
components, test cases). J

Figure 4.39: mbeddr C also supports
graphical visualizations of state ma-
chines. For every state machine, a dot
representation is automatically gener-
ated. The image is then rendered by
graphviz directly in the IDE. Double-
clicking on a state selects the respective
program element in the editor.

4.7.2 Classes of Concrete Syntax

There are a couple of major classes for DSL concrete syntax81: 81 Sometimes form-based GUIs or tree
views are considered DSLs. I disagree,
because this would make any GUI
application a DSL.

textual DSLs use linear textual notations, typically based on
ASCII or Unicode characters. They basically look and feel like

136 dslbook.org

traditional programming languages. Graphical DSLs use graph-
ical shapes. An important subgroup is represented by those
that use box-and-line diagrams that look and feel like UML
class diagrams or state machines. However, there are more op-
tions for graphical notations, such as those illustrated by UML
timing diagrams or sequence diagrams. Symbolic DSLs are tex-
tual DSLs with an extended set of symbols, such as fraction
bars, mathematical symbols or subscript and superscript. Ta-
bles and matrices are a powerful way to represent certain kinds
of data and can play an important part for DSLs.

The perfect DSL tool should support free combination and
integration of the various classes of concrete syntax, and be
able to show (aspects of) the same model in different notations.
As a consequence of tool limitations, this is not always possible,
however. The requirements for concrete syntax are a major
driver in tool selection.

Figure 4.40: Graphical notation for
relationships.

� When to Use Which Form We do not want to make this sec-
tion a complete discussion between graphical and textual DSLs
– a discussion that is often heavily biased by previous expe-
rience, prejudice and tool capabilities. Here are some rules
of thumb. Purely textual DSLs integrate well with existing
development infrastructures, making their adoption relatively
easy. They are well suited for detailed descriptions, anything
that is algorithmic or generally resembles (traditional) program
source code. A good textual syntax can be very effective (in
terms of the design concerns discussed above). Symbolic nota-
tions can be considered "better textual", and lend themselves to
domains that make heavy use of symbols and special notations;
many scientific and mathematical domains come to mind. Ta-
bles are very useful for collections of similarly structured data
items, or for expressing how two independent dimensions of
data relate. Tables emphasize readability over writability. Fi-
nally, graphical notations are very good for describing relation-
ships (Fig. 4.40), flow (Fig. 4.41) or timing and causal relation-
ships (Fig. 4.42). They are often considered easier to learn, but
may be perceived as less effective by experienced users.

Figure 4.41: Graphical notation for flow

Figure 4.42: Graphical notation for
causality and timing

Figure 4.43: Mathematical notations
used to express insurance math in the
pension workbench.

Pension Plans: The pension DSL uses a mathematical no-
tation to express insurance mathematics (Fig. 4.43). A table
notation is embedded to express unit tests for the pension
plan calculation rules. A graphical projection shows de-
pendencies and specialization relationships between plans.J

dsl engineering 137

mbeddr C: The core DSLs use mostly textual notations
with some tabular enhancements, for example for deci-
sion tables (Fig. 20.4). However, as MPS’ capability for
handling graphical notations improves, we will represent
state machines as diagrams. J

Figure 4.44: Decision tables use a tabu-
lar notation. It is embedded seamlessly
into a C program.

Selection of a concrete syntax is simple for domain user DSLs
if there is an established notation in the domain. The challenge
then is to replicate this notation as closely as possible with the
DSL, while cleaning up possible inconsistencies in the notation
(since presumably it had not been used formally before). I like
to use the term "strongly typed (Microsoft) Word" in this case82. 82 In some cases it is useful to come up

with a better notation than the one used
historically. This is especially true if the
historic notation is Excel.

For DSLs targeted at developers, a textual notation is usually
a good starting point, since developers are used to working
with text, and they are very productive with it. Tree views and
some visualizations are often useful for outlines, hierarchies or
overviews, but not necessarily for editing. Textual notations
also integrate well with existing development infrastructures.

mbeddr C: C is the baseline for embedded systems, and
everybody is familiar with it. A textual notation is useful
for many concerns in embedded systems. Note that sev-
eral languages create visualizations on the fly, for example
for module dependencies, component dependencies and
component instance wirings. The graphviz tool is used
here since it provides decent auto-layout. J

There are very few DSLs where a purely graphical notation
makes sense, because in most cases some textual languages are
embedded in the diagrams or tables: state machines embed-
ded expressions in guards and statements in actions (Fig. 20.7);
component diagrams use text for specifications of operations
in interfaces, maybe using expressions for preconditions; block
diagrams use a textual syntax for the implementation/para-
metrization of the blocks (Fig. 4.45); tables may embed textual

138 dslbook.org

notations in the cells (Fig. 4.46). Integrating textual languages A text box where textual code can be
entered without language support
should only be used as a last resort.
Instead, a textual notation, with addi-
tional graphical visualizations should
be used.

into graphical ones is becoming more and more important, and
tool support is improving.

Figure 4.45: A block diagrams built
with the Yakindu modeling tools. A
textual DSL is used to implement
the behavior in the blocks. While the
textual DSL is not technically integrated
with the graphical notation (separate
viewpoints), semantic integration is
provided.

In my consulting practice, I almost
always start with a textual notation and
try to stabilize language abstractions.
Only then will I engage in a discussion
about whether a graphical notation
on top of the textual one is necessary.
Often it is not, and if it is, we have
avoided iterating the implementation
of the graphical editor implementation,
which, depending on the tooling, can be
a lot of work.

Note that initially domain users prefer a graphical notation,
because of the perception that things that are described graph-
ically are simple(r) to comprehend. However, what is most
important regarding comprehensibility is the alignment of the
domain concepts with the abstractions in the language. A well-
designed textual notation can go a long way. Also, textual lan-
guages are more productive once the learning curve has been
overcome. I have had several cases where domain users started
preferring textual notations later in the process.

Figure 4.46: The Yakindu Requirements
tools integrates a textual DSL for for-
mal requirements specification into a
table view. The textual specifications
are stored as text in the requirements
database; consequently, the entities
defined textually cannot be referenced
(which is not a problem in this do-
main).

dsl engineering 139

Figure 4.47: The Yakindu State Chart
Tools support the use of Xtext DSLs
in actions and guard conditions of
state machines, mixing textual and
graphical notations. The DSL can even
be exchanged, to support domain
specific action languages, for example
for integrating with user interface
specifications. In this case, the textual
specification are stored as the AST in
terms of EMF, not as text.

� IDE Supportability For textual languages, it is important
to keep in mind if and how a syntax can be support by the
IDE, especially regarding code completion. Consider query
languages. An example SQL query looks like this:

SELECT field1, field2 FROM aTable WHERE ...

When entering this query the IDE cannot provide code com-
pletion for the fields after the SELECT because at this point the
table has not yet been specified. A more suitable syntax, with
respect to IDE support, would be:

FROM aTable SELECT field1, field2 WHERE ...

It is better because now the IDE can provide support code com-
pletion for the fields based on the table name that has already
been entered when you specify the fields83.

83 SQL is a relatively old language and
IDE concerns were probably not very
important at the time. More modern
query languages such as HQL or
Linq in fact use the more IDE-friendly
syntax.

Another nice example is dot-notation for function calls. Con-
sider a functional language. Typical function call syntax is f(a,
b, c) or possiby (f a b c). In either case, the function comes
first. Now consider a notation where you can (optionally) write
the first argument before the dot, i.e. a.f(b, c). This has a
significant advantage in terms of IDE support: after the user
enters a., code completion can propose all the functions that
are available for the type of a. This leads to much better ex-
plorability of the language compared to the normal function-
first syntax: since at the time of writing the function, the user
has not yet written the value on which to apply the function,
the IDE can provide no support84.

84 This example was motivated by Daan
Leijen’s Koka language which supports
the dot-notation for just this reason.

140 dslbook.org

Note that tool supportability in general is not fundamentally
different in graphical and textual languages. While IDEs for
textual languages can provide code completion, the palette or
the context buttons in a graphical DSL play the same role. I
often hear that a graphical DSL is more suitable for simulation
(because the execution of the program can be animated on the
graphical notation). However, this is only true if the graphical
notation works well in the first place. A textual program can
also be animated; a debugger essentially does just that.

� Relationship to Hierarchical Domains Domains at low D are
most likely best expressed with a textual or symbolic concrete
syntax. Obvious examples include programming languages at
D0. Mathematical expressions, which are also very dense and
algorithmic, use a symbolic notation. As we progress to higher
Ds, the concepts become more and more abstract, and as state
machines and block diagrams illustrate, graphical notations be-
come useful. However, these two notations are also a good
example of language embedding, since both of them require
expressions: state machines in guards and actions (Fig. 20.7),
and block diagrams as the implementation of blocks (Fig. 4.45

and Fig. 5.5). Reusable expression languages should be embed-
ded into the graphical notations. If this is not supported by the
tool, viewpoints may be an option. One viewpoint could use
a graphical notation to define coarse-grained structures, and
a second viewpoint use a textual notation to provide "imple-
mentation details" for the structures defined by the graphical
viewpoint85.

85 Not every tool can support every
(combination of) form of concrete
syntax, so this aspect is limited by the
tool, or drives tool selection.

mbeddr C: As the graphical notation for state machines
becomes available, the C expression language that is used
in guard conditions for transitions will be usable as labels
on the transition arrows. In the table notation for state
machines, C expressions can be embedded in the cells as
well. J

5
Fundamental Paradigms

Every DSL is different. It is driven by the domain for which
it is built. However, as it turns out, there are also a number
of commonalities between DSLs. These can be handled by
modularizing and reusing (parts of) DSLs, as discussed in
the last section of the previous chapter. In this section we
look at common paradigms for describing DSL structure
and behavior.

5.1 Structure

Languages have to provide a means of structuring large pro-
grams in order to keep them manageable. Such means include
modularization and encapsulation, specification vs. implemen-
tation, specialization, types and instances, as well as partition-
ing.

The language design alternatives
described in this section are usually
not driven directly by the domain,
or the domain experts guiding the
design of the language. Rather, they
are often brought in by the language
designer as a means of managing
overall complexity. For this reason they
may be hard to "sell" to domain experts.

5.1.1 Modularization and Visibility

DSLs often provide some kind of logical unit structure, such
as namespaces or modules. Visibility of symbols may be re-
stricted to the same unit, or to referencing ("importing") units.
Symbols may be declared as public or private, the latter mak-
ing them invisible to other modules, which guarantees that
changes to these symbols cannot affect other modules. Some Most contemporary programming

languages use some form of names-
paces and visibility restriction as their
top-level structure.

form of namespaces and visibility is necessary in almost any
DSL. Often there are domain concepts that can play the role
of the module, possibly oriented towards the structure of the
organization in which the DSL is used.

mbeddr C: As a fundamental extension to C, this DSL con-
tains modules with visibility specifications and imports.
Functions, state machines, tasks and all other top-level

142 dslbook.org

concepts reside in modules. Header files (which are effec-
tively a poor way of managing symbol visibility) are only
used in the generated low-level code and are not relevant
to the user of mbeddr C. J

Component Architecture: Components and interfaces live
in namespaces. Components are implementation units,
and are always private. Interfaces and data types may
be public or private. Namespaces can import each other,
making the public elements of the imported namespace
visible to the importing namespace. The OSGi generator
creates two different bundles: an interface bundle that con-
tains the public artifacts, and an implementation bundle
with the components. In the case of a distributed system,
only the interface bundle is deployed on the client. J

Pension Plans: Pension plans constitute namespaces. They
are grouped into more coarse-grained packages that are
aligned with the structure of the pension insurance busi-
ness. J

5.1.2 Partitioning

If a repository-based tool is used, the
importance of partitioning is greatly
reduced. Although even in that case
there may be a set of federated and
distributed repositories that can be
considered partitions.

Partitioning refers to the breaking down of programs into sev-
eral physical units such as files (typically each model fragment
is stored in its own partition). These physical units do not
have to correspond to the logical modularization of the models
within the partitions. For example, in Java a public class has
to live in a file of the same name (logical module == physi-
cal partition), whereas in C# there is no relationship between
namespace, class names and the physical file and directory
structure. A similar relationship exists between partitions and
viewpoints, although in most cases, different viewpoints are
stored in different partitions.

Note that a reference to an element should not take into
account the partition in which the target element lives. Instead,
it should only use the logical structure. Consider an element E
that lives in a namespace x.y, stored in a partition mainmodel.
A reference to that element should be expressed as x.y.E, not
as mainmodel.E or mainmodel/x.y.E. This is important, as it
allows elements to move freely between partitions without this
leading to updates of all references to the element.

Partitioning may have consequences for language design.
Consider a textual DSL in which a concept A contains a list of

dsl engineering 143

instances of concept B. The B instances then have to be physi-
cally nested within an instance of A in the concrete syntax. If
there are many instances of B in a given model, they cannot be
split into several files, so these files may become big and result
in performance problems. If such a split must be possible, this
has to be designed into the language.

Component Architecture: A variant of this DSL that was
used in another project had to be changed to allow a names-
pace to be spread over several files for reasons of scalabil-
ity and version-control granularity. In the initial version,
namespaces actually contained the components and inter-
faces. In the revised version, components and interfaces
were owned by no other element, but model files (parti-
tions) had a namespace declaration at the top, logically
putting all the contained interfaces and components into
this namespace. Since there was no technical containment
relationship between namespaces and their elements, sev-
eral files could now declare the same namespace. Chang-
ing this design decision lead to a significant reimplementa-
tion effort, because all kinds of naming and scoping strate-
gies changed. J

Other concerns influence the design of a partitioning strategy
as well:

Change Impact Which partition changes as a consequence of a
particular change of the model (changing an element name
might require changes to all references to that element from
other partitions).

Link Storage Where are links stored (are they always stored in
the model that logically "points to" another one?), and if not,
how/where/when to control reference/link storage.

Model Organization Partitions may be used as a way of orga-
nizing the overall model. This is particularly important if
the tool does not provide a good means of presenting the
overall logical structure of models and finding elements by
name and type. Organizing files with meaningful names in
directory structures is a workable alternative.

Tool Chain Integration Integration with existing, file-based tool
chains. Files may be the unit of check in/check out, version-
ing, branching or permission checking.

144 dslbook.org

Another driver for using partitions is
the scalability of the DSL tool. Beyond a
certain file size, the editor may become
sluggish.

It is often useful to ensure that each partition is processable
separately to reduce processing times. An alternative approach
supports the explicit definition of those partitions that should
be processed in a given processor run (or at least a search path,
a set of directories, to find the partitions, like an include path
in C compilers or the Java classpath). You might even consider
a separate build step to combine the results created from the
separate processing steps of the various partitions (again like a
C compiler, which compiles every file separately into an object
file, after which the linker handles overall symbol/reference
resolution and binding).

The partitioning scheme may also influence users’ team col-
laboration when editing models. There are two major collab-
oration models: real-time and commit-based. In real-time col-
laboration, a user sees his model change in real time as another
user changes the same model. Change propagation is imme-
diate. A database-backed repository is often a good choice re-
garding storage, since the granularity tracked by the repository
is the model element. In this case, the partitioning may not be
visible to the end user, since they just work "on the reposi-
tory". This approach is often (at least initially) preferred by
non-programmer DSL users.

The other collaboration mode is commit-based, in which a
user’s changes are only propagated to the repository if he per-
forms a commit, and incoming changes are only visible after
a user has performed an update. While this approach can be
used with database-backed repositories, it is most often used
with file-based storage. In this case, the partitioning scheme
is visible to DSL users, because it is those files they commit
or update. This approach tends to be preferred by develop-
ers, maybe because well-known versioning tools have used the
approach for a long time.

5.1.3 Specification vs. Implementation

Separating specification and implementation supports plug-
ging in different implementations for the same specification
and hence provides a way to "decouple the outside from the
inside"1. This supports the exchange of several implementa-

1 Interfaces, pure abstract classes, traits
or function signatures are a realiza-
tion of this concept in programming
languages.

tions behind a single interface. This is often required as a con-
sequence of the development process: one stakeholder defines
the specification and a client, whereas another stakeholder pro-
vides one or more implementations.

The separation of specification and
implementation can also have positive
effects on scalability and performance.
If the specification and implementation
are separated into different fragments,
then, in order to type check a client’s
access to some provided service, only
the fragment that contains the specifica-
tion has to be loaded/parsed/checked.
This is obviously faster than processing
complete implementation.

dsl engineering 145

A challenge for this approach is how to ensure that all im-
plementations are consistent with the specification. Tradition-
ally, only the structural/syntactic/signature compatibility is
checked. To ensure semantic compatibility, additional means
that specify the expected behavior are required. This can be
achieved with pre- or post-conditions, invariants or protocol
state machines.

mbeddr C: This DSL adds interfaces and components to C.
Components provide or use one or more interfaces. Dif-
ferent components can be plugged in behind the same in-
terface. To support semantic specifications, the interfaces
support pre- and post-conditions as well as protocol state
machines. Fig. 5.1 shows an example. Although these
specifications are attached to interfaces, they are actually
checked (at runtime) for all components that provide the
respective interface. J

Figure 5.1: An interface using semantic
specifications. Preconditions check
the values of arguments for validity.
Postconditions express constraints on
the values of query operations after the
execution of the operation. Notice how
the value of the query before executing
the operation can be referred to (the
old keyword used in the postcondition
for accelerateBy). In addition, pro-
tocols constrain the valid sequence of
operation invocations. For example, the
accelerateBy operation can only be
used if the protocol state machine is al-
ready in the forward state. The system
gets into the forward state by invok-
ing the driveContinuoslyForward
operation.

Refrigerators: Cooling programs can access hardware el-
ements (compressors, fans, valves); those are defined as
part of the refrigerator hardware definition. To enable
cooling programs to run with different, but similar hard-
ware configurations, the hardware structure can use "trait
inheritance", by which a hardware trait defines a set of
hardware elements, acting as a kind of interface. Other
hardware configurations can inherit these traits. As long
as cooling programs are only written against traits, they
work with any refrigerator that implements the particular
set of traits against which the program is written. J

146 dslbook.org

5.1.4 Specialization

Specialization enables one entity to be a more specific variant
of another. Typically, the more specific one can be used in all
contexts in which the more general one is expected (the Liskov
substitution principle2). The more general one may be incom- 2 B. Liskov and J. M. Wing. A behav-

ioral notion of subtyping. TOPLAS,
16(6):1811–1841, 1994

plete, requiring the specialized ones to "fill in the holes". Spe-

In GPLs, we know this approach from
class inheritance. "Leaving holes" is
realized by abstract methods.

cialization in the context of DSLs can be used for implementing
variants or for evolving a program over time.

Defining the semantics of inheritance for domain-specific
language concepts is not always easy. The various approaches
found in programming languages, as well as the fact that some
of them lead to problems (multiple inheritance, diamond in-
heritance, linearization, or code duplication in Java’s interface
inheritance) shows that this is not a trivial topic. It is a good
idea to just copy a suitable approach completely from a pro-
gramming language in which inheritance seems to work well.
Even small changes can make the whole approach inconsistent.

Pension Plans: The customer using this DSL had the chal-
lenge of creating a huge set of pension plans, implement-
ing changes in relevant law over time, or implementing re-
lated plans for different customer groups. Copying com-
plete plans and then making adaptations was not feasi-
ble, because this resulted in a maintenance nightmare: a
large number of similar but not identical pension plans.
Hence the DSL provides a way for pension plans to inherit
from one another. Calculation rules can be marked abstract
(needing to be overwritten in sub-plans), final rules are not
overwritable. Visibility modifiers control which rules are
considered "implementation details". J

Refrigerators: A similar approach is used in the cooling
DSL. Cooling programs can specialize other cooling pro-
grams. Since the programs are fundamentally state-based,
we had to define what it means to specialize a cooling pro-
gram: a subprogram can add additional event handlers
and transitions to states. New states can be added, but
states defined in the super-program cannot be removed. J

5.1.5 Types and Instances

Types and instances supports the definition of structures that
can be parametrized upon instantiation. This allows reuse of

In programming languages we know
this from classes and objects (where
constructor parameters are used for
parametrization) or from components
(where different instances can be con-
nected differently to other instances).common parts, and expressing variability via parameters.

dsl engineering 147

mbeddr C: Apart from C’s structs (which are instanti-
atable data structures) and components (which can be in-
stantiated and connected), state machines can be instanti-
ated as well. Each instance can be in a different state at
any given time. J

5.1.6 Superposition and Aspects

Superposition refers to the ability to merge several model frag- This is especially important in the
context of product line engineering and
is discussed in Section 21.

ments according to some DSL-specific merge operator. Aspects
provide a way of "pointing to" several locations in a program
based on a pointcut operator (essentially a query over a pro-
gram or its execution), adapting the model in ways specified
by the aspect. Both approaches support the compositional cre-
ation of many different model variants from the same set of
model fragments.

Component Architecture: This DSL provides a way of ad-
vising component definitions from an aspect (Fig. 5.2). An
aspect may introduce an additional provided port mon:

IMonitoring that allows a central monitoring component
to query the advised components via the IMonitoring in-
terface. J

Figure 5.2: The aspect component
contributes an additional required port
to each of the other components defined
in the system.

WebDSL: Entity declarations can be extended in separate
modules. This makes it possible to declare in one module
all data declarations of a particular feature. For example,

148 dslbook.org

in the researchr application, a Publication can be Tagged,
which requires an extension of the Publication entity.
This extension is defined in the tag module, together with
the definition of the Tag entity. This is essentially a use of
superposition. J

5.1.7 Versioning

Often, variability over time of elements in DSL programs has
to be tracked. One alternative is to simply version the model
files using existing version control systems, or the version con-
trol mechanism built into the language workbench. However,
this requires users to interact with often complex version con-
trol systems and prevents domain-specific adaptations of the
version control strategy.

The other alternative is to make versioning and tracking over
time a part of the language. For example, model elements may
be tagged with version numbers, or specify a revision chain by
pointing to a previous revision, enforcing compatibility con-
straints between those revisions. Instead of declaring explicit
versions, business data is often time-dependent, where differ-
ent revisions of a business rule apply to different periods of
time. Support for these approaches can be built directly into
the DSL, with various levels of tool support.

mbeddr C: No versioning is defined into the DSL. Users
work with MPS’ integration with popular version control
systems. Since this DSL is intended for use by program-
mers, working with existing version control systems is not
a problem. J

Component Architecture: Components can specify a new

version of reference to another component. In this case,
the new version may specify additional provided ports
with the same interfaces, or with new versions of these
interfaces. The new version may also deprecate required
ports. Effectively, this means that the new version of some-
thing must be replacement-compatible with the old ver-
sion (the Liskov substitution principle again). J

Pension Plans: In the pension workbench, calculation rules
declare applicability periods. This supports the evolution
of calculation rules over time, while retaining reproduca-
bility for calculations performed at an earlier point in time.
Since the Intentional Domain Workbench is a projectional

dsl engineering 149

tool, pension plans can be shown with only the version of
a rule that is valid for a given point in time. J

5.2 Behavior

The behavior expressed with a DSL must of course be aligned
with the needs of the domain. However, in many cases, the be-
havior required for a domain can be derived from well-known
behavioral paradigms3, with slight adaptations or enhance- 3 The term Model of Computation is also

used to refer to behavioral paradigms.
I prefer "behavioral paradigm" because
the term model is obviously heavily
overloaded in the DSL/MDSD space
already.

ments, or simply by interacting with domain-specific structures
or data.

Note that there are two kinds of DSLs that don’t make use
of these kinds of behavior descriptions. Some DSLs really just
specify structures. Examples include data definition languages
or component description languages (although both of them
often use expressions for derived data, data validation or pre-
and post-conditions). Other DSLs specify a set of expectations
regarding some behavior (declaratively), and the generator cre-
ates the algorithmic implementation. For example, a DSL may
specify, simply with a tag such as async, that the communi-
cation between two components shall be asynchronous. The
generator then maps this to an implementation that behaves
according to this specification.

Component Architecture: The component architecture DSL
is an example of a structure-only DSL, since it only de-
scribes black box components and their interfaces and rela-
tionships. It uses the specification-only approach to spec-
ify whether a component port is intended for synchronous
or asynchronous communication. J

mbeddr C: The component extension provides a similar
notion of interfaces, ports and components as in the pre-
vious example. However, since here they are directly in-
tegrated with C, C expression can be used for pre- and
post-conditions of interface operations (see Fig. 5.1). J

Using an established behavioral paradigm for a DSL has sev-
eral advantages4. First, it is not necessarily simple to define 4 Which is why we discuss these

paradigms in this book.consistent and correct semantics in the first place. By reusing
an existing paradigm, one can learn about advantages and
drawbacks from existing experience. Second, a paradigm may
already come with existing means for performing interesting

150 dslbook.org

analyses (as in model checking or SMT solving) that can eas-
ily be used to analyse DSL programs. Third, there may be
existing generators from a behavioral paradigm to an efficient
executable for a given platform (state machines are a prime
candidate). By generating a model in a formalism for which
such a generator exists, we reduce the effort for building an
end-to-end generator. If our DSL uses the same behavioral
paradigm as the language for which the generator exists, writ-
ing the necessary transformation is straightforward (from a se-
mantic point of view).

The last point emphasizes that using an existing paradigm
for a DSL (e.g. state-based) does not mean that the concepts
have to directly use the abstractions used by that paradigm
(just because a program is state-based does not mean that the
concept that acts as a state has to be called state, etc.). This is only an overview over a few

paradigms; many more exist. I refer
to the excellent Wikipedia entry on
Programming Paradigms and to the book

P. V. Roy and S. Haridi. Concepts,
Techniques, and Models of Computer
Programming. MIT Press, 2004

. This section describes some of the most well-known be-
havioral paradigms that can serve as useful starting points for
behavior descriptions in DSLs. In addition to describing the
paradigm, we also briefly investigate how easily programs us-
ing the paradigm can be analyzed, and how complicated it is
to build debuggers.

5.2.1 Imperative

For many people, often including
domain experts, this approach is easy
to understand. Hence it is often a good
starting point for DSLs.

Imperative programs consist of a sequence of statements, or in-
structions, that change the state of the program. This state may
be local to some kind of module (e.g., a procedure or an object),
global (as in global variables) or external (when communicat-
ing with peripheral devices). Procedural and object-oriented
programming are both imperative, using different means for
structuring and (in the case of OO) specialization. Because of
aliasing and side effects, imperative programs are expensive
to analyse. Debugging imperative programs is straightforward
and involves stepping through the instructions and watching
the state change.

mbeddr C: Since C is used as a base language, this lan-
guage is fundamentally imperative. Some of the DSLs on
top of it use other paradigms (the state machine extension
is state-based, for example). J

Refrigerators: The cooling language integrates various para-
digms, but contains sequences of statements to implement
aspects of the overall cooling behavior. J

dsl engineering 151

5.2.2 Functional

Functional programming uses functions as the core abstrac-
tion. In purely functional programming, a function’s return
value only depends on the values of its arguments. Calling
the same function several times with the same argument val-
ues returns the same result (that value may even be cached!).
Functions cannot access global mutable state, no side effects
are allowed. These characteristics make functional programs
very easy to analyze and optimize. These same characteristics,
however, also make purely functional programming relatively
useless, because it cannot affect its environment (after all, this
would be a side effect). So, functional programming is often
only used for parts ("calculation core") of an overall program
and integrates with, for example, an imperative part that deals
with IO.

Since there is no changing state to observe as the program
steps through instructions, debugging can be done by simply
showing all intermediate results of all function calls as some
kind of tree, basically "inspecting" the state of the calculation.
This makes building debuggers relatively simple.

Pension Plans: The calculation core of pension rules is
functional. Consequently, a debugger has been implemented
that, for a given set of input data, shows the rules as a tree
that shows all intermediate results of each function call
(Fig. 5.3). No "step through" debugger is necessary. J

Pure expressions are an important subset of functional pro-
gramming (as in i > 3*2 + 7). Instead of calling functions,
operators are used. However, operators are just infix notations
for function calls. Usually the operators are hard wired into
the language and it is not possible for users to define their own
functional abstractions. The latter is the main differentiator to
functional programming in general. It also limits expressivity,
since it is not possible to modularize an expression or to reuse
expressions by packaging into a user-defined function. Conse-
quently, only relatively simply tasks can be addressed with a
pure expression language5. 5 However, many DSLs do not require

anything more sophisticated, especially
if powerful domain-specific operators
are available. So, while expression
languages are limited in some sense,
they are still extremely useful and
widespread.

mbeddr C: We use expressions in the guard conditions of
the state machine extension as well as in pre- and post-
conditions for interface operations. In both cases it is not
possible to define or call external functions. Of course, (a
subset of) C’s expression language is reused here. J

152 dslbook.org

Figure 5.3: Debugging functional
programs can be done by showing the
state of the calculation, for example as a
tree.

5.2.3 Declarative

Declarative programming can be considered the opposite of
imperative programming (and, to some extent, of functional
programming). A declarative program does not specify any
control flow; it does not specify a sequence of steps of a calcu-
lation. A declarative program only specifies what the program
should accomplish, not how. This is often achieved by specify-
ing a set of properties, equations, relationships or constraints.
Some kind of evaluation engine then tries to find solutions. The
particular advantage of this approach is that it does not prede-
fine how a solution is found; the evaluation engine has a lot
of freedom in doing so, possibly using different approaches in
different environments, or evolving the approach over time6.

6 For example, the strategies for im-
plementing SAT solvers have evolved
quite a bit over time. SAT solvers are
much more scalable today. However,
the formalism for describing the logic
formulas that are processed by SAT
solvers have not changed.

This large degree of freedom often makes finding the solution
expensive – trial and error, backtracking or exhaustive search
may be used7. Debugging declarative programs can be hard,

7 Users often have to provide hints to
the engine to make it run fast enough
or scale to programs of relevant size.
In practice, declarative programming is
often not as "pure" as it is in theory.

since the solution algorithm may be very complex and possibly
not even be known to the user of the language.

dsl engineering 153

Declarative programming has many important subgroups.
For concurrent programs, a declarative approach allows the effi-
cient execution of a single program on different parallel hard-
ware structures. The compiler or runtime system allocates the
program to available computational resources. In constraint pro-
gramming, the programmer specifies constraints between a set
of variables. The engine tries to find values for these variables
that satisfy all constraints. Solving mathematical equation sys-
tems is an example, as is solving sets of Boolean logic formu-
las. Logic programming is another sub-paradigm, in which users
specify logic clauses (facts and relations) as well as queries. A
theorem prover then tries to solve the queries. The Prolog language works in this way.

Component Architecture: This DSL specifies timing and
resource characteristics for component and interface op-
erations. Based on this data, one could run an algorithm
which allocates the component instances to computing hard-
ware so that the hardware is used as efficiently as possible,
while at the same time reducing the amount of network
traffic. This is an example of constraint solving used to
synthesize a schedule. J

mbeddr C: This DSL supports presence conditions for prod-
uct line engineering. A presence condition is a Boolean
expression over a set of configuration features that deter-
mines whether the associated piece of code is present for
a given combination of feature selections (Fig. 5.4). To
verify the structural integrity of programs in the face of
varying feature combinations, constraint programming is
used (to ensure that there is no configuration of the pro-
gram in which a reference to a symbol is included, but
the referenced symbol is not). A set of Boolean equations
is generated from the program and the attached presence
conditions, . A solver then makes sure they are consis-
tent by trying to find an example solution that violates the
Boolean equations. J

Example: The Yakindu DAMOS block diagram editor sup-
ports custom block implementation based on the Mscript
language (Section 5.5). It supports declarative specifica-
tion of equations between input and output parameters of
a block. A solver computes a closed, sequential solution
that efficiently calculates the output of an overall block di-
agram. J

154 dslbook.org

Figure 5.4: This module contains
variability expressed with presence
conditions. The affected program ele-
ments are highlighted in a color (shade
in the screenshot) that represents the
condition. If the feature highRes is
selected, the code uses a double instead
of an int8_t. The log messages are
only included if the logging feature
is selected. Note that one cannot just
depend on single features (such as
logging) but also on arbitrary expres-
sions such as logging && highRes.

Example: Another example for declarative programming
is the type system DSL used by MPS itself. Language de-
velopers specify a set of type equations containing free
type variables, among other things. A unification engine
tries to solve the set of equations by assigning actual types
to the free type variables so that the set of equations is
consistent. We describe this approach in detail in Sec-
tion 10.4. J

5.2.4 Reactive/Event-based/Agent

In this paradigm, behavior is triggered based on received events.
Events may be created by another entity or by the environment
(through a device driver). Reactions are expressed by the cre-
ation of other events. Events may be globally visible or explic-
itly routed between entities, possibly using filters and/or using
priority queues. This approach is often used in embedded sys-
tems that have to interact with the real world, where the real

dsl engineering 155

Figure 5.5: An Mscript block specifies
input and output arguments of a block
(u and v) as well as configuration
parameters (initialCondition and gain).
The assertions specify constraints
on the data the block works with.
The eq statements specify how the
output values are calculated from the
input values. Stateful behaviors are
supported, where the value for the n-th
step depends on values from previous
steps (e.g., n− 1).

world produces events as it changes. A variant of this approach
queries input signals at intervals controlled by a scheduler and
considers changes in input signals as the events.

Refrigerators: The cooling algorithms are reactive pro-
grams that control the cooling hardware based on envi-
ronment events. Such events include the opening of a re-
frigerator door, the crossing of a temperature threshold,
or a timeout that triggers defrosting of a cooling compart-
ment. Events are queued, and the queues are processed in
intervals determined by a scheduler. J

Debugging is simple if the timing/frequency of input events
can be controlled. Visualizing incoming events and the code
that is triggered as a reaction is relatively simple. If the timing
of input events cannot be controlled, then debugging can be al-
most impossible, because humans are much too slow to fit "in
between" events that may be generated by the environment in
rapid succession. For this reason, various kinds of simulators
are used to debug the behavior of reactive systems, and sophis-
ticated diagnostics regarding event frequencies or queue filling
levels may have to be integrated into the programs as they run
in the real environment.

Refrigerators: The cooling language comes with a simula-

156 dslbook.org

tor (Fig. 5.6) based on an interpreter in which the behavior
of a cooling algorithm can be debugged. Events are explic-
itly created by the user, on a timescale that is compatible
with the debugging process. J

Figure 5.6: The simulator for the cool-
ing language shows the state of the
system (commands, event queue, value
of hardware properties, variables and
tasks). The program can be single-
stepped. The user can change the value
of variables or hardware properties as a
means of interacting with the program.

5.2.5 Dataflow

The dataflow paradigm is centered around variables with de-
pendencies (in terms of calculation rules) among them. As a
variable changes, the variables that depend on the changing
variable are recalculated. We know this approach mainly from
two use cases. One is spreadsheets: cell formulas express de-
pendencies to other cells. As the values in these other cells
change, the dependent cells are updated. The other use case
is data flow (or block) diagrams (Fig. 5.7), used in embedded
software, extraction-transfer-load data processing systems and
enterprise messaging/complex event processing. There, the
calculations or transformations are encapsulated in the blocks,
and the lines represent dependencies – the output of one blocks
"flows" into the input slot of another block. There are three dif-
ferent execution modes:

Figure 5.7: Graphical notation for flow.
• The first one considers the data values as continuous sig-

dsl engineering 157

nals. At the time one of the inputs changes, all dependent
values are recalculated. The change triggers the recalcula-
tion, and the recalculation ripples through the dependency
graph. This is the model used in spreadsheets.

• The second one considers the data values as quantized, unique
messages. A new output message is calculated only if a
message is available for all inputs. The recalculation syn-
chronizes on the availability of a message at each input, and
upon recalculation, these messages are consumed. This ap-
proach is often used in ETL and CEP systems.

• The third approach is time-triggered. Once again, the inputs
are understood to be continuous signals, and a scheduler de-
termines when a new calculation is performed. The sched-
uler also makes sure that the calculation "ripples through
from left to right" in the correct order. This model is typi-
cally used in embedded systems.

Debugging these kinds of systems is relatively straightforward
because the calculation is always in a distinct state. Depen-
dencies and data flow, or the currently active block and the
available messages, can easily be visualized in a block diagram
notation. Note that the calculation rules themselves are con-
sidered black boxes here, whose internals may be built from
any other paradigm, often functional. Integrating debuggers
for the internals of boxes is a more challenging task.

5.2.6 State-based

The state-based paradigm describes a system’s behavior in terms
of the states the system can be in, the transitions between these
states, events that trigger these transitions and actions that are
executed as states change. State machines are useful for sys-
tematically organizing the behavior of an entity. They can also
be used to describe valid sequences of events, messages or pro-
cedure calls. State machines can be used in an event-driven
mode in which incoming events actually trigger transitions and
the associated actions. Alternatively a state machine can be run
in a timed mode, in which a scheduler determines when event
queues are checked and processed. Except for possible real-
time issues, state machines are easy to debug by highlighting
the contents of event queues and the current state8. 8 Apart from the imperative paradigm

and simple expression languages, state
machines are probably the paradigm
that is most often used in DSLs.

mbeddr C: This language provides an extension that sup-
ports directly working with state machines. Events can

158 dslbook.org

be passed into a state machine from regular C code, or
by mapping incoming messages in components to events
in state machines that reside in components. Actions can
contain arbitrary C code, unless the state machine is marked
as verifiable, in which case actions may only create outgo-
ing events or change state machine-local variables. J

Refrigerators: The behavior of cooling programs is fun-
damentally state-based. A scheduler is used to execute
the state machine at regular intervals. Transitions are trig-
gered either by incoming, queued events or by changing
property values of hardware building blocks. This lan-
guage is an example where a behavioral paradigm is used
without significant alterations, but working with domain-
specific data structures – refrigerator hardware and its prop-
erties. J

State-based behavior description is also interesting in the con-
text of model checking. The model checker either determines
that the state chart conforms to a set of specifications or pro-
vides a counter-example that violates the specifications. Spec-
ifications express something about sequences of states such as
"It is not possible that two traffic lights show green at the same
time" or "Whenever a pedestrian presses the request button,
the pedestrian lights eventually will show green"9.

9 A good introduction to model check-
ing can be found in the book mentioned
below:

Berard, B., Bidoit, M., Finkel, A.,
Laroussinie, F., Petit, A., Petrucci,
L., Schnoebelen, and P. Systems and
Software Verification. Springer, 2001

In principle, any program can be represented as a state ma-
chine and can then be model checked. However, creating state
machines from, say, a procedural C program is non-trivial, and
the state machines also become very big very quickly. State-
based programs are already a state machine, and, they are typi-
cally not that big either (after all, they have to be understood by
the developer who creates and maintains them). Consequently,
many realistically-sized state machines can be model checked
efficiently.

5.3 Combinations

The behavioral paradigm also plays a role in the context of
language composition. If two to-be-composed languages use
different behavioral paradigms, the composition can become
really challenging. For example, combining a continuous sys-
tem (which works with continuous streams of data) with a dis-
crete event-based system requires temporal integration. We

dsl engineering 159

won’t discuss this topic in detail in this book10. However, it 10 It is still very much a research topic.

is obvious that combining systems that use the same paradigm
is much simpler. Alternatively, some paradigms can be inte-
grated relatively easily; for example, it is relatively simple to
map a state-based system onto an imperative system.

Many DSLs use combinations of various behavioral and struc-
tural paradigms described in this section11. Some combina-

11 Note how this observation leads to
the desire to better modularize and
reuse some of the above paradigms.
Room for research :-)tions are very typical:

• A data flow language often uses a functional, imperative or
declarative language to describe the calculation rules that ex-
press the dependencies between the variables (the contents
of the boxes in data flow diagrams or of cells in spread-
sheets). Fig. 4.45 shows an example block diagram, and
Fig. 5.5 shows an example implementation.

• State machines use expressions as transition guard condi-
tions, as well as typically an imperative language for ex-
pressing the actions that are executed as a state is entered
or left, or when a transition is executed. An example can be
seen in Fig. 20.7.

• Reactive programming, in which "black boxes" react to events,
often using data flow or state-based programming to imple-
ment the behavior that determines the reactions.

• In purely structural languages, for example those for ex-
pressing components and their dependencies, a function-
al/expression language is often used to express pre- and
post-conditions for operations. A state-based language is
often used for protocol state machines, which determines
the valid order of incoming events or operation calls.

Note that these combinations can be used to make well-estab-
lished paradigms domain-specific. For example, in the Yakindu
State Chart Tools (Fig. 20.7), a custom DSL can be plugged into
an existing, reusable state machine language and editor. One
concrete example is an action language that references another
DSL that describes UI structures. This allows the state machine
to be used to orchestrate the behavior of the UI.

Some of the case studies used as examples in this part of the
book also use combinations of several paradigms.

Pension Plans: The pension language uses functional ab-
stractions with mathematical symbols for the core actu-

160 dslbook.org

ary mathematics. A functional language with a plain tex-
tual syntax is used for the higher-level pension calculation
rules. A spreadsheet/data flow language is used for ex-
pressing unit tests for pension rules. Various nesting levels
of namespaces are used to organize the rules, the most im-
portant of which is the pension plan. A plan contains cal-
culation rules as well as test cases for those rules. Pension
plans can specialize other plans as a means of expressing
variants. Rules in a sub-plan can override rules in the plan
from which the sub-plan inherits. Plans can be declared
to be abstract, with abstract rules that have to be imple-
mented in sub-plans. Rules are versioned over time, and
the actual calculation formula is part of the version. Thus,
a pension plan’s behavior can be made to be different for
different points in time. J

Refrigerators: The cooling behavior description is described
as a reactive system. Events are produced by hardware el-
ements12. A state machine constitutes the top-level struc- 12 Technically it is of course the driver

of the hardware element, but in terms
of the model the events are associated
with the hardware element directly

ture. Within it, an imperative language is used. Programs
can inherit from another program, overwriting states de-
fined in the base program: new transitions can be added,
and the existing transitions can be overridden as a way for
an extended program to "plug into" the base program. J

6
Process Issues

Software development with DSLs requires a compatible de-
velopment process. A lot of what’s required is similar to
what’s required for working with any other reusable artifact
such as a framework: a workable process must be established
between those who build the reusable artifact and those who
use it. Requirements have to flow in one direction, and a
finished, stable, tested and documented product has to be
delivered in the other direction. Also, using DSLs can be a
fundamental change for all involved, especially the domain
experts. In this chapter we provide some guidelines for the
process.

6.1 DSL Development

6.1.1 Requirements for the Language

How do you find out what your DSL should express? What are
the relevant abstractions and notations? This is a non-trivial
issue; in fact it is one of the key issues in developing DSLs. It
requires a lot of domain expertise, thought and iteration. The
core problem is that you’re trying not just to understand one
problem, but rather a class of problems. Understanding and
defining the extent and nature of this class of problems can be
a lot of work. There are three typical fundamentally different
cases.

The first one conerns technical DSLs where the source for a
language is often an existing framework, library, architecture
or architectural pattern (the inductive approach). The knowl-
edge often already exists, and building the DSL is mainly about

162 dslbook.org

factoring the knowledge into a language: defining a notation,
putting it into a formal language, and building generators to
generate (parts of) the implementation code. In the process,
you often also want to put in place reasonable defaults for
some of the framework features, thereby increasing the level
of abstraction and making framework use easier.

mbeddr C: This was the approach taken by the extensi-
ble C case study. There is a lot of experience in embed-
ded software development, and some of the most pressing
challenges are the same throughout the industry. When
the DSL was built, we talked to expert embedded software
developers to find out what these central challenges were.
We also used an inductive approach and looked at existing
C code to indentify idioms and patterns. We then defined
extensions to C that provided linguistic abstractions for
the most important patterns and idioms. J

The second case addresses business domain DSLs. There you
can often mine the existing (tacit) knowledge of domain ex-
perts (deductive approach). In domains like insurance, science
or logistics, domain experts are absolutely capable of precisely
expressing domain knowledge. They do it all the time, often
using Excel or Word. Other domain artifacts can also be ex-
ploited in the same way: for example, hardware structures or
device features are good candidates for abstractions in the re-
spective domains. So are existing user interfaces: they face
users directly, and so are likely to contain core domain abstrac-
tions. Other sources are standards for an industry, or training
material. Some domains even have an agreed ontology contain-
ing concepts relevant to that domain and recognized as such
by a community of stakeholders. DSLs can be (partly) derived
from such domain ontologies.

Pension Plans: The company for which the pension DSL
was built had a lot of experience with pension plans. This
experience was mostly in the heads of (soon to be retiring)
senior domain experts. They also already had the core of
the DSL: a "rules language". The people who defined the
pension plans would write rules as Word documents to
"formally" describe the pension plan behavior. This was
not terribly productive because of the missing tool sup-
port, but it meant that the core of the DSL was known. We
still had to run a long series of workshops to work out nec-

dsl engineering 163

essary changes to the language, clean up loose ends and
discuss modularization and reuse in pension plans. J

In the two cases discusses so far, it is pretty clear how the DSL
is going to look in terms of core abstractions; discussions will
be about details, notation, how to formalize things, viewpoints,
partitioning and the like (although all these can be pretty non-
trivial too!). One of my most successful approaches

in this case is to build "straw men":
trying to understand something, factor
it into some kind of regular structure,
and then re-explain that structure back
to the stakeholders.

In the remaining third case, however, we are not so lucky. If
no domain knowledge is easily available we have to do an ac-
tual domain analysis, digging our way through requirements,
stakeholder "war stories" and existing applications. People may
be knowledgeable, but they might be unable to conceptualize
their domain in a structured way – it is then the job of the lan-
guage designer to provide the structure and consistency that is
necessary for defining a language. Co-evolving language and
concepts (see below) is a successful technique, especially in this
case.

Refrigerators: At the beginning of the project, all cool-
ing algorithms were implemented in C. Specifications were
written in Word documents as prose (with tables and some
physical formulas). It was not really clear at the beginning
what the right abstraction level would be for a DSL suit-
able for the thermodynamics experts. It took several iter-
ations to settle on the asynchronous, state-based structure
described earlier. J

For your first DSL, try to catch case one or two. Ideally, start
with case one, since the people who build the DLSs – software
architects and developers – are often the same as the domain
experts.

6.1.2 Iterative Development

Some people use DSLs as an excuse to reintroduce waterfall
processes. They spend months and months developing lan-
guages, tools and frameworks. Needless to say, this is not a
very successful approach. You need to iterate when develop-
ing the language.

Start by developing some deep understanding of a small
part of the domain for which you build the DSL. Then build a
little bit of language, build a little bit of generator and develop
a small example model to verify what you just did. Ideally, im-
plement all aspects of the language and processor for each new
domain requirement before focusing on new requirements1.

1 IDE polishing is probably something
you want to postpone a little, and not
do as part of every iteration.

164 dslbook.org

Novices to DSLs especially tend to get languages and meta
models wrong because they are not used to "thinking meta".
You can avoid this pitfall by immediately trying out your new
language feature by building an example model and develop-
ing a compatible generator to verify that you can actually gen-
erate the relevant artifacts.

Refrigerators: To solidify our choices regarding language
abstractions, we prototypically implemented several ex-
ample refrigerators. During this process we found the
need for more and more language abstractions. We no-
ticed early on that we needed a way to test the example
programs, so we implemented the interpreter and simu-
lator relatively early. In each iteration, we extended the
language as well as the interpreter, so the domain experts
could experiment with the language even though we did
not yet have a C code generator. J

It is important that the language approaches some kind of sta-
ble state over time (Fig. 6.1). As you iterate, you will encounter
the following situation: domain experts express requirements
that may sound inconsistent. You add all kinds of exceptions
and corner cases to the language. You language grows in size
and complexity. After a number of these exceptions and corner
cases, ideally the language designer will spot the systematic
nature behind them and refactor the language to reflect this
deeper understanding of the domain. Language size and com-
plexity is reduced. Over time, the amplitude of these changes
in language size and complexity (the error bars in Fig. 6.1)
should become smaller, and the language size and complex-
ity should approach a stable level (ss in Fig. 6.1).

Figure 6.1: Iterating towards a stable
language over time. It is a sign of
trouble if the language complexity does
not approach some kind of stable state
over time.

Component Architecture: A nice example of spotting a
systematic nature behind a set of special cases was the in-
troduction of data replication as a core abstraction in the
architecture DSL (we also discuss this in Section 18). Af-
ter modeling a number of message-based communication
channels, we noticed that the interfaces all had the same
set of methods, just for different data structures. When we
finally saw the pattern behind it, we created new linguistic
abstractions: data replication. J

dsl engineering 165

6.1.3 Co-evolve Concepts and Language

In cases in which you perform a real domain analysis, i.e. when
you have to find out which concepts the language should con-
tain, make sure you evolve the language in real-time as you
discuss the concepts.

Defining a language requires formalization. It requires be-
coming very clear and unambiguous about the concepts that
go into the language. In fact, building the language, because of
the need for formalization, helps you become clear about the
domain abstractions in the first place. Language construction
acts as a catalyst for understanding the domain! I recommend
actually building a language in real-time as you analyze your
domain.

Refrigerators: This is what we did in the cooling language.
Everybody learned a lot about the possible structure of
refrigerators and the limited feature combinations (based
on limitations imposed by the way in which some of the
hardware devices work). J

To make this feasible, your DSL tool must be lightweight enough
to support language evolution during domain analysis work-
shops. Turnaround time should be minimal.

Refrigerators: The cooling DSL is built with Xtext. Xtext
allows very fast turnaround regarding grammar evolution,
and, to a lesser extent, scopes, validation and type systems.
We typically evolved the grammar in real-time, during the
language design workshops, together with the domain ex-
perts. We then spent a day offline finishing scopes, con-
straints and the type system, as well as the interpreter. J

6.1.4 Let People Do What They are Good At

DSLs offer a chance to let everybody do what they are good at.
There are several clearly defined roles, or tasks, that need to be
done. Let me point out two, specifically.

Experts in a specific target technology can dig deep into the
details of how to efficiently implement, configure and operate
that technology. They can spend a lot of time testing, dig-
ging and tuning. Once they have found out what works best,
they can put their knowledge into platforms and execution en-
gines, efficiently spreading the knowledge across the team. For
the latter task, they will collaborate with generator experts and
language designers – our second example role.

166 dslbook.org

Component Architecture: In building the language, an
OSGi expert was involved in building the generation tem-
plates. J

The language designer works with domain experts to define
abstractions, notations and constraints to capture domain knowl-
edge accurately. The language designer also works with the
architect and the platform experts in defining code generators
or interpreters. Be aware that language designers need to have
some kind of predisposition: not everybody is good at "think-
ing meta", some people are comfortable with concrete work.
Make sure you use "meta people" to do the "meta work". And
of course, the language designer must be fluent with the DSL
tool used in the project.

The flip side is that you have to make sure that you actually
have people on your team who are good at language design,
know the domain and understand the target platforms, other-
wise the benefits promised by using DSLs may not materialize.

6.1.5 Domain Users vs. Domain Experts

When building business DSLs, people from the domain can
play two different roles. They can either participate in the do-
main analysis and the definition of the DSL itself, or they can
use the DSL to create domain-specific models or programs.

It is useful to distinguish these two roles explicitly. The first
role (language definition) must be filled by a domain expert.
These are people who have typically been working in the do-
main for a long time, often in different roles, and who have a
deep understanding of the relevant concepts, which they are
able to express precisely and maybe even formally. The second
group of people are the domain users. They are of course famil-
iar with the domain, but they are typically not as experienced
as the domain experts.

This distinction is relevant because you want to work with
the domain experts when defining the language, but you want
to build a language that is suitable for use by the domain users.
If the experts are too far ahead of the users, the users might
not be able to "follow", and you will not be able to roll out the
language to the actual target audience.

Hence, make sure that when defining the language that you
actually cross-check with real domain users whether they are
able to work with the language.

dsl engineering 167

Pension Plans: The core domain abstractions were con-
tributed by Herman. Herman was the most senior pension
expert in the company. In workshops we worked with a
number of other domain users who didn’t have as much
experience. We used them to validate that our DSL would
work for the average future user. Of course they also found
actual problems with the language, so they contributed
to the evolution of the DSL beyond just acting as guinea
pigs. J

6.1.6 DSL as a Product

The language, constraints, interpreters and generators are usu-
ally developed by one (smaller) group of people and used by
another (larger) group of people. To make this work, consider
the "language stuff" as a product developed by one group for
use by another. Make sure there’s a well-defined release sched-
ule, that development happens in short, predefined increments,
that requirements and issues are reported and tracked, errors
are fixed reasonably quickly, there is ample documentation and
that support staff is available to help with problems and the
unavoidable learning curve. These things are critical for accep-
tance!

A specific best practice is to exchange people: from time to
time, make application developers part of the language team
so that they can appreciate the challenges of "meta", and make
people from the language development team participate in ac-
tual application development to make sure they understand if
and how their work products suit the people who do the actual
application development.

mbeddr C: One of our initial proof-of-concept projects didn’t
really work out very well. So in order to try out our first
C extensions and come up with a showcase for an upcom-
ing exhibition, the language developers built the proof-of-
concept themselves. As it turned out, this was really help-
ful. We didn’t just find a lot of bugs, we also experienced
first-hand some of the usability challenges of the system at
the time. It was easy for us to fix, because it was we who
experienced the problems in the first place. J

6.1.7 Documentation is still necessary

Building the DSLs and execution engines is not enough to
make the approach successful. You have to communicate to the

168 dslbook.org

users how to use these things in real-world contexts. Specifi-
cally, here’s what you have to document: the language struc-
ture and syntax, how to use the editors and the generators,
how and where to write manual code and how to integrate it
into generated code, as well as platform/framework decisions
(if applicable).

Keep in mind that there are other media than paper. Screen-
casts, videos that show flip chart discussions, or even a regular
podcast that talks about how the tools change are good choices,
too. Also keep in mind that hardly anybody reads reference
documentation. If you want to be successful, make sure the
majority of your documentation consists of example-driven or
task-based tutorials.

Component Architecture: The documentation for the com-
ponent architecture DSL contains a set of example applica-
tions. Each of them guides a new user through building an
increasingly complex application. It explains installation
of the DSL into Eclipse, concepts of the target architecture
and how they map to language syntax, use of the editor
and generator, as well as how to integrated manually writ-
ten code into the generated base classes. J

6.2 Using DSLs

6.2.1 Reviews

A DSL limits the user’s freedom in some respect: they can only
express things that are within the limits of DSLs. Specifically,
low-level implementation decisions are not under a DSL user’s
control because they are handled by the execution engine.

However, even with the nicest DSL, users can still make mis-
takes, the DSL users can still misuse the DSL – the more expres-
sive the DSL, the bigger this risk. So, as part of your develop-
ment process, make sure you perform regular model reviews.
This is critical, especially for the adoption phase, when people
are still learning the language and the overall approach.

Reviews are easier on the DSL level than on the code level.
Since DSL programs are more concise and support better sep-
aration of concerns than their equivalent specification in GPL
code, reviews become more efficient.

If you notice recurring mistakes, things that people do in the
"wrong" way regularly, you can either add a constraint check

dsl engineering 169

that detects the problem automatically, or (maybe even better)
consider this as input to your language designers: maybe what
the users expect is actually correct, and the language needs to
be adapted.

6.2.2 Compatible Organization

Done right, using DSLs requires a lot of cross-project work.
In many settings the same language (module) will be used in
several projects or contexts. While this is of course a big plus,
it also requires that the organization is able to organize, staff,
schedule and pay for cross-cutting work. A strictly project-
focused organization will have a very hard time finding re-
sources for these kinds of activities. DSLs, beyond the small
ad-hoc utility DSL, are very hard to introduce into such envi-
ronments.

In particular, make sure that the organizational structure,
and the way project cost is handled, is compatible with cross-
cutting activities. Any given project will not invest in assets
that are reusable in other projects if the cost for developing the
asset is billed only to the particular project. Assets that are use-
ful for several projects (or the company as a whole) must also
paid for by those several projects (or the company in general).

6.2.3 Domain Users Programming?

Technical DSLs are intended for use by programmers. Appli-
cation domain DSLs are targeted towards domain users, non-
programmers who are knowledgeable in the domain covered
by the DSL. Can they actually work with DSLs?

In many domains, usually those that have a scientific or
mathematical flavor, users can precisely describe domain knowl-
edge. In other domains you might want to aim for a somewhat
lesser goal. Instead of expecting domain users and experts to
independently specify domain knowledge using a DSL, you
might want to pair a developer and a domain expert. The de-
veloper can help the domain expert to be precise enough to
"feed" the DSL. Because the notation is free of implementation
clutter, the domain expert feels much more at home than when
staring at GPL source code.

Initially, you might even want to reduce your aspirations
to the point where the developer does the DSL coding based
on discussions with domain users, then showing them the re-
sulting model and asking confirming or disproving questions
about it. Putting knowledge into formal models helps you

Executing the program, by generating
code or running some kind simulator,
can also help domain users understand
better what has been expressed with the
DSL.

170 dslbook.org

point out decisions that need to be made, or language exten-
sions that might be necessary.

If you are not able to teach a business domain DSL to the
domain users, it might not necessarily be the domain users’
fault. Maybe your language isn’t really suitable to the domain.
If you encounter this problem, take it as a warning sign and
consider changing the language.

6.2.4 DSL Evolution

A DSL that is successfully used will have to be evolved. Just as
for any other software artifact, requirements evolve over time
and the software has to reflect these changes. In the context of
DSLs, the changes can be driven by several different concerns:

Target Platform Changes The target platform may change because
of the availability of new technologies that provide better
performance, scalability or usability. Ideally, no changes to
either the language or the models are necessary: a new exe-
cution engine for the changed target platform can be created.
In practice it is not always so clean: the DSL may make as-
sumptions about the target platform that are no longer true
for the changed or new platform. These may have to be re-
moved from the languages and existing models. Also, the
new platform may support different execution options, and
the existing models do not contain enough information to
make the decision of which option to take. In this case, ad-
ditional annotation models may become necessary2. 2 Despite the caveats discussed in this

paragraph, a target platform change is
typically relatively simple to handle.Domain Changes As the domain evolves, it is likely that the lan-

guage has to evolve as well3. The problem then is: what do
3 If you use a lot of in-language abstrac-
tion or a standard library, you may be
lucky and the changes can be realized
without changes to the language.

you do with existing models? You have two fundamental
options: keep the old language and don’t change the mod-
els, or evolve the existing models to work with the new (ver-
sion of the) language. The former is often not really practi-
cal, especially in the face of several such changes.

The amount of pain in evolving existing models depends
a lot on the nature of the change4. The most pragmatic ap- 4 It also depends a lot on the DSL tool.

Different tools support model evolution
in different ways.

proach keeps the new version of the language backward
compatible, so that existing models can still be edited and
processed. Under this premise, adding new language con-
cepts is never a problem. However, you must never just
delete existing concepts or change them in an incompatible
way. Instead, these old concepts should be marked as depre-
cated, and the editor will show a corresponding warning in

dsl engineering 171

the IDE. The IDE may also provide a quick fix to change the
old, deprecated concept to a new (version of the) concept,
if such a mapping is straightforward. Otherwise the migra-
tion must be done manually. If you have access to all mod-
els, you may also run a batch transformation during a quiet
period to migrate them all at once. Note that, although dep-
recation has a bad reputation from programming languages
from which deprecated concepts are never removed, this is
not necessarily comparable to DSLs: if, after a while, people
still use the deprecated concepts, you can have the IDE send
an email to the language developers, who can then work
with the "offending user" to migrate the programs.

Note that for the above approach to work, you have to
have a structure process for versioning the languages and
tools, otherwise you will quickly end up in version chaos.

DSL Tool Changes The third change is driven by evolution of
the DSL tool. Of course, the language definition (and po-
tentially, the existing models) may have to evolve if the DSL
tool changes in an incompatible way (which, one could ar-
gue, it shouldn’t!). This is similar to every other tool, li-
brary or framework you may use. People seem particularly
afraid of the situation in which they have to switch to a com-
pletely new DSL tool because the current one is no longer
supported, or a new one is just better. Of course it is very
likely that you’ll have to completely redo the language def-
initions: there is no portability in terms of language defini-
tions among DSL tools (not even among those that reside on
Eclipse). However, if you had designed your languages well
you will probably be able to automatically transform existing
models into the new tool’s data structures5.

5 It is easy to see that over time the real
value is in the models, and not so much
in the language definitions and IDEs.
Rebuilding those is hence not such a
big deal, especially if we consider that a
new, better tool may require less effort
to build the languages.

One central pillar of using DSLs is the high degree to
which they support separation of concerns and the expres-
sion of domain knowledge at a level of abstraction that makes
the domain semantics obvious, thus avoiding complex re-
verse engineering problems. Consequently you can generate
all kinds of artifacts from the models. This characteristic also
means that it is relatively straightforward to write a genera-
tor that creates a representation of the model in a new tool’s
data structures6.

6 For example, we have built a generic
MPS to EMF exporter. It works for meta
models as well as for the models.

172 dslbook.org

6.2.5 Avoiding Uncontrolled Growth and Fragmentation

If you use DSLs successfully, there may be the danger of un-
controlled growth and diversification in languages, with the
obvious problems for maintenance, training and interoperabil-
ity7. To avoid this, there is an organizational approach. 7 While this may become a problem,

this may also become a problem with
libraries or framework... the solution is
also the same, as we will see.

The organizational approach requires putting in place gov-
ernance structures for language development. Maybe devel-
opers have to coordinate with a central entity before they are
"allowed" to define a new language. Or an open-source like
model is used, in which languages are developed in public
and the most successful ones will survive and attract contribu-
tions. Maybe you want to limit language development to some
central "language team"8. Larger organizations in which un- 8 Please don’t overdo this – don’t make

it a bureaucratic nightmare to develop a
language!

controlled language growth and fragmentation might become
a problem are likely to already have established processes for
coordinating reusable or cross-cutting work. You should just
plug into these processes.

The technical approach (which should be used together with
the organizational one) exploits language modularization, ex-
tension and composition. If (parts of) languages can be reused,
the drive to develop something completely new (that does more
or less the same as somebody else’s language) is reduced. Of
course this requires that language reuse actually works with
your tool of choice. It also requires that the potentially reusable
languages are robust, stable and documented – otherwise no-
body will use them. In a large organization I would assume
that a few languages will be strategic: aligned with the needs
of the whole organization, well-designed, well tested and doc-
umented, implemented by a central group, used by many de-
velopers and reusable by design9. In addition, small teams may 9 The development of these languages

should be governed by the organiza-
tional approach discussed above.

decide to develop their own smaller languages or extensions,
reusing the strategic ones. Their focus is much more local, and
the development requires much less coordination.

Part III

DSL Implementation

dsl engineering 175

This part of the book has been written together Lennart Kats
and Guido Wachsmuth, who contributed the material on Spoo-
fax, and Christian Dietrich, who helped with the language
modularization in Xtext.

In this part we describe language implementation with three
language workbenches, which together represent the current
state of the art: Spoofax, Xtext and MPS. All of them are Open
Source, so you can experiment with them. For more example
language implementations using more language workbenches,
take a look at the Language Workbench Competition website10. 10 languageworkbenches.net

This part of the book does not cover a lot of design decisions
or motivation for having things like constraints, type systems,
transformations or generators. Conceptually these topics are
introduced in Part II of the book on DSL design. This part
really just looks at the "how", not the "what" or "why".

Each chapter contains examples implemented with all three
tools. The ordering of the tools is different from chapter to
chapter, based on the characteristics of each tool: if the example
for tool A illustrates a point that is also relevant for tool B, then
A is discussed before B.

The examples are not intended to serve as a full tutorial
for any of these tools, but as an illustration of the concepts
and ideas involved with language implementation in general.
However, they should give you a solid understanding of the
capabilities of each of the tools, and the class of tools they stand
for. Also, if a chapter does not explain topic X for tool Y, this
does not imply that you cannot do X with Y – it just means that
Y’s approach to X is not significantly different from things that
have already been discussed in the chapter.

7
Concrete and Abstract Syntax

In this chapter we look at the definition of abstract and con-
crete syntax, and the mapping between the two in parser-
based and projectional systems. We also discuss the advan-
tages and drawbacks of these two approaches. We discuss
the characteristics of typical AST definition formalisms. The
meat of the chapter is made up of extensive examples for
defining language structure and syntax with our three ex-
ample tools.

The concrete syntax (CS) of a language is what the user interacts
with to create programs. It may be textual, graphical, tabular
or any combination thereof. In this book we focus mostly on
textual concrete syntaxes; examples of other forms are briefly
discussed Section 4.7. In this chapter we refer to other forms
where appropriate.

The abstract syntax (AS) of a language is a data structure that
holds the core information in a program, but without any of the
notational details contained in the concrete syntax: keywords
and symbols, layout (e.g., whitespace), and comments are typ-
ically not included in the AS. In parser-based systems the syn-
tactic information that doesn’t end up in the AS is often pre-
served in some "hidden" form so the CS can be reconstructed
from the combination of the AS and this hidden information –
this bidirectionality simplifies the creation of IDE features such
as quick fixes or formatters.

As we have seen in the introduction, the abstract syntax is
essentially a tree data structure. Instances that represent actual
programs (i.e. sentences in the language) are hence often called
an abstract syntax tree or AST. Most formalisms also support

178 dslbook.org

cross-references across the tree, in which case the data structure
becomes a graph (with a primary containment hierarchy). It is
still usually called an AST.

While the CS is the interface of the language to the user, the
AS acts as the API to access programs by processing tools: it
is used by developers of validators, transformations and code
generators. The concrete syntax is not relevant in these cases.
To illustrate the relationship between the concrete and abstract
syntax, consider the following example program:

var x: int;
calc y: int = 1 + 2 * sqrt(x)

This program has a hierarchical structure: definitions of x and
y at the top; inside y there’s a nested expression. This struc-
ture is reflected in the corresponding abstract syntax tree. A
possible AST is illustrated in Fig. 7.11.

1 We write possible because there are
typically several ways of structuring the
abstract syntax.

Figure 7.1: Abstract syntax tree for
the above program. Boxes represent
instances of language concepts, solid
lines represent containment, dotted
lines represent cross-references.

There are two ways of defining the relationship between the CS
and the AS as part of language development:

CS first From a concrete syntax definition, an abstract syntax is
derived, either automatically or using hints in the concrete
syntax specification2. This is the default use for Xtext, where

2 This is more convenient, but the
resulting AS may not be as clean as
if it were defined manually; it may
contain idiosyncrasies that result from
the automatic derivation from the CS.
For example, an Ecore meta model
derived from an Xtext grammar will
never contain interfaces, because these
cannot be expressed with the Xtext
grammar language. However, the use of
interfaces may result in a meta model
that is easier to process (richer typing).
In this case it makes sense to use the AS
first approach.

Xtext derives the Ecore meta model from an Xtext grammar.

AS first We first define the AS. We then define the concrete
syntax, referring to the AS in the definition of the concrete
syntax3. For example, in Xtext it is possible to define gram- 3 This is often done if the AS struc-

ture already exists, has to conform to
externally imposed constraints or is
developed by another party than the
language developer.

mar for an existing meta model.

Once the language is defined, there are again two ways in

dsl engineering 179

which the abstract syntax and the concrete syntax can relate
as the language is used to create programs4: 4 We will discuss these two approaches

in more detail in the next subsection.

Parsing In the parser-based approach, the abstract syntax tree
is constructed from the concrete syntax of a program; a
parser instantiates and populates the AS, based on the in-
formation in the program text. In this case, the (formal)
definition of the CS is usually called a grammar5. Xtext and

5 Sometimes the parser creates a con-
crete syntax tree, which is then trans-
formed to an AST – however, we ignore
this aspect in the rest of the book, as it
is not essential.

Spoofax use this approach.

Projection In the projectional approach, the abstract syntax tree
is built directly by editor actions, and the concrete syntax
is rendered from the AST via projection rules. MPS is an
example of a tool that uses projectional editing.

Fig. 7.2 shows the typical combinations of these two dimen-
sions. In practice, parser-based systems typically derive the AS
from the CS – i.e. CS first. In projectional systems, the CS is
usually annotated onto the AS data structures – i.e. AS first.

Figure 7.2: Dimensions of defining
the concrete and abstract syntax of a
language. Xtext is mentioned twice
because it supports CS first and AS
first, although CS first is the default.
Note also that as of now there is no
projectional system that uses CS first.
However, JetBrains are currently experi-
menting with such a system.

7.1 Fundamentals of Free Text Editing and Parsing

Most programming environments rely on free text editing, where
programmers edit programs at the text/character level to form
(key)words and phrases.

A parser is used to check the program text (concrete syntax)
for syntactic correctness, and create the AST by populating the
AS data structures from information extracted from the textual
source. Most modern IDEs perform this task in real-time as
the user edits the program, and the AST is always kept in sync
with the program text. Many IDE features – such as content
assist, validation, navigation or refactoring support – are based
on this synchronized AST.

Figure 7.3: In parser-based systems, the
user only interacts with the concrete
syntax, and the AST is constructed from
the information in the text via a parser.

A key characteristic of the free text editing approach is its
strong separation between the concrete syntax (i.e. text) and
the abstract syntax. The concrete syntax is the principal repre-
sentation, used for both editing and persistence6. The abstract

6 In projectional editing it is the other
way round: the CS can be changed
easily (by changing the projection rules)
while keeping the AS constant.

syntax is used under the hood by the implementation of the
DSL, e.g., for providing an outline view, validation, and for
transformations and code generation. The AS can be changed
(by changing the mapping from the CS to an AS) without any
effect on the CS and existing programs.

Many different approaches exist for implementing parsers.
Each may restrict the syntactic freedom of a language, or con-

180 dslbook.org

strain the way in which a particular syntax must be specified.
It is important to be aware of these restrictions, since not all
languages can be comfortably implemented by every parser
implementation approach, or even at all. You may have heard
terms like context free, ambiguity, look-ahead, LL, (LA)LR or
PEG. These all pertain to a certain class of parser implemen-
tation approaches. We provide more details on the various
grammar and parser classes further on in this section.

7.1.1 Parser Generation Technology

In traditional compilers and IDEs (such as gcc or the Eclipse
JDT), parsers are often written by hand as a big, monolothic
program that reads a stream of characters and uses recursion
to create a tree structure. However, manually writing a parser
requires significant expertise in parsing and a significant devel-
opment effort. For standardized programming languages that
don’t change very often, and that have a large user commu-
nity, this approach makes sense. It can lead to very fast parsers
that also provide good error reporting and error recovery (the
ability to continue parsing after a syntax error has been found).

In contrast, language workbenches, and most of today’s com-
pilers, generate a parser from a grammar. A grammar is a syn-
tax specification written in a DSL for formally defining tex-
tual concrete syntax. These generated parsers may not pro-
vide the same performance or error reporting/recovery as a
hand-tailored parser constructed by an expert, but they pro-
vide bounded performance guarantees that make them (usu-
ally) more than fast enough for modern machines. Also, they
generate a complete parser for the complete grammar – develop-
ers may forget corner cases if they write the parser manually.
However, the most important argument for using parser gen-
eration is that the effort of building a parser is much lower than
manually writing a custom parser7. Finally, it means that the

7 The grammar definition is also much
more readable and maintainable than
the actual parser implementation, either
custom-written or generated.

developer who defines a language does not have to be an ex-
pert in parsing technology.

� Parsing versus Scanning Because of the complexity inher-
ent in parsing, parser implementations tend to split the pars-
ing process into a number of phases. In the majority of cases
the text input is first separated into a sequence of tokens (i.e.
keywords, identifiers, literals, comments or whitespace) by a
scanner (sometimes also called lexer or tokenizer). The parser
then constructs the actual AST from the token sequence8. This

8 Note that many parser generators
allow you to add arbitrary code (called
actions) to the grammar, for example to
check constraints or interpret the pro-
gram. We strongly recommend against
this: instead, a parser should only check
for syntactic correctness and build the
AST. All other processing should be
built on top of the AST. This separation
between AST construction and AST
processing results in much more main-
tainable language implementations.

dsl engineering 181

simplifies the implementation compared to directly parsing at
the character level. A scanner is usually implemented using
direct recognition of keywords and a set of regular expressions
to recognize all other valid input as tokens.

Both the scanner and parser can be generated from gram-
mars (see below). A well-known example of a scanner (lexer)
generation tool is lex9. Modern parsing frameworks, such as 9 dinosaur.compilertools.net/

ANTLR10, do their own scanner generation. 10 www.antlr.org/

Note that the word "parser" now
has more than one meaning: it can
either refer to the combination of the
scanner and the parser, or to the post-
scanner parser only. Usually the former
meaning is intended (both in this book
as well as in general) unless scanning
and parsing are discussed specifically.

A separate scanning phase has direct consequences for the
overall parser implementation, when the scanner is not aware
of the context of its input. An example of a typical problem
that arises from this is that keywords can’t be used as iden-
tifiers even though the use of a keyword frequently wouldn’t
cause ambiguity in the actual parsing. The Java language is an
example of this: it uses a fixed set of keywords, such as class

and public, that cannot be used as identifiers.
A context-unaware scanner is also problematic when gram-

mars are extended or composed. In the case of Java, this was
seen with the assert and enum keywords that were introduced
in Java 1.4 and Java 5, respectively. Any programs that used
identifiers with those names (such as unit testing APIs) were
no longer valid. For composed languages, similar problems
arise, as constituent languages have different sets of keywords
and can define incompatible regular expressions for lexicals
such as identifiers and numbers.

A recent technique to overcome these problems is context-
aware scanning, in which the lexer relies on the state of the
parser to determine how to interpret the next token11. With 11 E. Van Wyk and A. Schwerdfeger.

Context-Aware Scanning for Parsing
Extensible Languages. In Intl. Conf. on
Generative Programming and Component
Engineering, GPCE 2007. ACM Press,
2007

scannerless parsing, there is no separate scanner at all. Instead,
the parser operates at the character level and statefully pro-
cesses lexicals and keywords, avoiding the problems of context-
unaware scanning illustrated above. Spoofax (or rather, the un-
derlying parser technology SDF) uses scannerless parsing.

� Grammars Grammars are the formal definition for concrete
textual syntax. They consist of production rules that define how
valid textual input ("sentences") look like12. Grammars are the

12 They can also be used to "produce"
valid input by executing them "the
other way round", hence the name.

basis for syntax definitions in text-based workbenches such as
Spoofax and Xtext13.

13 In these systems, the production
rules are enriched with information
beyond the pure grammatical structure
of the language, such as the seman-
tical relation between references and
declarations.Fundamentally, production rules can be expressed in Backus-

Naur Form (BNF)14, written as S ::= P1 ... Pn. This grammar 14 en.wikipedia.org/
wiki/Backus-Naur_Formdefines a symbol S by a series of pattern expressions P1 ... Pn.

182 dslbook.org

Each pattern expression can refer to another symbol or can be a
literal such as a keyword or a punctuation symbol. If there are
multiple possible patterns for a symbol, these can be written
as separate productions (for the same symbol), or the patterns
can be separated by the | operator to indicate a choice. An ex-
tension of BNF, called Extended BNF (EBNF)15, adds a number 15 en.wikipedia.org/wiki/

Extended_Backus-Naur_Formof convenience operators such as ? for an optional pattern, *
to indicate zero or more occurrences, and + to indicate one or
more occurrences of a pattern expression.

The following code is an example of a grammar for a sim-
ple arithmetic expression language using BNF notation. Basic
expressions are built up of NUM number literals and the + and *
operators16. 16 These are the + and * operators

of the defined language, not those
mentioned for EBNF above.Exp ::= NUM

| Exp "+" Exp
| Exp "*" Exp

Note how expression nesting is described using recursion in
this grammar: the Exp rule calls itself, so sentences like 2 + 3

* 4 are possible. This poses two practical challenges for parser
generation systems: first, the precedence and associativity of
the operators is not described by this grammar. Second, not
all parser generators provide full support for recursion. For
example, ANTLR cannot cope with left-recursive rules. We
elaborate on these issues in the remainder of the section and in
the Spoofax and Xtext examples.

� Grammar classes BNF can describe any grammar that maps
textual sentences to trees based only on the input symbols.
These are called context-free grammars and can be used to parse
the majority of modern programming languages17. In con- 17 An exception is SAP’s ABAP lan-

guage, which requires a custom, hand-
written parser.

trast, context-sensitive grammars are those that also depend on
the context in which a partial sentence occurs, making them
suitable for natural language processing but at the same time,
making parsing itself a lot harder, since the parser has to be
aware of a lot more than just the syntax.

Parser generation was first applied in command-line tools
such as yacc in the early seventies18. As a consequence of 18 dinosaur.compilertools.net

relatively slow computers, much attention was paid to the ef-
ficiency of the generated parsers. Various algorithms were de-
signed that could parse text in a bounded amount of time and
memory. However, these time and space guarantees could only
be provided for certain subclasses of the context-free gram-
mars, described by acronyms such as LL(1), LL(k), LR(1), and

dsl engineering 183

so on. A particular parser tool supports a specific class of gram-
mars – e.g., ANTLR supports LL(k) and LL(*). In this naming
scheme, the first L stands for left-to-right scanning, and the
second L in LL and the R in LR stand for leftmost and right-
most derivation. The constant k in LL(k) and LR(k) indicates
the maximum number (of tokens or characters) the parser will
look ahead to decide which production rule it can recognize.
The bigger k, the more syntactic forms can be parsed19. Typi- 19 Bigger values of k may also reduce

parser performance, though.cally, grammars for "real" DSLs tend to need only finite look-
ahead and many parser tools effectively compute the optimal
value for k automatically. A special case is LL(*), where k is
unbounded and the parser can look ahead arbitrarily many to-
kens to make decisions.

Supporting only a subclass of all possible context-free gram-
mars poses restrictions on the languages that are supported
by a parser generator. For some languages, it is not possible
to write a grammar in a certain subclass, making that partic-
ular language unparseable with a tool that only supports that
particular class of grammars. For other languages, a natural
context-free grammar exists, but it must be written in a differ-
ent, sometimes awkward or unintuitive way to conform to the
subclass. This will be illustrated in the Xtext example, which
uses ANTLR as the underlying LL(k) parser technology.

Parser generators can detect whether a grammar conforms
to a certain subclass, reporting conflicts that relate to the im-
plementation of the parsing algorithm20. Language developers

20 You may have heard of shift/reduce or
reduce/reduce conflicts for LR parsers,
or first/first or first/follow conflicts and
direct or indirect left recursion for LL
parsers. We will discuss some of these
in detail below.

can then attempt to manually refactor the grammar to address
those errors21. As an example, consider a grammar for prop-

21 Understanding these errors and
then refactoring the grammar to ad-
dress them can be non-trivial, since it
requires an understanding of the par-
ticular grammar class and the parsing
algorithm.erty or field access, expressions of the form customer.name or

"Tim".length22: 22 Note that we use ID to indicate
identifier patterns and STRING to
indicate string literal patterns in these
examples.

Exp ::= ID
| STRING
| Exp "." ID

This grammar uses left-recursion: the left-most symbol of one
of the definitions of Exp is a call to Exp, i.e. it is recursive. Left-
recursion is not supported by LL parsers such as ANTLR.

The left-recursion can be removed by left-factoring the gram-
mar, i.e. by changing it to a form where all left recursion is
eliminated. The essence of left-factoring is that the grammar
is rewritten in such a way that all recursive production rules
consume at least one token or character before going into the
recursion. Left-factoring introduces additional rules that act as
intermediaries and often makes repetition explicit using the +

184 dslbook.org

and * operators. Our example grammar from above uses re-
cursion for repetition, which can be made explicit as follows:

Exp ::= ID
| STRING
| Exp ("." ID)+

The resulting grammar is still left-recursive, but we can intro-
duce an intermediate rule to eliminate the recursive call to Exp:

Exp ::= ID
| STRING
| FieldPart ("." ID)+

FieldPart ::= ID
| STRING

Unfortunately, this resulting grammar still has overlapping rules
(first/first conflicts), as the ID and STRING symbols both match
more than one rule. This conflict can be eliminated by remov-
ing the Exp ::= ID and Exp := STRING rule and making the +

(one or more) repetition into a * (zero or more) repetition:

Exp ::= FieldPart ("." ID)*

FieldPart ::= ID
| STRING

This last grammar describes the same language as the original
grammar shown above, but conforms to the LL(1) grammar
class23. In the general case, not all context-free grammars can 23 Unfortunately, it is also much more

verbose. Refactoring "clean" context free
grammars to make them conform to a
particular grammar class usually makes
the grammars larger and/or uglier.

be mapped to one of the restricted classes. Valid, unambiguous
grammars exist that cannot be factored to any of the restricted
grammar classes. In practice, this means that some languages
cannot be parsed with LL or LR parsers.

� General parsers Research into parsing algorithms has pro-
duced parser generators specific to various grammar classes,
but there has also been research in parsers for the full class of
context-free grammars. A naive approach to avoid the restric-
tions of LL or LR parsers may be to add backtracking, so that
if any input doesn’t match a particular production, the parser
can go back and try a different production. Unfortunately, this
approach risks exponential execution times or non-termination
and usually exhibits poor performance.

There are also general parsing algorithms that can efficiently
parse the full class. In particular, generalized LR (GLR) parsers24

24 en.wikipedia.org/wiki/
GLR_parser

and Earley parsers25 can parse in linear time O(n) in the com-
25 en.wikipedia.org/wiki/
Earley_parser

mon case. In the case of ambiguities, the time required can in-
crease, but in the worst case they are bounded by cubic O(n3)

time. In practice, most programming languages have few or no

dsl engineering 185

ambiguities, ensuring good performance with a GLR parser.
Spoofax is an example of a language workbench that uses GLR
parsing.

� Ambiguity Grammars can be ambiguous, meaning that at
least one valid sentence in the language can be constructed
in more than one (non-equivalent) way from the production
rules26, corresponding to multiple possible ASTs. This obvi- 26 This also means that this sentence can

be parsed in more than one way.ously is a problem for parser implementation, as some decision
has to be made on which AST is preferred. Consider again the
expression language introduced above.

Exp ::= NUM
| Exp "+" Exp
| Exp "*" Exp

This grammar is ambiguous, since for a string 1 * 2 + 3 there
are two possible trees (corresponding to different operator prece-
dences).

Exp

Exp

Exp

1 *

Exp

2 +

Exp

3

Exp

Exp

1 *

Exp

Exp

2 +

Exp

3

The grammar does not describe which interpretation should be
preferred. Parser generators for restricted grammar classes and
generalized parsers handle ambiguity differently. We discuss
both approaches below.

� Ambiguity with Grammar Classes LL and LR parsers are de-
terministic parsers: they can only return one possible tree for a
given input. This means they can’t handle a grammar that has
ambiguities, including our simple expression grammar. Deter-
mining whether a grammar is ambiguous is a classic undecid-
able problem. However, it is possible to detect violations of
the LL or LR grammar class restrictions, in the form of con-
flicts. These conflicts do not always indicate ambiguities (as
seen with the field access grammar discussed above), but by
resolving all conflicts (if possible) an unambiguous grammar
can be obtained.

Resolving grammar conflicts in the presence of associativ-
ity, precedence, and other risks of ambiguity requires carefully
layering the grammar in such a way that it encodes the desired
properties. To encode left-associativity and a lower priority for

186 dslbook.org

the + operator, we can rewrite the grammar as follows:
Expr ::= Expr "+" Mult

| Mult
Mult ::= Mult "*" NUM

| NUM

The resulting grammar is a valid LR grammar. Note how it
puts the + operator in the highest layer to give it the low-
est priority27, and how it uses left-recursion to encode left-

27 A + will end up further up in the
expression tree than a *. This means
that the * has higher precedence,
since any interpreter or generator will
encounter the * first.associativity of the operators. The grammar can be left-factored

to a corresponding LL grammar as follows28: 28 We will see more extensive examples
of this approach in the section on Xtext
(Section 7.5).Expr ::= Mult ("+" Mult)*

Mult ::= NUM ("*" NUM)*

� Ambiguity with Generalized Parsers Generalized parsers ac-
cept grammars regardless of recursion or ambiguity. So our
expression grammar is readily accepted as a valid grammar.
In the case of an ambiguity, the generated parser simply re-
turns all possible abstract syntax trees, e.g. a left-associative tree
and a right-associative tree for the expression 1 * 2 + 3. The
different trees can be manually inspected to determine what
ambiguities exist in the grammar, or the desired tree can be
programmatically selected. A way of programmatically select-
ing one alternative is disambiguation filters. For example, left-
associativity can be indicated on a per-production basis:
Exp ::= NUM

| Exp "+" Exp {left}
| Exp "*" Exp {left}

This indicates that both operators are left-associative (using the
{left} annotation from Spoofax). Operator precedence can be
indicated with relative priorities or with precedence annota-
tions:
Exp ::= Exp "*" Exp {left}
>
Exp ::= Exp "+" Exp {left}

The > indicates that the * operator binds stronger than the +

operator. This kind of declarative disambiguation is commonly
found in GLR parsers, but typically is not available in parsers
that support only more limited grammar classes29. 29 As even these simple examples show,

this style of specifying grammars leads
to simpler, more readable grammars.
It also makes language specification
much simpler, since developers don’t
have to understand the conflicts/errors
mentioned above.

� Grammar Evolution and Composition Grammars evolve as
languages change and new features are added. These features
can be added by adding single, new productions, or by com-
posing the grammar with an existing grammar. Composition of
grammars is an efficient way of reusing grammars and quickly

dsl engineering 187

constructing or extending new grammars. As a basic exam-
ple of grammar composition, consider once again our simple
grammar for arithmetic expressions:

Expr ::= NUM
| Expr "*" Expr
| Expr "+" Expr

Once more operators are added and the proper associativities
and precedences are specified, such a grammar forms an ex-
cellent unit for reuse30. As an example, suppose we want to 30 For example, expressions can be

used as guard conditions in state
machines, for pre- and postconditions
in interface definitions, or to specify
derived attributes in a data definition
language.

compose this grammar with the grammar for field access ex-
pressions31:

31 Here we consider the case where
two grammars use a symbol with the
identical name Expr. Some grammar
definition formalisms support mech-
anisms such as grammar mixins and
renaming operators to work with gram-
mar modules where the symbol names
do not match.

Expr ::= ID
| STRING
| Expr "." ID

In the ideal case, composing two such grammars should be
trivial – just copy them into the same grammar definition file.
However, reality is often less than ideal. There are a number
of challenges that arise in practice, related to ambiguity and to
grammar class restrictions32.

32 See Laurence Tratt’s article
Parsing – the solved problem that
isn’t. at tratt.net/laurie/
tech_articles/articles/parsing
_the_solved_problem_that_isnt.

• Composing arbitrary grammars risks introducing ambigui-
ties that did not exist in either of the two constituent gram-
mars. In the case of the arithmetic expressions and field
access grammars, care must specifically be taken to indicate
the precedence order of all operators with respect to all oth-
ers. With a general parser, new priority rules can be added
without changing the two imported grammars. When an
LL or LR parser is used, it is often necessary to change one
or both of the composed grammars to eliminate any con-
flicts. This is because in a general parser, the precedences
are declarative (additional preference specification can sim-
ply be added at the end), whereas in LL or LR parsers the
precedence information is encoded in the grammar struc-
ture (and hence invasive changes to this structure may be
required).

• We have shown how grammars can be massaged with tech-
niques such as left-factoring in order to conform to a cer-
tain grammar class. Likewise, any precedence order or as-
sociativity can be encoded by massaging the grammar to
take a certain form. Unfortunately, all this massaging makes
grammars very resistant to change and composition: after
two grammars are composed together, the result is often no

188 dslbook.org

longer LL or LR, and another manual factorization step is
required.

• Another challenge is in composing scanners. When two
grammars that depend on a different lexical syntax are com-
posed, conflicts can arise. For example, consider what hap-
pens when we compose the grammar of Java with the gram-
mar of SQL:

for (Customer c : SELECT customer FROM accounts WHERE balance < 0) {
...

}

The SQL grammar reserves keywords such as SELECT, even
though they are not reserved in Java. Such a language change
could break compatibility with existing Java programs which
happen to use a variable named SELECT. A common pro-
grammatic approach to solve this problem is the introduc-
tion of easy-to-recognize boundaries, which trigger switches
between different parsers. In general, this problem can only
be avoided completely by a scannerless parser, which con-
siders the lexical syntax in the context in which it appears;
traditional parsers perform a separate scanning stage in which
no context is considered.

7.2 Fundamentals of Projectional Editing

In parser-based approaches, users use text editors to enter char-
acter sequences that represent programs. A parser then checks
the program for syntactic correctness and constructs an AST
from the character sequence. The AST contains all the seman-
tic information expressed by the program.

In projectional editors, the process happens the other way
round: as a user edits the program, the AST is modified di-
rectly. A projection engine then creates some representation
of the AST with which the user interacts, and which reflects
the changes. This approach is well-known from graphical ed-
itors in general, and the model-view-controller (MVC) pattern
specifically. When users edit a UML diagram, they don’t draw
pixels onto a canvas, and a "pixel parser" then creates the AST.
Rather, the editor creates an instance of uml.Class as you drag
a class from the palette to the canvas. A projection engine ren-
ders the diagram, in this case drawing a rectangle for the class.
Projectional editors generalize this approach to work with any
notation, including textual.

Figure 7.4: In projectional systems, the
user sees the concrete syntax, but all
editing gestures directly influence the
AST. The AST is not extracted from the
concrete syntax, which means the CS
does not have to be parseable.

dsl engineering 189

This explicit instantiation of AST objects happens by picking
the respective concept from the code completion menu using a
character sequence defined by the respective concept (typically
the "leading keyword" of the respective program construct, or
the name of a referenced variable). If at any given program lo-
cation two concepts can be instantiated using the same character
sequence, then the projectional editor prompts the user to de-
cide33. Once a concept is instantiated, it is stored in the AST as 33 As discussed above, this is the sit-

uation where many grammar-based
systems run into problems from ambi-
guity.

a node with a unique ID (UID). References between program
elements are pointers to this UID, and the projected syntax that
represents the reference can be arbitrary. The AST is actually
an abstract syntax graph from the start because cross-references
are first-class rather than being resolved after parsing34. The 34 There is still one single containment

hierarchy, so it is really a tree with
cross-references.

program is stored using a generic tree persistence mechanism,
often XML35.

35 And yes, the tools provide diff/merge
based on the projected syntax, not
based on XML.

Defining a projectional editor, instead of defining a gram-
mar, involves the definition of projection rules that map lan-
guage concepts to a notation. It also involves the definition of
event handlers that modify the AST based on a user’s editing
gestures. The way to define the projection rules and the event
handlers is specific to the particular tool used.

The projectional approach can deal with arbitrary syntac-
tic forms including traditional text, symbols (as in mathemat-
ics), tables or graphics. Since no grammar is used, grammar
classes are not relevant here. In principle, projectional edit-
ing is simpler in principle than parsing, since there is no need
to "extract" the program structure from a flat textual source.
However, as we will see below, the challenge in projectional
editing lies making the editing experience convenient36. Mod- 36 In particular, editing notations that

look like text should be editable with
the editing gestures known from text
editors.

ern projectional editors, and in particular MPS, do a good job
in meeting this challenge.

7.3 Comparing Parsing and Projection

7.3.1 Editing Experience

In free text editing, any regular text editor will do. However,
users expect a powerful IDE that includes support for syntax
coloring, code completion, go-to-definition, find references, er-
ror annotations, refactoring and the like. Xtext and Spoofax
provide IDE support that is essentially similar to what a mod-
ern IDE provides for mainstream languages (e.g. Eclipse for
Java)37. However, you can always go back to any text editor to

37 We assume that you are familiar with
modern IDEs, so we do not discuss
their features in great detail in this
section.

190 dslbook.org

edit the programs.

Figure 7.5: An mbeddr example pro-
gram using five separate but integrated
languages. It contains a module with
an enum, a state machine (Counter) and
a function (nextMode) that contains
a decision table. Inside both of them
developers can write regular C code.
The IDE provides code completion
for all language extensions (see the
start/stop suggestions) as well as
static error validation (Error... hover).
The green trace annotations are traces
to requirements that can be attached to
arbitrary program elements. The red
parts with the {resettable} next to
them are presence conditions (in the
context of product line engineering):
the respective elements are only in a
program variant if the configuration
feature resettable is selected.

In projectional editing, this is different: a normal text ed-
itor is obviously not sufficient; a specialized editor has to be
supplied to perform the projection (an example is shown in
Fig. 7.5). As in free text editing, it has to provide the IDE
support features mentioned above. MPS provides those. How-
ever, there is another challenge: for textual-looking notations,
it is important that the editor tries to make the editing experi-
ence as text-like as possible, i.e. the keyboard actions we have
become used to from free-text editing should work as far as
possible. MPS does a decent job here, using, among others, the
following strategies38: 38 The following list may be hard to

relate to if you have never used a
projectional editor. However, under-
standing this section in detail is not
essential for the rest of the book.

• Every language concept that is legal at a given program lo-
cation is available in the code completion menu. In naive
implementations, users have to select the language concept
based on its name and instantiate it. This is inconvenient.
In MPS, languages can instead define aliases for language
concepts, allowing users to "just type" the alias, after which
the concept is immediately instantiated39. 39 By making the alias the same as

the leading keyword (e.g. if for an
IfStatement), users can "just type" the
code.

• Side transforms make sure that expressions can be entered
conveniently. Consider a local variable declaration int a =

2;. If this should be changed to int a = 2 + 3; the 2 in the

dsl engineering 191

init expression needs to be replaced by an instance of the bi-
nary + operator, with the 2 in the left slot and the 3 in the
right. Instead of removing the 2 and manually inserting a +,
users can simply type + on the right side of the 2. The system
performs the tree restructuring that moves the + to the root
of the subtree, puts the 2 in the left slot, and then puts the
cursor into the right slot, so the user can enter the second ar-
gument. This means that expressions (or anything else) can
be entered linearly, as expected. For this to work, operator
precedence has to be specified, and the tree has to be con-
structed taking these precedences into account. Precedence
is typically specified by a number associated with each op-
erator, and whenever a side transformation is used to build
an expression, the tree is automatically reshuffled to make
sure that those operators with a higher precedence number
are further down in the tree.

• Delete actions are used to similar effect when elements are
deleted. Deleting the 3 in 2 + 3 first keeps the plus, with
an empty right slot. Deleting the + then removes the + and
puts the 2 at the root of the subtree.

• Wrappers support instantiation of concepts that are actually
children of the concepts allowed at a given location. Con-
sider again a local variable declaration int a;. The respec-
tive concept could be LocalVariableDeclaration, a sub-
concept of Statement, to make it legal in method bodies
(for example). However, users simply want to start typ-
ing int, i.e. selecting the content of the type field of the
LocalVariableDeclaration. A wrapper can be used to
support entering Types where LocalVariableDeclarations
are expected. Once a Type is selected, the wrapper imple-
mentation creates a LocalVariableDeclaration, puts the
Type into its type field, and moves the cursor into the name

slot. Summing up, this means that a local variable declara-
tion int a; can be entered by starting to type the int type,
as expected.

• Smart references achieve a similar effect for references (as
opposed to children). Consider pressing Ctrl-Space after
the + in 2 + 3. Assume further, that a couple of local vari-
ables are in scope and that these can be used instead of the
3. These should be available in the code completion menu.
However, technically, a VariableReference has to be in-
stantiated, whose variable slot is then made to point to

192 dslbook.org

any of the variables in scope. This is tedious. Smart refer-
ences trigger special editor behavior: if in a given context
a VariableReference is allowed, the editor first evaluates
its scope to find the possible targets, then puts those targets
into the code completion menu. If a user selects one, then
the VariableReference is created, and the selected element
is put into its variable slot. This makes the reference object
effectively invisible in terms of the editing experience.

• Smart delimiters are used to simplify inputting list-like data,
where elements are separated with a specific separator sym-
bol. An example is argument lists in functions: once a pa-
rameter is entered, users can press comma, i.e. the list de-
limiter, to instantiate the next element.

Except for having to get used to the somewhat different way of
editing programs, the strategies mentioned above (plus some
others) result in a reasonably good editing experience. Tra-
ditionally, projectional editors have not used these or similar
strategies, and projectional editors have acquired a bit of a bad
reputation because of that. In the case of MPS this tool support
is available, and hence MPS provides a productive and pleasant
working environment.

7.3.2 Language Modularity

As we have seen in Section 4.6, language modularization and
composition is an important building block in working with
DSLs. Parser-based and projectional editors come with differ-
ent trade-offs in this respect.

In parser-based systems the extent to which language com-
position can be supported depends on the supported grammar
class. As we have said above, the problem is that the result of
combining two or more independently developed grammars
into one may become ambiguous, for example, because the
same character sequence is defined as two different tokens.
The resulting grammar cannot be parsed and has to be disam-
biguated manually, typically by invasively changing the com-
posite grammar. This of course breaks modularity and hence
is not an option. Parsers that do not support the full set of
context-free grammars, such as ANTLR, and hence Xtext, have
this problem. Parsers that do support the full set of context-free
grammars, such as the GLR parser used as part of Spoofax, are
better off. While a grammar may become ambiguous in the
sense that a program may be parseable in more than one way,

dsl engineering 193

this can be resolved by declaratively specifying which alterna-
tive should be used. This specification can be made externally,
without invasively changing either the composed or the compo-
nent grammars, retaining modularity.

In projectional editors, language modularity and composi-
tion is not a problem at all40. There is no grammar, no pars- 40 An example for a composed language

is shown in Fig. 7.5. It contains code
expressed in C, in a statemachines
extension, a decision tables extension
and in languages for expressing re-
quirements traces and product line
variability.

ing, no grammar classes, and hence no problem with com-
posed grammars becoming ambiguous. Any combination of
languages will be syntactically valid. In cases where a com-
posed language would be ambiguous in a GLR-based system,
the user has to make a disambiguating decision as the program
is entered. For example, in MPS, if at a given location two lan-
guage concepts are available with the same alias, just typing
the alias won’t bind, and the user has to manually decide by
picking one alternative from the code completion menu.

7.3.3 Notational Freedom

Parser-based systems process linear sequences of character sym-
bols. Traditionally, the character symbols were taken from the
ASCII character set, resulting in textual programs being made
up from "plain text". With the advent of Unicode, a much wider
variety of characters is available while still sticking to the lin-
ear sequence of characters approach. For example, the Fortress
programming language41 makes use of this: Greek letters and a

41 en.wikipedia.org/wiki/
Fortress_(programming_language)

wide variety of different bracket styles can be used in Fortress
programs. However, character layout is always ignored. For
example it is not possible to use parsers to handle tabular no-
tations, fraction bars or even graphics42.

42 There have been experimental parsers
for two-dimensional structures such as
tables and even for graphical shapes,
but these have never made it beyond
the experimental stage. Also, it is
possible to approximate tables by using
vertical bars and hyphens to some
extent. JNario, described in Section 19,
uses this approach.

Figure 7.6: A table embedded in an
otherwise textual program

In projectional editing, this limitation does not exist. A pro-
jectional editor never has to extract the AST from the concrete
syntax; editing gestures directly influence the AST, and the
concrete syntax is rendered from the AST. This mechanism is
basically like a graphical editor and notations other than text
can be used easily. For example, MPS supports tables, fraction
bars and "big math" symbols43. Since these non-textual nota-

43 The upcoming version 3.0 of MPS will
also support graphical notations.

tions are handled in the same way as the textual ones (possibly
with other input gestures), they can be mixed easily44: tables

44 Of course, the price you pay is the
somewhat different style of interacting
with the editor, which, as we have said,
approximates free text editing quite
well, but not perfectly.

can be embedded into textual source, and textual languages
can be used within table cells (see Fig. 7.6).

7.3.4 Language Evolution

If the language changes, existing instance models temporarily
become outdated, in the sense that they were developed for the

194 dslbook.org

old version of the language. If the new language is not back-
ward compatible, these existing models have to be migrated to
conform to the updated language.

Since projectional editors store the models as structured data
in which each program node points to the language concept it
is an instance of, the tools have to take special care that such
"incompatible" models can still be opened and then migrated,
manually or by a script, to the new version of the language.
MPS supports this feature, and it is also possible to distribute
migration scripts with (updated) languages to run the migra-
tion automatically45. 45 It is also possible to define quick fixes

that run automatically; so whenever
a concept is marked as deprecated,
this quick fix can trigger an automatic
migration to a new concept.

Most textual IDEs do not come with explicit support for
evolving programs as languages change. However, since a
model is essentially a sequence of characters, it can always be
opened in the editor. The program may not be parseable, but
users can always update the program manually, or with global
search and replace using regular expressions. More complex
migrations may require explicit support via transformations on
the AST.

7.3.5 Infrastructure Integration

Today’s software development infrastructure is typically text-
oriented. Many tools used for diff and merge, or tools like grep
and regular expressions, are geared towards textual storage.
Programs written with parser-based textual DSLs (stored as
plain text) integrate automatically and nicely with these tools.

In projectional IDEs, special support needs to be provided
for infrastructure integration. Since the CS is not pure text,
a generic persistence format is used, typically based on XML.
While XML is technically text as well, it is not practical to per-
form diff, merge and the like on the level of the XML. There-
fore, special tools need to be provided for diff and merge.
MPS provides integration with the usual version control sys-
tems and handles diff and merge in the IDE, using the con-
crete, projected syntax46. Fig. 7.7 shows an example of an MPS 46 Note that since every program ele-

ment has a unique ID, move can poten-
tially be distinguished from delete/create,
providing richer semantics for diff and
merge.

diff. However, it clearly is a drawback of projectional editing
(and the associated abstract syntax-based storage) that many
well-known text utilities don’t work47.

47 For example, web-based diffs in
github or gerrit are not very helpful
when working with MPS.

Also, copy and paste with textual environments may be a
challenge. MPS, for example, supports pasting a projected pro-
gram that has a textual-looking syntax into a text editor. How-
ever, for the way back (from a textual environment to the pro-

dsl engineering 195

jectional editor), there is no automatic support. However, spe-
cial support for specific languages can be provided via paste
handlers. Such a paste handler is available for Java, for exam-
ple: when a user pastes Java text into a Java program in MPS,
a parser is executed that builds the respective MPS tree48.

48 While this works reasonably well for
Java, it has to be developed specifically
for each language used in MPS. If
a grammar for the target language
is available for a Java-based parser
generator, it is relatively simple to
provide such an integration.

Figure 7.7: The diff/merge tool presents
MPS programs in their concrete syntax,
i.e. text for textual notations. However,
other notations, such as tables, would
also be rendered in their native form.

7.3.6 Tool Lock-in

In the worst case, textual programs can be edited with any text
editor. Unless you are prepared to edit XML, programs ex-
pressed with a projectional editor always require that editor to
edit programs. As soon as you take IDE support into account
though, both approaches lock users into a particular tool. Also,
there is essentially no standard for exchanging language def-
initions between the various language workbenches49. So the 49 There is some support for exchanging

the abstract syntax based on formalisms
such as MOF or Ecore, but most of the
effort for implementing a language is in
areas other than the abstract syntax.

effort of implementing a language is always lost if the tool must
be changed.

7.3.7 Other

In parser-based systems, the complete AST has to be recon-
structable from the CS. This implies that there can be no infor-
mation in the tree that is not obtained from parsing the text.

196 dslbook.org

This is different in projectional editors. For example, the tex-
tual notation could only project a subset of the information in
the tree. The same information can be projected with different
projections, each possibly tailored to a different stakeholder,
and showing a different subset of the overall data. Since the
tree uses a generic persistence mechanism, it can hold data that
has not been planned for in the original language definition.
All kinds of meta data (documentation, presence conditions,
requirements traces) can be stored, and projected if required50. 50 MPS supports annotations, where

additional data can be added to model
elements of existing languages. The
data can be projected inside the orig-
inal program’s projection, all without
changing the original language specifi-
cation.

7.4 Characteristics of AST Formalisms

Most AST formalisms, aka meta meta models51, are ways to

51 Abstract syntax and meta model are
typically considered synonyms, even
though they have different histories
(the former comes from the parser/-
grammar community, whereas the latter
comes from the modeling community).
Consequently, the formalisms for defin-
ing ASTs are conceptually similar to
meta meta models.

represent trees or graphs. Usually, such an AST formalism is
"meta circular" in the sense that it can describe itself.

This section is a brief overview over the three AST formalisms
relevant to Xtext, Spoofax and MPS. We will illustrate them in
more detail in the respective tool example sections.

7.4.1 EMF Ecore

The Eclipse Modeling Framework52 (EMF) is at the core of 52 www.eclipse.org/modeling/emf/

all Eclipse Modeling tools. It provides a wide variety of ser-
vices and tools for persisting, editing and processing models
and abstract syntax definitions. EMF has grown to be a fairly
large ecosystem within the Eclipse community and numerous
projects use EMF as their basis.

Its core component is Ecore, a variant of the EMOF stan-
dard53. Ecore acts as EMF’s meta meta model. Xtext uses Ecore 53 en.wikipedia.org/wiki/

Meta-Object_Facilityas the foundation for the AS: from a grammar definition, Xtext
derives the AS as an instance of Ecore. Ecore’s central concepts
are: EClass (representing AS elements or language concepts),
EAttribute (representing primitive properties of EClasses),
EReference (representing associations between EClasses) and
EObject (representing instances of EClasses, i.e. AST nodes).
EReferences can have containment semantics or not and each
EObject can be contained by at most one EReference instance.
Fig. 7.8 shows a class diagram of Ecore.

When working with EMF, the Ecore file plays a central role.
From it, all kinds of other aspects are derived; specifically, a
generic tree editor and a generated Java API for accessing an
AST. It also forms the basis for Xtext’s model processing: The
Ecore file is derived from the grammar, and the parser, when

dsl engineering 197

Figure 7.8: The Ecore meta model
rendered as a UML diagram.executed, builds an in-memory tree of EObjects representing

the AST of the parsed program.

7.4.2 Spoofax’ ATerm

Spoofax uses the ATerm format to represent abstract syntax.
ATerm provides a generic tree structure representation format
that can be serialized textually similar to XML or JSON. Each
tree node is called an ATerm, or simply a term. Terms consist
of the following elements: Strings ("Mr. White"), Numbers
(15), Lists ([1,2,3]) and constructor applications (Order(5,
15, "Mr. White") for labeled tree nodes with a fixed number
of children.

The structure of valid ATerms is specified by an algebraic
signature. Signatures are typically generated from the concrete-

198 dslbook.org

syntax definition, but can also be specified manually. A sig-
nature introduces one or more algebraic sorts, i.e. collections
of terms. The sorts String, Int, and List54 are predefined. 54 List is a parameterized sort, i.e. it

takes the sort of the list elements as a
parameter.

User-defined sorts are inhabited by declaring term constructors
and injections. A constructor has a name and zero or more sub-
terms. It is declared by stating its name, the list of sorts of
its direct subterms, and the sort of the constructed term. Con-
structor names may be overloaded. Injections are declared as
nameless constructors. The following example shows a signa-
ture for expressions:
signature

sorts
Exp

constructors
Plus : Exp * Exp -> Exp
Times: Exp * Exp -> Exp

: Int -> Exp

The signature declares sort Exp with its constructors Plus and
Times, which both require two expressions as direct subterms.
Basic expressions are integers, as declared by the injection rule
: Int -> Exp.

Compared to XML or JSON, perhaps the most significant
distinction is that ATerms rely on the order of subterms rather
than on labels. For example, a product may be modeled in
JSON as follows:
{

"product": {
"itemnumber": 5,
"quantity": 15,
"customer": "Mr. White"

}
}

Note how this specification includes the actual data describing
the particular product (the model), but also a description of
each of the elements (the meta model). With XML, a product
would be modeled in a similar fashion. An equivalent of the
JSON above written in ATerm format would be the following:
Order([ItemNumber(5), Quantity(15), Customer("Mr.\ White")])

However, this representation contains a lot of redundant infor-
mation that also exists in the grammar. Instead, such a prod-
uct can be written as Order(5, 15, "Mr. White"). This more
concise notation tends to make it slightly more convenient to
use in handwritten transformations.

The textual notation of ATerms can be used for exchanging
data between tools and as a notation for model transformations

dsl engineering 199

or code generation rules. In memory, ATerms can be stored
in a tool-specific way (i.e. simple Java objects in the case of
Spoofax)55. 55 The generic structure and serializ-

ability of ATerms also allows them to
be converted to other data formats. For
example, the aterm2xml and xml2aterm
tools can convert between ATerms and
XML.

In addition to the basic elements above, ATerms support an-
notations to add additional information to terms. These are
similar to attributes in XML. For example, it is possible to an-
notate a product number with its product name:

Order(5{ProductName("Apples")}, 15, "Mr. White")

Spoofax also uses annotations to add information about refer-
ences to other parts of a model to an abstract syntax tree. While
ATerms only form trees, the annotations are used to represent
the graph-like references.

7.4.3 MPS’ Structure Definition

In MPS, programs are trees/graphs of nodes. A node is an
instance of a concept which defines the structure, syntax, type
system and semantics of its instance nodes56. Like EClasses57, 56 The term concept used in this book, to

refer to language constructs including
abstract syntax, concrete syntax and
semantics, is inspired by MPS’ use of
the term.

57 Nodes correspond to EObjects in
EMF, concepts resemble EClasses.

concepts are meta circular, i.e. there is a concept that defines
the properties of concepts:

concept ConceptDeclaration extends AbstractConceptDeclaration
implements INamedConcept

instance can be root: false

properties:
helpURL : string
rootable : boolean

children:
InterfaceConceptReference implementsInterfaces 0..n
LinkDeclaration linkDeclaration 0..n
PropertyDeclaration propertyDeclaration 0..n
ConceptProperty conceptProperty 0..n
ConceptLink conceptLink 0..n
ConceptPropertyDeclaration conceptPropertyDeclaration 0..n
ConceptLinkDeclaration conceptLinkDeclaration 0..n

references:
ConceptDeclaration extendsConcept 0..1

A concept may extend a single other concept and implement
any number of interfaces58. It can declare references (non- 58 Note that interfaces can provide

implementations for the methods they
specify – they are hence more like Scala
traits or mixins known from AOP and
various programming languages.

containing) and children (containing). It may also have a num-
ber of primitive-type properties as well as a couple of "static"
features. In addition, concepts can have behavior methods.

While the MPS structure definition is proprietary to MPS
and does not implement any accepted industry standard, it is
conceptually very close to Ecore59.

59 This is illustrated by the fact the
exporters and importers to and from
Ecore have been written.

200 dslbook.org

7.5 Xtext Example

Cooling programs60 represent the behavioral aspect of the re- 60 This and the other examples in this
section refer back to the case studies
introduced at the beginning of the book
in Section 1.11.

frigerator descriptions. Here is a trivial program that can be
used to illustrate some of the features of the language. The
program is basically a state machine.

cooling program HelloWorld uses stdlib {

var v: int
event e

init { set v = 1 }

start:
on e { state s }

state s:
entry { set v = 0 }

}

The program declares a variable v and an event e. When the
program starts, the init section is executed, setting v to 1. The
system then (automatically) transitions into the start state.
There it waits until it receives the e event. It then transitions
to the state s, where it uses an entry action to set v back to 0.
More complex programs include checks of changes of proper-
ties of hardware elements (aCompartment->currentTemp) and
commands to the hardware (set aCompartment->isCooling

= true), as shown in the next snippet:

start:
check (aCompartment->currentTemp > maxTemp) {

set aCompartment->isCooling = true
state initialCooling

}
check (aCompartment->currentTemp <= maxTemp) {

state normalCooling
}

state initialCooling:
check (aCompartment->currentTemp < maxTemp) {

state normalCooling
}

� Grammar Basics In Xtext, the syntax is specified using an

It is also possible to first create the
Ecore meta model and then define a
grammar for it. While this is a bit more
work, it is also more flexible, because
not all possible Ecore meta models can
be described implicitly by a grammar.
For example, Ecore interfaces cannot be
expressed from the grammar. A middle
ground is to have Xtext generate the
meta model while the grammar is still
in flux and then switch to maintaining
the meta model manually when the
grammar stabilizes.

EBNF-like notation, a collection of productions that are typi-
cally called parser rules. These rules specify the concrete syntax
of a program element, as well as its mapping to the AS. From
the grammar, Xtext generate the abstract syntax represented in
Ecore61. Here is the definition of the CoolingProgram rule:

61 The entity that contains the meta
classes is actually called an EPackage.

CoolingProgram:
"cooling" "program" name=ID "{"

(events+=CustomEvent |
variables+=Variable)*

(initBlock=InitBlock)?

dsl engineering 201

(states+=State)*
"}";

Rules begin with the name (CoolingProgram in the example
above), a colon, and then the rule body. The body defines the
syntactic structure of the language concept defined by the rule.
In our case, we expect the keywords cooling and program, fol-
lowed by an ID. ID is a terminal rule that is defined in the parent
grammar from which we inherit (not shown). ID is defined as
an unbounded sequence of lowercase and uppercase charac-
ters, digits, and the underscore, although it may not start with
a digit. This terminal rule is defined as follows:

terminal ID: (’a’..’z’|’A’..’Z’|’_’) (’a’..’z’|’A’..’Z’|’_’|’0’..’9’)*;

In pure grammar languages, one would typically write the fol-
lowing:

"cooling" "program" ID "\{ ..."}

This expresses the fact that after the two keywords we expect
an ID. However, Xtext grammars don’t just express the con-
crete syntax – they also determine the mapping to the AS. We
have encountered two such mappings so far. The first one is
implicit: the name of the rule will be the name of the derived
meta class62. So we will get a meta class CoolingProgram. The 62 If we start with the meta model and

then define the grammar, it is possible
to have grammar rule names that are
different from meta class names.

second mapping we have encountered is name=ID. It specifies
that the meta class gets a property name that holds the contents
of the ID from the parsed program text. Since nothing else
is specified in the ID terminal rule, the type of this property
defaults to EString, Ecore’s version of a string data type.

The rest of the definition of a cooling program is enclosed
in curly braces. It contains three elements: first the program
contains a collection of events and variables (the * specifies
unbounded multiplicity), an optional init block (optionality is
specified by the ?) and a list of states. Let us inspect each of
these in more detail.

The expression (states+=State)* specifies that there can
be any number of State instances in the program. The Cooling-
Program meta class gets a property states, it is of type State

(the meta class derived from the State rule). Since we use the
+= operator, the states property will be typed to be a list of
States. In the case of the optional init block, the meta class
will have an initBlock property, typed as InitBlock (whose
parser rule we don’t show here), with a multiplicity of 0..1.
Events and variables are more interesting, since the vertical bar

202 dslbook.org

operator is used within the parentheses. The asterisk expresses
the fact that whatever is inside the parentheses can occur any
number of times63. Inside the parentheses we expect either 63 While there are exceptions, the use of

a * usually goes hand in hand with the
use of a +=.

a CustomEvent or a Variable, which is expressed with the |.
Variables are assigned to the variables collection, events are
assigned to the events collection. This notation means that
we can mix events and variables in any order. The following
alternative notation would first expect all events, and then all
variables.

(events+=CustomEvent)*
(variables+=Variable)*

The definition of State is interesting, since State is intended
to be an abstract meta class with several subtypes.

State:
BackgroundState | StartState | CustomState;

The vertical bar operator is used here to express syntactic al-
ternatives. This is translated to inheritance in the meta model.
The definition of CustomState is shown in the following code
snippet:

CustomState:
"state" name=ID ":"

(invariants+=Invariant)*
("entry" "{"

(entryStatements+=Statement)*
"}")?
("eachTime" "{"

(eachTimeStatements+=Statement)*
"}")?
(events+=EventHandler | signals+=SignalHandler)*;

StartState and BackgroundState, the other two subtypes of
State, share some properties. Consequently, Xtext’s AS deriva-
tion algorithm pulls them up into the abstract State meta class.
This way they can be accessed polymorphically. Fig. 7.9 shows
the resulting meta model using EMF’s tree view.

� References Let us now look at statements and expressions.
States have entry and exit actions which are procedural state-
ments that are executed when a state is entered and left, re-
spectively. The set v = 1 in the example program above is
an example. Statement itself is abstract and has the various
kinds of statements as subtypes/alternatives:

Statement:
Statement | AssignmentStatement | PerformAsyncStatement |
ChangeStateStatement | AssertStatement;

ChangeStateStatement:
"state" targetState=[State];

dsl engineering 203

AssignmentStatement:
"set" left=Expr "=" right=Expr;

The ChangeStateStatement is used to transition into another
state. It uses the keyword state followed by a reference to
the target state. Notice how Xtext uses square brackets to ex-
press the fact that the targetState property points to an ex-
isting state, as opposed to containing a new one (which would
be written as targetState=State); i.e. the square brackets ex-
press non-containing cross-references.

This is another example of where the Xtext grammar lan-
guage goes beyond classical grammar languages, where one
would write "state" targetStateName=ID;. Writing it in this
way only specifies that we expect an ID after the state key-
word. The fact that we call it target- StateName communi-
cates to the programmer that we expect this text string to cor-
respond to the name of a state – a later phase in model pro-
cessing resolves the name to an actual state reference. Typically,
the code to resolve the reference has to be written manually,
because there is no way for the tool to derive from the gram-
mar automatically the fact that this ID is actually a reference to
a State. In Xtext, the targetState=[State] notation makes
this explicit, so the resolution of the reference can be automatic.
This approach also has the advantage that the resulting meta
class types the targetState property to State (and not just to
a string), which makes processing the models much easier.

Figure 7.9: Part of the Ecore meta
model derived from the Xtext gram-
mar for the cooling program. Gram-
mar rules become EClasses, assign-
ments in the grammar rules become
EAttributes and EReferences. The no-
tation A -> B symbolizes that A extends
B.

204 dslbook.org

Note that the cross-reference definition only specifies the tar-
get type (State) of the cross-reference, but not the concrete
syntax of the reference itself. By default, the ID terminal is
used for the reference syntax, i.e. a simple (identifier-like) text
string is expected. However, this can be overridden by speci-
fying the concrete syntax terminal behind a vertical bar in the
reference64. In the following piece of code, the targetState

64 Notice that in this case the vertical
bar does not represent an alternative, it
is merely used as a separator between
the target type and the terminal used to
represent the reference.

reference uses the QID terminal as the reference syntax.

ChangeStateStatement:
"state" targetState=[State|QID];

QID: ID ("." ID)*;

The other remaining detail is scoping. During the linking phase,
where the text of ID (or QID) is used to find the target node,
several objects with the same name might exist, or some tar-
get elements might not visible based on visibility rules of the
language. To constrain the possible reference targets, scoping
functions are used. These will be explained in the next chapter.

� Expressions The AssignmentStatement shown earlier is one
of the statements that uses expressions. We repeat it here:

AssignmentStatement:
"set" left=Expr "=" right=Expr;

The following snippet is a subset of the actual definition of
expressions (we have omitted some additional expressions that
don’t add anything to the description here).

Expr:
ComparisonLevel;

ComparisonLevel returns Expression:
AdditionLevel ((({Equals.left=current} "==") |

({LogicalAnd.left=current} "&&") |
({Smaller.left=current} "<"))

right=AdditionLevel)?;

AdditionLevel returns Expression:
MultiplicationLevel ((({Plus.left=current} "+") |

({Minus.left=current} "-")) right=
MultiplicationLevel)*;

MultiplicationLevel returns Expression:
PrefixOpLevel ((({Multi.left=current} "*") |

({Div.left=current} "/")) right=PrefixOpLevel)*;

PrefixOpLevel returns Expression:
({NotExpression} "!" "(" expr=Expr ")") |
AtomicLevel;

AtomicLevel returns Expression:
({TrueLiteral} "true") |
({FalseLiteral} "false") |
({ParenExpr} "(" expr=Expr ")") |
({NumberLiteral} value=DECIMAL_NUMBER) |
({SymbolRef} symbol=[SymbolDeclaration|QID]);

dsl engineering 205

To understand the above definition, we first have to explain
in more detail how AST construction works in Xtext. Obvi-
ously, as the text is parsed, meta classes are instantiated and
the AST is assembled. However, instantiation of the respective
meta class happens lazily, upon the first assignment to one of
its properties. If no assignment is performed at all, no object
is created. For example, in the grammar rule TrueLiteral:

"true"; no instance of TrueLiteral will ever be created, be-
cause there is nothing to assign. In this case, an action can
be used to force instantiation: TrueLiteral: {TrueLiteral}

"true";65. 65 Notice that the action can instan-
tiate meta classes other than those
that are derived from the rule name
(we could write TrueLiteral:
{SomeOtherThing} "true";. While
this would not make sense in this case,
we’ll use this feature later.

Unless otherwise specified, an assignment such as name=ID

is always interpreted as an assignment on the object that has
been created most recently. The current keyword can be used
to access that object in case it itself needs to be assigned to a
property of another AST object.

Now we know enough about AST construction to under-
stand how expressions are encoded and parsed. In the expres-
sion grammar above, for the rules with the Level suffix, no
meta classes are created, because (as Xtext is able to find out
statically) they are never instantiated. They merely act as a way
to encode precedence. To understand this, let’s consider how 2

* 3 is parsed:

• The AssignmentStatement refers to the Expr rule in its left
and right properties, so we "enter" the expression tree at the
level of Expr (which is the root of the expression hierarchy).

• The Expr rule just calls the ComparisonLevel rule, which
calls AdditionLevel, and so on. No objects are created
at this point, since no assignment to any property is per-
formed.

• The parser "dives down" until it finds something that matches
the first symbol in the parsed text: the 2. This occurs on
AtomicLevel when it matches the DECIMAL_NUMBER termi-
nal. At this point it creates an instance of the NumberLiteral
meta class and assigns the number 2 to the value property.
It also sets the current object to point to the just-created
NumberLiteral, since this is now the AST object created
most recently.

• The AtomicLevel rule ends, and the stack is unwound. We’re
back at PrefixOpLevel, in the second branch. Since nothing

206 dslbook.org

else is specified after the call to AtomicLevel, we unwind
once more.

• We’re now back at the MultiplicationLevel. The rule is
not finished yet and we try to match an * and a /. The match
on * succeeds. At this point the assignment action on the left
side of the * kicks in (Multi.left=current). This action
creates an instance of Multi, and assigns the current (the
NumberLiteral created before) to its left property. Then
it makes the newly created Multi the new current. At
this point we have a subtree with the * at the root, and the
NumberLiteral in the left property.

• The rule hasn’t ended yet. We dive down to PrefixOpLevel

and AtomicLevel once more, matching the 3 in the same
way as the 2 before. The NumberLiteral for 3 is assigned to
the right property as we unwind the stack.

• At this point we unwind the stack further, and since no more
text is present, no more objects are created. The tree struc-
ture has been constructed as expected.

If we’d parsed 4 + 2*3 the + would have matched before the

*, because it is "mentioned earlier" in the grammar (it is in a
lower-precedence group, the AdditionLevel, so it has to end
up "higher" in the tree). Once we’re at 4 +, we’d go down again
to match the 2. As we unwind the stack after matching the 2

we’d match the *, creating a Multi again. The current at this
point would be the 2, so it would be put onto the left side
of the *, making the * the current. Unwinding further, that

* would be put onto the right side of the +, building the tree
just as we’d expect.

Notice how a rule at a given precedence level only always
delegates to rules at higher precedence levels. So higher prece-
dence rules always end up further down in the tree. If we want
to change this, we can use parentheses (see the ParenExpr in
the AtomicLevel): inside those, we can again embed an Expr,
i.e. we jump back to the lowest precedence level66.

66 This somewhat convoluted approach
to parsing expressions and encod-
ing precedence is a consequence of
the LL(k) grammar class support by
ANTLR, which underlies Xtext. A
cleaner approach would be declara-
tive, where precedences are encoded
explicitly and the order of the parsing
rules in not relevant. Spoofax uses this
approach. Xtext also supports syntactic
predicates, which are annotations in
the grammar that tell the parser which
alternative to take in the case of an
ambiguity. We don’t discuss this any
further in the book.

Once you understand the basic approach, it is easy to add
new expressions with a precedence similar to another one (just
add it as an alternative to the respective Level rule) or to in-
troduce a new precedence level (just interject a new Level rule
between two existing ones)67.

67 Note that the latter requires an
invasive change to the grammar; this
prevents the addition of operators with
a precedence level between existing
precedence levels in a sub-language,
whose definition cannot invasively
change the language it extends.

dsl engineering 207

7.6 Spoofax Example

Mobl’s68 data modeling language provides entities, properties 68 Mobl is a DSL for defining applica-
tions for mobile devices. It is based
on HTML 5 and is closely related to
WebDSL, which has been introduced
earlier (Section 1.11).

and functions. To illustrate the language, below are two data
type definitions related to a shopping list app. It supports lists
of items that can be favorited, checked, and so on, and which
are associated with some Store.
module shopping

entity Item {
name : String
checked : Bool
favorite : Bool
onlist : Bool
order : Num
store : Store

}

In Mobl, most files start with a module header, which can be
followed by a list of entity type definitions. In turn, each entity
can have one or more property or function definitions (shown
in the next example snippet). Modules group entities. Inside a
module, one can only access entities from the same module or
from imported modules.

� Grammar Basics In Spoofax, the syntax of languages is de-
scribed using SDF69. SDF is short for Syntax Definition Formal- 69 www.syntax-definition.org/

ism, and is a modular and flexible syntax definition formalism
that is supported by the SGLR70 parser generator. It can gener- 70 SGLR parsing is a Scannerless,

Generalized extension of LR parsing.ate efficient, Java-based scannerless and general parsers, allow-
ing Spoofax to support the full class of context-free grammars,
grammar composition, and modular syntax definitions. An ex-
ample of a production written in SDF is:
"module" ID Entity* -> Start {"Module"}

The pattern on the left-hand side of the arrow is matched by the
symbol Start on the right-hand side71. After the right-hand 71 Note that SDF uses the exact opposite

order for productions as the grammars
we’ve discussed so far, switching the
left-hand and right-hand side.

side, SDF productions may specify annotations using curly
brackets. Most productions specify a quoted constructor label
that is used for the abstract syntax. This particular produc-
tion creates a tree node with the constructor Module and two
children that represent the ID and the list of Entities respec-
tively. As discussed earlier, Spoofax represents abstract syntax
trees as ATerms. Thus, the tree node will be represented as
Module(..., [...]). In contrast to Xtext, the children are not
named; instead, they are identified via the position in the child
collection (the ID is first, the Entity list is second). Spoofax
generates the following signature from the production above:

208 dslbook.org

signature
sorts

Start
constructors

Module: ID List(Entity) -> Start

The left-hand side of an SDF production is the pattern it matches
against. SDF supports symbols, literals and character classes
in this pattern. Symbols are references to other productions,
such as ID. Literals are quoted strings such as "module" that
must appear in the input literally. Character classes specify a
range of characters expected in the input, e.g. [A-Za-z] speci-
fies that an alphabetic character is expected. We discuss char-
acter classes in more detail below.

The basic elements of SDF productions can be combined us-
ing operators. The A* operator shown above specifies that zero
or more occurrences of A are expected. A+ specifies that one or
more are expected. A? specifies that zero or one are expected.
{A B}* specifies that zero or more A symbols, separated by B

symbols, are expected. As an example, {ID ","}* is a comma-
separated list of identifiers. {A B}+ specifies one or more A

symbols separated by B symbols.
Fig. 7.10 shows an SDF grammar for a subset of Mobl’s

entities and functions syntax. The productions in this gram-
mar should have few surprises, but it is interesting to note
how SDF groups a grammar in different sections. First, the
context-free start symbols section indicates the start sym-
bol of the grammar. Then, the context-free syntax section
lists the context-free syntax productions, forming the main part
of the grammar. Terminals are defined in the lexical syntax

section.

� Lexical Syntax As Spoofax uses a scannerless parser, all
lexical syntax can be customized in the SDF grammar72. Most 72 It provides default definitions for

common lexical syntax elements such
as strings, integers, floats, whitespace
and comments, which can be reused by
importing the module Commons.

lexical syntax is specified using character classes such as [0-9].
Each character class is enclosed in square brackets, and can
consist of ranges of characters (c1-c2), letters and digits (e.g.
x or 4), non-alphabetic literal characters (e.g., _), and escapes
(e.g., \n). A complement of a character class can be obtained
using the ∼ operator, e.g. ∼[A-Za-z] matches all non-alphabetic
characters. For whitespace and comments a special terminal
LAYOUT can be used.

SDF implicitly inserts LAYOUT between all symbols in context-
free productions. This behavior is the key distinguishing fea-

dsl engineering 209

module MoblEntities

context-free start symbols

Module

context-free syntax

"module" ID Decl* -> Module {"Module"}
"import" ID -> Decl {"Import"}
"entity" ID "{" EntityBodyDecl* "}" -> Decl {"Entity"}

ID ":" Type -> EntityBodyDecl {"Property"}
"function" ID "(" {Param ","}* ")" ":" ID "{" Statement* "}"

-> EntityBodyDecl {"Function"}
ID ":" Type -> Param {"Param"}
ID -> Type {"EntityType"}

"var" ID "=" Expr ";" -> Statement {"Declare"}
"return" Exp ";" -> Statement {"Return"}

Exp "." ID "(" Exp ")" -> Exp {"MethodCall"}
Exp "." ID -> Exp {"FieldAccess"}
Exp "+" Exp -> Exp {"Plus"}
Exp "*" Exp -> Exp {"Mul"}
ID -> Exp {"Var"}
INT -> Exp {"Int"}

lexical syntax

[A-Za-z][A-Za-z0-9]* -> ID
[0-9]+ -> INT
[\ \t\n] -> LAYOUT

Figure 7.10: A basic SDF grammar for a
subset of Mobl. The grammar does not
yet specify the associativity, priority or
name bindings of the language.

ture between context-free and lexical productions: lexical sym-
bols such as identifiers and integer literals cannot be inter-
leaved with layout. The second distinguishing feature is that
lexical syntax productions usually do not have a constructor la-
bel in the abstract syntax, as they form terminals in the abstract
syntax trees (i.e. they don’t own any child nodes).

� Abstract Syntax To produce abstract syntax trees, Spoofax
uses the ATerm format, described in Section 7.4.2. SDF com-
bines the specification of concrete and abstract syntax, primar-
ily through the specification of constructor labels. Spoofax al-
lows users to view the abstract syntax of any input file. As
an example, the following is the textual representation of an
abridged abstract syntax term for the shopping module shown
at the beginning of this section:

Module(
"shopping",
[Entity(

"Item",
[Property("name", EntityType("String")), Property("checked",
EntityType("Bool")), ...])

]
])

210 dslbook.org

Note how this term uses the constructor labels of the syntax
above: Module, Entity and Property. The children of each
node correspond to the symbols referenced in the production:
the Module production first referenced ID symbol for the mod-
ule name and then included a list of Decl symbols (lists are in
square brackets).

In addition to constructor labels, productions that specify
parentheses can use the special bracket annotation:

"(" Exp ")" -> Exp {bracket}

The bracket annotation specifies that there should not be a
separate tree node in the abstract syntax for the production.
This means that an expression 1 + (2) would produce Plus

("1","2") in the AST, and not Plus("1",Parens("2")).

� Precedence and Associativity SDF provides special support
for specifying the associativity and precedence of operators or
other syntactic constructs. As an example, let us consider the
production of the Plus operator. So far, it has been defined as:

Exp "+" Exp -> Exp {"Plus"}

Based on this operator, a parser can be generated that can parse
an expression such as 1 + 2 to a term Plus("1", "2"). How-
ever, the production does not specify if an expression 1 + 2

+ 3 should be parsed to a term Plus("1", Plus("2", "3"))

or Plus(Plus("1", "2"), "3"). If you try the grammar in
Spoofax, it will show both interpretations using the special amb
constructor:

amb([
Plus("1", Plus("2", "3")),
Plus(Plus("1", "2"), "3")

])

The amb node indicates an ambiguity and it contains all possi-
ble interpretations73. Ambiguities can be resolved by adding 73 Whenever an ambiguity is encoun-

tered in a file, it is marked with a
warning in the editor.

annotations to the grammar that describe the intended inter-
pretation. For the Plus operator, we can resolve the ambiguity
by specifying that it is left-associative, using the left annota-
tion:

Exp "+" Exp -> Exp {"Plus", left}

In a similar fashion, SDF supports the definition of the prece-
dence order of operators. For this, the productions can be
placed into the context-free priorities section:

context-free priorities

dsl engineering 211

Exp "*" Exp -> Exp {"Mul", left}
>

Exp "+" Exp -> Exp {"Plus", left}

This example specifies that the Mul operator has a higher prior-
ity than the Plus operator, resolving the ambiguity that arises
for an expression such as 1 + 2 * 3.

� Reserved Keywords and Production Preference Parsers gener-
ated with SDF do not use a scanner, but include processing of
lexical syntax in the parser. Since scanners operate without any
context information, they will simply recognize any token that
corresponds to a keyword in the grammar as a reserved key-
word, irrespective of its location in the program. In SDF, it is also
possible to use keywords that are not reserved, or keywords
that are only reserved in a certain context. As an example, the
following is a legal entity in Mobl:

entity entity {}

Since our grammar did not specify that entity is a reserved
word, it can be used as a normal ID identifier. However, there
are cases in which it is useful to reserve keywords, for example
to prevent ambiguities. Consider what would happen if we
added new productions for predefined type literals:

"Bool" -> Type {"BoolType"}
"Num" -> Type {"NumType"}
"String" -> Type {"StringType"}

If we were now to parse a type String, it would be ambigu-
ous: it matches the StringType production above, but it also
matches the EntityType production, as String is a legal en-
tity identifier74. Keywords can be reserved in SDF by using a 74 So it is ambiguous because at the same

location in a program both interpretations
are possible.

production that rejects a specific interpretation:

"String" -> ID {reject}

This expresses that String can never be interpreted as an iden-
tifier. Alternatively, we can say that we prefer one interpreta-
tion over the other:

"String" -> Type {"StringType", prefer}

This means that this production is to be preferred if there are
any other interpretations. However, since these interpretations
cannot always be foreseen as grammars are extended, it is con-
sidered good practice to use the more specific reject approach
instead75.

75 This is the situation where a projec-
tional editor like MPS is more flexible,
since instead of running into an am-
biguity, it would prompt the user to
decide which interpretation is correct as
he types String.

212 dslbook.org

� Longest Match Most scanners apply a longest match policy
for scanning tokens76. For most languages, this is the expected 76 This means that if it is possible to

include the next character in the current
token, the scanner will always do so.

behavior, but in some cases longest match is not what users ex-
pect. SDF instead allows the grammar to specify the intended
behavior. In Spoofax, the default is specified in the Common
syntax module using a lexical restrictions section:

lexical restrictions
ID -/- [A-Za-z0-9]

This section restricts the grammar by specifying that any ID

cannot be directly followed by a character that matches [A-Z

a-z0-9]. Effectively, it enforces a longest match policy for the
ID symbol. SDF also allows the use of lexical restrictions for
keywords. By default it does not enforce longest match, which
means it allows the following definition of a Mobl entity:

entityMoblEntity {}

As there is no longest match, the parser can recognize the
entity keyword even if it is not followed by a space. To avoid
this behavior, we can specify a longest match policy for the
entity keyword:

lexical restrictions
"entity" -/- [A-Za-z0-9]

� Name Bindings So far we have discussed purely syntax
specification in SDF. Spoofax also allows the specification of
name binding rules, which specify semantic relations between
productions. We discuss how these relations are specified in
Chapter 8.

7.7 MPS Example

We start by defining a simple language for state machines,
roughly similar to the one used in the state machine exten-
sion77 to mbeddr C. Its core concepts include StateMachine, 77 In mbeddr, state machines can be

embedded into C code, as we will see
later.

State, Transition and Trigger. The language supports the
definition of state machines, as shown in the following piece of
code:

module LineFollowerStatemachine {

statemachine LineFollower {
events unblocked()

blocked()
bumped()
initialized()

states (initial = initializing) {

dsl engineering 213

state initializing {
on initialized [] -> running { }

}
state paused {

on unblocked [] -> running { }
}
state running {

on blocked [] -> paused { }
on bumped [] -> crashed { }

}
state crashed {
}

}
}

}

� Concept Definition MPS is projectional, so we start with the
definition of the AS. The code below shows the definition of
the concept Statemachine. It contains a collection of States
and a collection of InEvents. It also contains a reference to
one of the states to mark it as the initial state. The alias

is defined as statemachine, so typing this string inside a C
module instantiates a state machine (it picks the Statemachine

concept from the code completion menu). State machines also
implement a couple of interfaces: IIdentifierNamedElement

contributes a property name, IModuleContent makes the state
machine embeddable in C Modules78. 78 The Module owns a collection of

IModuleContents, just as the state
machine contains states and events.

concept Statemachine extends BaseConcept
implements IModuleContent

ILocalVarScopeProvider
IIdentifierNamedElement

children:
State states 0..n
InEvent inEvents 0..n

references:
State initial 1

concept properties:
alias = statemachine

A State (not shown) contains two StatementLists as entry-

Actions and exitActions. StatementList is a concept de-
fined by the com. mbeddr.core.statements language. To
make it available visible, our statemachine language extends
com.mbeddr.core.statements. Finally, a State contains a col-
lection of Transitions.
concept Transition

children:
Trigger trigger 1
Expression guard 1
StatementList actions 1

references:
State target 1

concept properties:
alias = on

214 dslbook.org

Transitions contain a Trigger, a guard condition, transition
actions and a reference to the target state. The trigger is an
abstract concept; various specializations are possible: the de-
fault implementation is the EventTrigger, which references
an Event79. The guard condition is an Expression, a con-

79 It expresses the fact that the refer-
enced event triggers the transition.

cept reused from com.mbeddr.core.expressions80. The tar-

80 A type system rule will be defined
later to constrain this expression to be
Boolean.

get state is a reference, i.e. we point to an existing state instead
of owning a new one. action is another StatementList that
can contain arbitrary C statements used as the transition ac-
tions.

� Editor Definition Editors, i.e. the projection rules, are made
of cells. When defining editors, various cell types are arranged
so that the resulting syntax has the desired structure. Fig. 7.11

shows the editor definition for the State concept. It uses an
indent collection of cells with various style attributes to ar-
range the state keyword and name, the entry actions, the
transitions and the exit actions in a vertical list. Entry and exit
actions are shown only if the respective StatementList is not
empty (a condition is attached to the respective cells, marked
by the ? in front of the cell). An intention81 is used to add a 81 An intention is what Eclipse calls a

Quick Fix – i.e. an entry in a little menu
that transforms the program in some
way. Intentions are explained in the
next section.

new statement and hence make the respective list visible.

Figure 7.11: The definition of the
editor for the State concept. In MPS,
editors are made from cells. In the
editor definition you arrange the cells
and define their contents; this defines
the projection rule that is used when
instances of the concept are rendered in
the editor.Fig. 7.12 shows the definition of the editor for a Transition.

It arranges the keyword on, the trigger, the guard condition,
target state and the actions in a horizontal list of cells, the guard
surrounded by brackets, and an arrow (->) in front of the target
state. The editor for the actions StatementList comes with
its own set of curly braces.

Figure 7.12: The editor for transitions.
Note how we embed the guard condi-
tion expression simply by referring to
the guard child relationship. We "in-
herit" the syntax for expressions from
the com.mbeddr.core.expressions
language.

dsl engineering 215

The %targetState% -> {name} part expresses the fact that in
order to render the target state, the target state’s name attribute
should be shown. We could use any text string to refer to the
target state82.

82 We could even use the symbol X to
render all target state references. The
reference would still work, because
the underlying data structure uses
the target’s unique ID to establish the
reference. It does not matter what we
use to represent the target in the model.
Using X for all references would of
course be bad for human readability,
but technically it would work.

Note how we use on both as the leading keyword for a tran-
sition and as the alias. This way, if a user types the on alias
to instantiate a transition, it feels as if they typed the leading
keyword of a transition (as in a regular text editor).

If a language extension defined a new concept Special-

Transition, they could use another alias to uniquely identify
this concept in the code completion menu. The user decides
which alias to type depending on whether they want to instan-
tiate a Transition or a SpecialTransition. Alternatively, the
SpecialTransition could use the same alias on. In this case, if
the user types on, the code completion menu pops open and
the user has to decide which of the two concepts to instanti-
ate83. As we have discussed above, this means that there is 83 The code completion menu by default

shows from which language a language
concept originates, so this is a way to
distinguish the two. Alternatively, a
short explaining text can be shown for
each entry in the code completion menu
that helps the user make the decision.

never an ambiguity that cannot be handled – as long as the
user is willing and able to make the decision of which con-
cept should be instantiated. A third option would transform a
Transition into a SpecialTransition on demand, for exam-
ple if the user executes a specific extension, or types a specific
string on the right side of a Transition.

Figure 7.13: The intentions menu for
a local variable declaration. It can be
opened via Alt-Enter. To select an
action from the menu, you can just start
typing the action label, so this is very
keyboard-friendly.

� Intentions Intentions are MPS’ term for what is otherwise
known as a Quick Fix: a little menu can be displayed on a pro-
gram element that contains a set of actions that change the un-
derlying program element (see Fig. 7.13). The intentions menu
is opened via Alt-Enter. In MPS, intentions play an impor-
tant role in the editor. In many languages, certain changes to
the program can only be made via an intention84. Using the

84 This is mostly because building a
just-type-along solution would be a lot
of work in a projectional editor in some
cases.

intentions menu in a projectional editor is idiomatic. For ex-
ample, in the previous section we mentioned that we use them
to add an entry action to a State. Here is the intention code:

intention addEntryActions for concept State {
available in child nodes : true

description(editorContext, node)->string {
"Add Entry Action";

}

isApplicable(editorContext, node)->boolean {
node.entryAction.isNull;

}

execute(editorContext, node)->void {
node.entryAction.set new(<default>);
editorContext.selectWRTFocusPolicy(node.entryAction);

216 dslbook.org

}
}

An intention is defined for a specific language concept (State
in the example). It can then be invoked by pressing Alt-Enter

on any instance of this concept. Optionally it is possible to also
make it available in child nodes. For example, if you are in
the guard expression of an transition, an intention for State

with available in child nodes set to true will be available
as well. The intention implementation also specifies an expres-
sion used as the title in the menu and an applicability condi-
tion. In the example the intention is only applicable if the cor-
responding state does not yet have any entry action (because
in that case you can just type in additional statements). Finally,
the execute section contains procedural code that performs the
respective change on the model. In this case we simply create a
new instance of StatementList in the entryAction child. We
also set the cursor into this new StatementList85. 85 Notice how we don’t have to specify

any formatter or serializer for our lan-
guage. Remember how a projectional
editor always goes from AS to CS. So
after changing the AS procedurally, the
respective piece of the tree is simply
rerendered to update the representation
of the program in the editor. However,
we do have to define an editor for each
language concept.

� Expressions Since we inherit the expression structure and
syntax from the C core language, we don’t have to define ex-
pressions ourselves to be able to use them in guards. It is
nonetheless interesting to look at their implementation in the
language com.mbeddr.core.expressions.

Expressions are arranged into a hierarchy starting with the
abstract concept Expression. All other kinds of expressions ex-
tend Expression, directly or indirectly. For example, PlusEx-
pression extends BinaryExpression, which in turn extends
Expression. BinaryExpressions have left and right child
Expressions. This way, arbitrarily complex expressions can be
built86. The editors are also straightforward – in the case of the 86 Representing expressions as trees is

a standard approach that we have seen
with the Xtext example already; in that
sense, the abstract syntax of mbeddr
expressions (and more generally, the
way to handle expressions in MPS) is
not very interesting.

+ expression, they are a horizontal list of: editor for left argu-
ment, the + symbol, and the editor for the right argument.

As we have explained in the general discussion about projec-
tional editing (Section 7.2), MPS supports linear input of hierar-
chical expressions using side transforms. The code below shows
the right side transformation for expressions that transforms
an arbitrary expression into a PlusExpression by putting the
PlusExpression "on top" of the current node87. 87 Using the alias (i.e. the oper-

ator symbol) of the respective
BinaryExpression and the inheri-
tance hierarchy, it is possible to factor
all side transformations for all binary
operations into one single action im-
plementation, resulting in much less
implementation effort.

side transform actions makeArithmeticExpression

right transformed node: Expression tag: default_

actions :
add custom items (output concept: PlusExpression)

simple item

dsl engineering 217

matching text
+

do transform
(operationContext, scope, model, sourceNode, pattern)->node< > {
node<PlusExpression> expr = new node<PlusExpression>();
sourceNode.replace with(expr);
expr.left = sourceNode;
expr.right.set new(<default>);
return expr.right;

}

The fact that you can enter expressions linearly leads to a prob-
lem not unlike the one found in grammars regarding operator
precedence. If you enter 2 + 3 * 4 by typing these characters
sequentially, there are two ways in which the tree could look,
depending on whether + or * binds more tightly88. 88 Note how this really is a consequence

of the linear input method; you could
build the tree by first typing the +
and then filling in the left and right
arguments, in which case it would be
clear that the * is lower in the tree and
hence binds tighter. However, this is
tedious and hence not an option in
practice.

To deal with this problem, we proceed as follows: each sub-
concept of BinaryExpression has a numerical value associated
with it that expresses its precedence. The higher the number,
the higher the precedence (i.e. the lower in the tree). The ac-
tion code shown above is changed to include a call to a helper
function that rearranges the tree according to the precedence
values.

do transform
(operationContext, scope, model, sourceNode, pattern)->node< > {

node<PlusExpression> expr = new node<PlusExpression>();
sourceNode.replace with(expr);
expr.left = sourceNode;
expr.right.set new(<default>);
// rearranges tree to handle precedence
PrecedenceHelper.rearrange(expr);
return expr.right;

}

This method scans through an expression tree and checks for
cases in which a binary expression with a higher precedence
is an ancestor of a binary expression with a lower precedence
value. If it finds one, it rearranges the tree to resolve the prob-
lem89. 89 Since the problem can only arise as a

consequence of the linear input method,
it is sufficient to include this rearrange-
ment in the side transformation like the
one shown above.

� Context Restrictions MPS makes strong use of polymor-
phism. If a language concept defines a child relationship to an-
other concept C, then any subtype of C can also be used in this
child relationship. For example, a function has a body which is
typed to StatementList, which contains a list of Statements.
So every subtype of Statement can be used inside a function
body. In general, this is the desired behavior, but in some cases,
it is not. Consider test cases. Here is a simple example:

module UnitTestDemo imports nothing {

test case testMultiply {
assert (0) times2(21) == 42;

}

218 dslbook.org

int8 times2(int8 a) {
return 2 * a;

}
}

Test cases reside in a separate language com.mbeddr.core.unit-
test. The language defines the TestCase concept, as well as
the assert statement. AssertStatement extends Statement,
so by default, an assert can be used wherever a Statement

is expected, once the com.mbeddr.core.unittest is used in a
program. However, this is not what we want: assert state-
ments should be restricted to be used inside a UnitTest90. To 90 This is, among other reasons, because

the transformation of the assert
statement to C expects code generated
from the UnitTest to surround it.

support such a use case, MPS supports a set of constraints.
Here is the implementation for AssertStatement:

concept constraints AssertStatement {
can be child

(operationContext, scope, parentNode, link, childConcept)->boolean {
parentNode.ancestor<TestCase, +>.isNotNull;

}
}

This constraint checks that a TestCase is among the ancestors
of a to-be-inserted AssertStatement. The constraint is checked
before the new AssertStatement is inserted and prevents inser-
tion if not under a TestCase91. 91 This constraint is written from the

perspective of the potential child
element. For reasons of dependency
management, it is also possible to write
the constraint from the perspective
of the parent or an ancestor. This is
useful if a new container concept
wants to restrict the use of existing
child concepts without changing
those concepts. For example, the
Lambda concept, which contains a
statement list as well, prohibits the use
of LocalVariableRefs, in any of its
statements.

� Tables and Graphics The MPS projectional editor associates
projection rules with language concepts. A projection rule con-
sists of cells. Each cell represents a primitive rendering ele-
ment. For example, a constant cell contains a constant text
that is rendered as-is in the programs. A property cell renders
a property (for example, the name). Collections cells arrange
other cells in some predefined or configurable layout. Among
others, MPS has vertical and horizontal collections. To render
concepts as a table, a suitable kind of cell is required: MPS
provides the table cell for this. For example, the editor for the
decision table is shown in Fig. 7.14 (and an example table is
shown in Fig. 14.7).

Figure 7.14: The editor for a decision
table contains a horizontal collection of
cells. The first one contains the return
type of the decision table, the second
one contains the default value, and
the last one contains the actual table,
represented by the table cell.

However, this is only half of the story. The real definition of
the table contents happens via a table model implementation
inside the table cell. The inspector for the table cell contains
a function that has to return a TableModel, an interface that
determines the structure of the table92. Here is the code used

92 This is similar to the approach used
in Java Swing, but it is not exactly the
same interface.

in the decision table:

(node, editorContext)->TableModel {
return new XYCTableModel(node, link/DecTab : xExpr/,

link/DecTab : yExpr/,

dsl engineering 219

link/DecTab : cExpr/,
editorContext);

}

The XYCTableModel class is a utility class that ships with MPS
for tables whose contents are represented by a concept that has
three child collections, one for the contents of the row headers,
one for the contents of the column headers and one for the
remaining cells. We pass in the node that represents the table
as well as the three child collections (and the editorcontext).
If none of the existing utility classes is suitable, you have to
implement the TableModel interface yourself93. Here is the 93 Later versions of MPS will provide

a higher-level approach to defining
tables that is more consistent with
the approach for editor definition in
MPS, and which does not require Java
programming for defining a table.

definition of the interface:

public interface TableModel extends <none> {
int getColumnCount();
int getRowCount();
void deleteRow(int rowNumber);
node<> getValueAt(int row, int column);
void createElement(int row, int column);
NodeSubstituteInfo getSubstituteInfo(int row, int column);
void insertRow(int rowNumber);
void deleteColumn(int columnNumber);
void insertColumn(int columnNumber);
int getMaxColumnWidth(int columnNumber);

}

Note how the getValueAt method returns a node<>. The editor
then renders the editor for that node into the respective table
cell, supporting nesting of arbitrary other editors into tables.

A similar approach will be used for graphical notations.
New kinds of cells (for example, rectangle and line) may
be required94. The fundamentally interesting characteristic of 94 At the time of this writing, MPS does

not yet support graphical notations;
however, it is planned to add them in
2013.

projectional editors is that completely different styles of nota-
tions can be supported, as long as the necessary primitive cell
types are available. The approach to editor definition remains
unchanged. Because all the different notations are based on the
same paradigm, the combination of different notational styles
is straightforward.

8
Scoping and Linking

Linking refers to the resolution of name-based references to
the referenced symbols in parser-based languages. In pro-
jectional systems this is not necessary, since every reference
is stored as a direct pointer to the target element. However,
in both cases we have to define which elements are actually
visible from a given reference site. This information serves
as the basis for code completion and to check existing ref-
erences for their validity. The set of visible elements for a
given reference is called its scope.

As we discussed in the previous chapter, the abstract syntax
in its simplest form is a tree. However, the information repre-
sented by the program is semantically almost always a graph;
i.e. in addition to the tree’s containment hierarchy, it contains
non-containment cross-references1. The challenge thus is: how 1 Examples abound and include variable

references, procedure calls and target
states in transitions of state machines.

to get from the "syntactic tree" to the "semantic graph" – or,
how to establish the cross-links. There is a marked difference
between the projectional and parser-based approach:

• In parser-based systems, the cross-references have to be re-
solved, from the parsed text after the AST has been created.
An IDE may provide the candidates in a code completion
menu, but after selecting a target, the resulting textual rep-
resentation of the reference must contain all the information
to re-resolve the reference each time the program is parsed.

• In projectional editors in which every program element has a
unique ID, a reference is represented as a pointer to that ID.
Once a reference is established, it can always be re-resolved
trivially based on the ID. The reference is established di-

222 dslbook.org

rectly as the program is edited: the code completion menu
shows candidate target elements for a reference in the code
completion menu, and selection of one of them creates the
reference2. 2 The code completion menu shows

some human-readable (qualified) name
of the target, but the persisted program
uses the unique ID once the user makes
a selection.

Typically, a language’s structure definition specifies which con-
cepts constitute valid target concepts for any given reference
(e.g., a Function, a Variable or a State), but this is usu-
ally not enough. Language-specific visibility rules determine
which instances of these concepts are actually permitted as a
reference target3. The collection of model elements which are 3 For example, only the function and

variables in the local module or the states
in the same state machine as the transition
may be valid targets.

valid targets of a particular semantic cross-reference is called
the scope of that cross-reference. Typically, the scope of a par-
ticular cross-reference not only depends on the target concept
of the cross-reference, but also on its surroundings, e.g. the
namespace within which the element lives, the location inside
the larger structure of the site of the cross-reference or some-
thing that’s essentially non-structural in nature.

A scope, the collection of valid targets for a reference, has
two uses. First, it can be used to populate the code completion
menu in the IDE if the user presses Ctrl-Space at the reference
site. Second, independent of the IDE, the scope is used for
checking the validity of an existing reference: if the reference
target is not among the elements in the scope, the reference is
invalid. Instead of looking at scopes from the

perspective of the reference (and hence
calculating a set of candidate target
elements), one can also look at scopes
from the perspective of visibility. In this
case, we (at least conceptually) compute
for each location in the program, the set
of visible elements. A reference is then
restricted to refer to any element from
those visible at the particular location.
Our notion is more convenient from the
cross-reference viewpoint, however, as
it centers around resolving particular
cross-references one at a time. From
an implementation point of view, both
perspective are exchangeable.

Scopes can be hierarchical, in which case they are organized
as a stack of collections – confusingly, these collections are
often called scopes themselves. During resolution of a cross-
reference, the lowest or innermost collection is searched first. If
the reference cannot be resolved to match any of its elements,
the parent of the innermost collection is queried, and so forth.

The hierarchy often mimics the structure of the language
itself: e.g., the innermost scope of a reference consists of all
the elements present in the immediately-surrounding "block",
while the outermost scope is the global scope. This provides a
mechanism to disambiguate target elements having the same
reference syntax (usually the target element’s name) by always
choosing the element from the innermost scope. This is often
called shadowing, because the inner elements overshadow the
(more) outer elements.

dsl engineering 223

8.1 Scoping in Spoofax

In the previous chapter we described how to specify a gram-
mar for a subset of the Mobl language. This chapter shows
how to specify name resolution for this language by means of
declarative name binding rules. Spoofax’ name binding rules
are based on five concepts: namespaces, definitions, references,
scopes and imports. We will introduce each of these concepts
separately, going from simple to more complicated examples.

8.1.1 Namespaces

To understand naming in Spoofax, the notion of a namespace is
essential. In Spoofax, a namespace is a collection of names and
is not necessarily connected to a specific language concept4. 4 Some languages such as C# provide

namespaces as a language concept to
scope the names of declarations such
as classes. It is important to distinguish
these namespaces as a language con-
cept from Spoofax’ namespaces as a
language definition concept. The two are
not related.

Different concepts can contribute names to a single namespace.
For example, in Java, classes and interfaces contribute to the
same namespace. Namespaces are declared in the namespace

section of a language definition. For Mobl, we have separate
namespaces for modules, entities, properties, functions and lo-
cal variables.
namespaces Module Entity Property Function Variable

8.1.2 Definitions and References

Once we have defined namespaces, we can define name bind-
ings with rules of the form pattern : clause*, where pattern
is a term pattern5, and clause* is a list of name binding decla- 5 A term pattern is a term that may

contain variables (x) and wildcards (_).rations about the language construct that matches with pattern.
For example, the following rules declare definition sites for
module and entity names. The patterns in these rules match
module and entity declarations, binding variables m and e to
module and entity names respectively. These variables are then
used in the clauses on the right-hand sides6. 6 In the first rule, the clause specifies

any term matched by Module(m, _)
to define a name m in the Module
namespace. Similarly, the second
rule specifies any term matched by
Entity(e, _) to define a name e in the
Entity namespace.

Module(m, _): defines non-unique Module m
Entity(e, _): defines unique Entity e

As an example, let us reconsider the example module from the
previous chapter:
module shopping

entity Item {
name : String
...

}

The parser turns this into an abstract syntax tree, represented
as a term:

224 dslbook.org

Module(
"shopping",
[Entity(

"Item",
[Property("name", EntityType("String")), ...])

]
])

The patterns in name binding rules match subterms of this
term, indicating definition and use sites. The whole term is
a definition site of the module name shopping. The first name
binding rule specifies this binding. Its pattern matches the
term and binds m to "shopping". Similarly, the subterm Entity

("Item", ...) is a definition site of the entity name Item. The
pattern of the second name binding rule matches this term and
binds e to "Item".

While entity declarations are unique definition sites, module
declarations are non-unique definition sites. That is, multiple
module declarations can share the same name. This allows
Mobl users to spread the content of a module over several files,
similar to Java packages. Namespaces are by default unique, so
the unique keyword is only optional and can be omitted. For
example, the following rules declare unique definition sites for
property and variable names:

Property(p, _): defines Property p
Param(p, _) : defines Variable p
Declare(v, _) : defines Variable v

Note how Spoofax distinguishes the name of a namespace from
the sort and the constructor of a program element: in the last
rule above, the sort of the program element is Statement, its
constructor is Declare, and it lives in the Variable namespace.
By distinguishing these three things, it becomes easy to add or
exclude program elements from a namespace7. 7 For example, return statements are

also of the syntactic sort Statement,
but do not live in any namespace. On
the other hand, function parameters
also live in the Variable namespace,
even though (in contrast to variable
declarations) they do not belong to the
syntactic sort Statement.

Use sites which refer to definition sites of names can be de-
clared similarly. For example, the following rule declares use
sites of entity names:

Type(t): refers to Entity t

Use sites might refer to different names from different names-
paces. For example, a variable might refer either to a Variable

or a Property. In Spoofax, this can be specified by exclusive
resolution options:

Var(x):
refers to Variable x otherwise
refers to Property x

dsl engineering 225

The otherwise keyword signals ordered alternatives: only if
the reference cannot be resolved to a variable will Spoofax try
to resolve it to a property. As a consequence, variable decla-
rations shadow property definitions. If this is not intended,
constraints can be defined to report corresponding errors. We
will discuss constraints in Section 9.3 in the next chapter.

8.1.3 Scoping

� Simple Scopes In Spoofax, Scopes restrict the visibility of
definition sites8. For example, an entity declaration scopes 8 Note that Spoofax’ use of the word

scope is different from the general
meaning of the word in this chapter.

property declarations that are not visible from outside the en-
tity.

entity Customer {
name : String // Customer.name

}

entity Product {
name : String // Product.name

}

In this example, both name properties live in the Property

namespace, but we can still distinguish them: if name is ref-
erenced in a function inside Customer, then it references the
one in Customer, not the one in Product.

Scopes can be nested and name resolution typically looks
for definition sites from inner to outer scopes. In Mobl, mod-
ules scope entities, entities scope properties and functions, and
functions scope local variables. This can be specified in Spoofax
in terms of scopes clauses:

Module(m, _): defines Module m scopes Entity
Entity(e, _): defines Entity e scopes Property, Function
Function(f, _): defines Function f scopes Variable

As these examples illustrate, scopes are often also definition
sites. However, this is not a requirement. For example, a block
statement9 has no name, but scopes variables: 9 A block statement groups statements

syntactically to a single statement.
For example, Java provides curly
braces to group statements into a block
statement.

Block(_): scopes Variable

� Definition Sites with Limited Scope So far we have seen ex-
amples in which definitions are visible in their enclosing scope:
entities are visible in the enclosing module, properties and
functions are visible in the enclosing entity, and parameters
are visible in the enclosing function. However, this does not
hold for variables declared inside a function. Their visibility
is limited to statements after the declaration. Thus, we need to

226 dslbook.org

restrict the visibility in the name binding rule for Declare to
the subsequent scope:

Declare(v, _): defines Variable v in subsequent scope

Similarly, the iterator variable in a for loop is only visible in
its condition, the update, and the loop’s body, but not in the
initializing expression. This can be declared as follows:

For(v, t, init, cond, update, body):
defines Variable v in cond, update, body

� Scoped References Typically, use sites refer to names which
are declared in its surrounding scopes. But a use site might also
refer to definition sites which reside outside its scope. For ex-
ample, a property name in a property access expression might
refer to a property in another entity:

entity Customer {
name : String

}

entity Order {
customer : Customer
function getCustomerName(): String {

return customer.name;
}

}

Here, name in customer.name refers to the property in entity
Customer. The following name binding rule is a first attempt
to specify this:

PropAccess(exp, p): refers to Property p in Entity e

But this rule does not specify which entity e is the right one.
Interaction with the type system10 is required in this case: 10 We will discuss type systems in

Section 10.5.
PropAccess(exp, p):

refers to Property p in Entity e
where exp has type EntityType(e)

This rule essentially says: give me a property with the name p

in entity e, where e is the type of the current expression exp.

� Imports Many languages offer import facilities to include
definitions from another scope into the current scope. For ex-
ample, a Mobl module can import other modules, making en-
tities from the imported modules available in the importing
module:

module order

import banking

entity Customer {

dsl engineering 227

name : String
account: BankAccount

}

Here, BankAccount is not declared in the scope of module
order. However, module banking declares an entity Bank-

Account, which is imported into module order. The type of
property account should refer to this entity. This can be speci-
fied by the following name binding rule:

Import(m): imports Entity from Module m

This rule has two effects. First, m is interpreted as a name refer-
ring to a module. Second, every entity declared in this module
becomes visible in the current scope.

8.1.4 References in Terms

Spoofax uses terms to represent abstract syntax. This enables
many interesting features, for example generic tree traversals.
But in contrast to object structures as used in MPS and Xtext,
terms lack a native concept to represent cross-references. There
are two approaches to handle cross-references when working
with terms or similar tree structures. First, we can maintain a
temporary environment with required information about de-
fined elements during a transformation. This information can
then be accessed at use sites. Second, we can maintain similar
information in a global environment, which can be shared by
various transformations.

Spoofax follows the second approach and stores all defini-
tions and references in an in-memory data structure called the
index11. By collecting all this summary information about files 11 Spoofax also uses the index to store

metadata about definitions, such as
type information, as we show in the
next chapter.

in a project together, it ensures fast access to global informa-
tion (in particular, to-be-referenced names). The index is up-
dated automatically when Spoofax model files change (or are
deleted) and is persisted as Eclipse exits. All entries in the in-
dex have a URI which uniquely identifies the element across
a project. These URIs are the basis for name resolution, and,
by default, are constructed automatically, based on the name
binding rules. As an example, consider the following entity:

module storage

entity Store {
name : String
address : Address

}

Following the name binding rules discussed so far, there are
two scope levels in this fragment: one at the module level and

228 dslbook.org

one at the entity level. We can assign names to these scopes
(storage and Store) by using the naming rules for modules
and entities. By creating a hierarchy of these names, Spoofax
creates URIs: the URI for Store is Entity://storage.Store,
and the one for name is Property://storage.Store.name. URIs
are represented internally as lists of terms that start with the
namespace, followed by a reverse hierarchy of the path names12. 12 The reverse order used in the repre-

sentation makes it easier to efficiently
store and manipulate URIs in memory:
every tail of such a list can share the
same memory space.

For the name property of the Store entity in the storage mod-
ule, this would be:

[Property(), "name", "Store", "storage"]

Spoofax annotates each definition and reference with a URI to
connect names with information stored in the index. Refer-
ences are annotated with the same URI as their definition. This
way, information about the definition site is also available at
the reference. We can inspect URIs in Spoofax’ analyzed syn-
tax view. This view shows the abstract syntax with all URIs
as annotations13. Consider the following example with both 13 To obtain this view, select Show Ana-

lyzed Syntax (selection) in the Transform
menu of the Spoofax editor. Spoofax
will open a new editor which updates
automatically when the content of the
original editor changes.

named and anonymous blocks:

module banking

entity BankAccount {
name : String
number : Num

function toString() : String {
{ // anonymous block

var result = name + number.toString();
return result;

}
}

}

The analyzed abstract syntax for this example is the following:

Module(
"banking"{[Module(),"banking"]},
[Entity(

"BankAccount"{[Entity(),"BankAccount","banking"]},
[Property(

"name"{[Property(),"name","BankAccount","banking"]},
StringType()

),
Property(

"number"{[Property(),"number","BankAccount","banking"]},
NumType()

),
Function(

"toString"{[Function(),"toString","BankAccount","banking"]},
[],
StringType(),
Block([
Declare("result"{[Var(),"result",Anon(125),Anon(124),

"toString","BankAccount","banking"]},
Add(

Var("name"{[Property(),"name","BankAccount","banking"]}),
MethodCall(..., "toString"{[Unresolved(Function()),

"toString", "BankAccount", "banking"]})
)

dsl engineering 229

),
Return(

Var("result"{[Var(),"result",Anon(125),Anon(124),
"toString","BankAccount","banking"]})

)
])

)
]

)
]

)

Any references that cannot be resolved are annotated with a
special Unresolved constructor. For example, a variable named
nonexistent could be represented as:

Var("nonexistent"{[Unresolved(Var()),"non\-existent",...]})

This makes it easy to recognize any unresolved references in
constraints14: we can simply pattern-match against the Unre- 14 We discuss constraints in Section 9.3.

solved term.

8.2 Scoping in Xtext

Xtext provides Java APIs for implementing all aspects of lan-
guages except the grammar15. Language developers typically 15 In fact, you can use any JVM-based

language for implementing these
language aspects, including Xtend.

provide Java classes that implement aspect-specific interfaces
and then contribute those to Xtext using dependency injec-
tion16. For most language aspects, Xtext comes with various 16 Xtext’s internal configura-

tion is based on dependency
injection with Google Guice
code.google.com/p/google-guice/

default implementations developers can build on. A lot of
functionality is provided "out of the box" with minimal config-
uration, but it’s easy to swap specific parts by binding another
or a custom class through Guice.

8.2.1 Simple, Local Scopes

To implement scopes, language developers have to contribute
a class that implements the IScopeProvider interface. It has
one method called getScope that returns an IScope for a given
reference. An IScope is basically a collection of candidate refer-
ence targets, together with the textual representation by which
these may be referenced from the current reference site (the
same target may be referenced by different text strings from
different program locations). The getScope method has two
arguments: the first one, context, is the current program ele-
ment for which a reference should be scoped; the second one,
reference, identifies the reference for which the scope that
needs to be calculated17.

17 The class EReference is the Ecore
concept that represents references.

public interface IScopeProvider {
IScope getScope(EObject context, EReference reference);

}

230 dslbook.org

To make the scoping implementation easier, Xtext provides
declarative scope providers through the AbstractDeclarative-

ScopeProvider base class: instead of having to inspect the
reference and context object manually to decide how to com-
pute the scope, the language implementor can express this in-
formation via the name of the method (using a naming con-
vention). Two different naming conventions are available:

// <X>, <R>: scoping the <R> reference of the <X> concept
public IScope scope_<X>_<R>(<X> ctx, EReference ref);

// <X>: the language concept we are looking for as a reference target
// <Y>: the concept from under which we try to look for the reference
public IScope scope_<X>(<Y> ctx, EReference ref);

Let’s assume we want to scope the targetState reference of
the ChangeStateStatement. Its definition in the grammar looks
like this:

ChangeStateStatement:
"state" targetState=[State];

We can use the following two alternative methods:

public IScope scope_ChangeStateStatement_targetState
(ChangeStateStatement ctx, EReference ref) {

...
}

public IScope scope_State(ChangeStateStatement ctx, EReference ref) {
...

}

The first alternative is specific for the targetState reference
of the ChangeStateStatement. It is invoked by the declara-
tive scope provider only for that particular reference. The sec-
ond alternative is more generic. It is invoked whenever we
are trying to reference a State (or any subconcept of State)
from any reference of a ChangeStateStatement and all its de-
scendants in the AST. So we could write an even more general
alternative, which scopes the visible States from anywhere in
a CoolingProgram, independent of the actual reference18.

18 It is a good idea to always use the
most general variants, unless you
specifically want to scope one spe-
cific reference. Here is why: de-
pending on the structure of your
language, Xtext may have a hard
time finding out the current loca-
tion, and hence the reference that
needs to be scoped. In this case, the
tighter versions of the scoping method
(scope_ChangeStateStatement_tar-
getState in the example) might not
be called in all the places you expect
it to be called. This can be remedied
either by changing the syntax (often
not possible or not desired), or by
using the more general variants of
the scoping function scope_State(
CoolingProgram ctx, ...).

public IScope scope_State(CoolingProgram ctx, EReference ref) {
...

}

The implementation of the scopes is simple, and relatively sim-
ilar in all three cases. We write Java code that crawls up the
containment hierarchy until we arrive at a CoolingProgram (in
the last alternative, we already get the CoolingProgram as an
argument, so we don’t need to move up the tree), and then
construct an IScope that contains the States defined in that
CoolingProgram. Here is a possible implementation:

dsl engineering 231

public IScope scope_ChangeStateStatement_targetState
(ChangeStateStatement ctx, EReference ref) {

CoolingProgram owningProgram =
Utils.ancestor(ctx, CoolingProgram.class);

return Scopes.scopeFor(owningProgram.getStates());
}

The Scopes class provides a couple of helper methods to cre-
ate IScope objects from collections of elements. The simple
scopeFor method will use the name of the target element as
the text by which it will be referenced19. So if a state is called 19 You can pass in code that creates

other strings than the name from
the target element. This supports
the previously mentioned feature of
referencing the same program element
with different strings from different
reference sites.

normalCooling, then we’d have to write state normalCooling

in a ChangeStateStatement in order to change to that state.
The text normalCooling acts as the reference – pressing Ctrl-F3

on that program element will go to the referenced state.

8.2.2 Nested Scopes

The approach to scoping shown above is suitable for simple
cases, such as the targetState reference shown above. How-
ever, in languages with nested blocks a different approach is
recommended. Here is an example of a program expressed in
a language with nested blocks:

var int x;
var int g;

function add(int x, int y) {
int sum = x + y; // 1
return sum;

}

function addAll(int es ...) {
int sum = 0;
foreach(e in es) {

sum += e; // 2
}
x = sum; // 3

}

At the program location marked as 1, the local variable sum, the
arguments x and y and the global variables x and g are visible,
although the global variable x is shadowed by the argument of
the same name. At 2, we can see x, g, sum and es, but also
the iterator variable e. At 3, x refers to the global, since it
is not shadowed by a parameter or local variable of the same
name. In general, some program elements introduce blocks
(often statement lists surrounded by curly braces). A block can
declare new symbols. References from within these blocks can
see the symbols defined in that block, as well as all ancestor
blocks. Symbols in inner blocks typically hide symbols with
the same name in outer blocks20.

20 The symbols in outer blocks are
either not accessible at all, or a special
name has to be used, for example,
by prefixing them with some outer
keyword (for example, outer.x).

232 dslbook.org

Xtext’s scopes support this scenario. IScopes can reference
outer scopes. If a symbol is not found in any given scope, that
scope delegates to its outer scope (if it has one) and asks it for a
symbol of the respective name. Since inner scopes are searched
first, this implements shadowing as expected.

Also, scopes are not just collections of elements. Instead,
they are maps between a string and an element21. The string 21 In addition, the text shown in the

code completion window can be dif-
ferent from the text that will be used
as the reference once an element is
selected. In fact, it can be a rich string
that includes formatting, and it can
contain an icon.

is used as the reference text. By default, the string is the same
as the target element’s name property. So if a variable is called
x, it can be referenced by the string x. However, this reference
string can be changed as part of the scope definition. This can
be used to make shadowed variables visible under a different
name, such as outer.x if it is referenced from location 1. The
following is pseudo-code that implements this behavior:
// recursive method to build nested scopes
private IScope collect(StatementList ctx) {

IScope outer = null
if (ctx is within another StatementList parent) {

outer = collect(parent)
}
IScope scope = new Scope(outer)
for(all symbols s in ctx) {

scope.put(s.name, s)
if (outer.hasSymbolNamed(s.name)) {

scope.put("outer."+s.name, outer.getSymbolByName(s.name))
}

}
return scope

}

// entry method, according to naming convention
// in declarative scope provider
public IScope scope_Symbol(StatementList ctx) {

return collect(ctx)
}

8.2.3 Global Scopes

There is one more aspect of scoping that needs to be discussed.
Programs can be separated into several files and references can
cross file boundaries. That is, an element in file A can refer-
ence an element in file B. In earlier versions of Xtext file A had
to explicitly import file B to make the elements in B available
as reference targets22. Since Xtext 1.0 both of these problems

22 This resulted in several problems.
First, for internal reasons, scalability
was limited. Second, as a consequence
of the explicit file imports, if the refer-
enced element was moved into another
file, the import statements in all refer-
encing files had to be updated.

are solved using the emphindex23. The index is a data struc-

23 This is similar to Spoofax’ index
discussed above.

ture that stores (String,IEObjectDescription)-pairs. The first
argument is the qualified name of the object, and the second
one, the IEObjectDescription, contains information about a
model element, including a URI (a kind of global pointer that
also includes the file in which the element is stored) as well
as arbitrary additional data provided by the language imple-
mentation. By default, all references are checked against this

dsl engineering 233

name in the index, not against the actual object. If the actual
object has to be resolved, the URI stored in the index is used.
Only then is the respective file loaded24. The index is updated 24 This is what improved scalability; files

are only loaded if a reference target is
accessed, not to check a reference for
validity.

whenever a file is changed25. This way, if an element is moved

25 Even when it has not been saved, so
references against dirty editors work as
expected.

to a different file while keeping its qualified name (which is
based on the logical program structure) constant, the reference
remains valid. Only the URI in the index is updated.

There are two ways to customize what gets stored in the
index, and how. The IQualifiedNameProvider returns a qual-
ified name for each program element. If it returns null, the ele-
ment is not stored in the index, which means it is not reference-
able. The other way is the IDefaultResourceDescription-

Strategy, which allows language developers to build their
own IEObjectDescription for program elements. This is im-
portant if custom user data has to be stored in the IEObject-

Description for later use during scoping.
The IGlobalScopeProvider is activated if a local scope re-

turns null or no applicable methods can be found in the declar-
ative scope provider class (or if they return null). By default,
the ImportNamespacesAwareGlobalScopeProvider is config-
ured26, which provides the possibility of referencing model 26 As with any other Xtext configura-

tion, the specific implementation is
configured through a Guice binding.

elements outside the current file, either through their (fully)
qualified name, or through their unqualified name if the re-
spective namespace is imported using an import statement27. 27 That import statement is different

from the one mentioned earlier: it
makes the contents of the respective
namespace visible; it does not refer to
the a particular file.

� Polymorphic References In the cooling language, expressions
also include references to entities such as configuration param-
eters, variables and hardware elements (compressors or fans
defined in a different model). All of these referenceable ele-
ments extend SymbolDeclaration. This means that all of them
can be referenced by the single SymbolRef construct.

AtomicLevel returns Expression:
...
({SymbolRef} symbol=[SymbolDeclaration|QID]);

The problem with this situation is that the reference itself does
not encode the kind of thing that is referenced28. This makes 28 By looking at the reference alone we

only know that we reference some kind
of symbol. We don’t know whether
the reference points to a variable, a
configuration parameter or a hardware
element.

writing code that processes the model cumbersome, since the
target of a SymbolRef has to be taken into account when de-
ciding how to treat (translate, validate) a symbol reference. A
more natural design of the language would use different refer-
ence constructs for the different referenceable elements. In this
case, the reference itself is specific to the referenced element,
making processing much easier29:

29 It would also make writing the scopes
and extending the language simpler.

234 dslbook.org

AtomicLevel returns Expression:
...
({VariableRef} var=[Variable]);
({ParameterRef} param=[Parameter]);
({HardwareBuildingBlockRef} hbb=[HardwareBuildingBlock]);

However, this is not possible with Xtext, since the parser cannot
distinguish the three cases syntactically. As we can see from
the (invalid) grammar above, in all three cases the reference
syntax itself is just an ID. Only during the linking phase could
the system check which kind of element is actually referenced,
but this is too late for the parser, which needs an unambiguous
grammar. The grammar could be disambiguated by using a
different syntax for each element:

AtomicLevel returns Expression:
...
({VariableRef} var=[Variable]);
({ParameterRef} "%" param=[Parameter]);
({HardwareBuildingBlockRef} "#" hbb=[HardwareBuildingBlock]);

While this approach will technically work, it would lead to an
awkward syntax and is hence typically not used. The only
remaining alternative is to make all referenceable elements ex-
tend SymbolDeclaration and use a single reference concept,
as shown above.

8.3 Scoping in MPS

Making references work in MPS requires several ingredients.
First of all, as we have seen earlier, the reference is defined as
part of the language structure. Next, an editor is defined that
determines how the referenced element is rendered at the ref-
erencing site30. To determine which instances of the referenced 30 The syntax used to represent the

reference is defined by that editor and
can be changed at any time, since the
actual reference is implemented based
on the target element’s UID.

concept are allowed, a scoping function has to be implemented.
This simply returns a list of all the elements that are considered
valid targets for the reference, as well as an optional text string
used to represent the respective element in the code completion
menu.

As we explained above (Section 7.2), smart references are
an important ingredient to make this work conveniently. They
make sure that users can simply type the name (or whatever
else is put into the code completion menu by the language de-
veloper) of the targeted element; once something is selected,
the corresponding reference concept is instantiated, and the
selected target is set.

dsl engineering 235

� Simple Scopes As an example, we begin with the scope def-
inition for the target reference of the Transition concept. To
recap, it is defined as:

concept Transition
// ...
references:

State target 1

The scope itself is defined via the search scope constraint be-
low. The system provides an anonymous search scope func-
tion that has a number of arguments that describe the context
including the enclosing node and the referencing node. As the
signature shows, the function has to return either an ISearch-

Scope or simply a sequence of nodes of type State. The scope
of the target state is the set of states of the state machine that
(transitively) contains the transition. To implement this, the ex-
pression in the body of this function crawls up the containment
hierarchy31 until it finds a Statemachine and then returns its 31 Note that for a smart reference, where

the reference object is created only after
selecting the target, the referenceNode
argument is null! This is why we write
the scope using the enclosingNode
argument.

states32.

32 The code used to express scopes
can be arbitrarily complex and is
implemented in MPS’ BaseLanguage,
an extended version of Java.

link {target}
referent set handler:

<none>
search scope:

(referenceNode, linkTarget, enclosingNode, ...)
->join(ISearchScope | sequence<node<State>>) {

enclosingNode.ancestor<Statemachine>.states;
}

validator:
<default>

presentation :
<none>

In addition to the search scope, language developers can pro-
vide code that should be executed if a new reference target is
set (referent set handler), additional validation (validator),
as well as customized presentation in the code completion menu
(presentation)33. 33 This can be different than the text

used to represent the reference once it
is established. That text is controlled by
the referencing concept’s editor.� Nested Scopes In a more complex, block-oriented language

with nested scopes, a different implementation pattern is rec-
ommended34:

34 In this section we describe the ap-
proach as we have implemented it
for mbeddr C. Since version 2.5, MPS
supports this approach out of the box.
For example, an interface similar to
IScopeProvider ships with MPS, and
scopes can be inherited from parent
nodes.

• All program elements that contribute elements that can be
referenced (such as blocks, functions or methods) implement
an interface IScopeProvider.

• The interface provides getVisibleElements(concept<> c),
a method that returns all elements of type c that are avail-
able in that scope.

236 dslbook.org

• The search scope function simply calls this method on the
owning IScopeProvider, passing in the concept whose in-
stances it wants to see (State in the above example).

• The implementation of the method recursively calls the me-
thod on its owning IScopeProvider, as long as there is one.
It also removes elements that are shadowed from the result.

This approach is used in the mbeddr C language, for example
for local variables, because those are affected by shadowing
from blocks. Here is the code for the variable reference of the
LocalVariableReference concept:

link {variable}
search scope:

(referenceNode, linkTarget, enclosingNode, ...)
->join(ISearchScope | sequence<node<LocalVariableDeclaration>>) {

// find the statement that contains the future local variable ref
node<Statement> s = enclosingNode.ancestor<Statement, +>;

// find the first containing ILocalVariableScopeProvider which is
// typically next next higher statement that owns a StatementList.
// An example would be a ForStatement or an IfStatement
node<ILocalVarScopeProvider> scopeProvider =

enclosingNode.ancestor<ILocalVarScopeProvider, +>;

// In case we are not in a Statement or there
// is no ILocalVarScopeProvider,
// we return an empty list - no variables visible
if (s == null || scopeProvider == null) {

return new nlist<LocalVariableDeclaration>;
}

// we now retrieve the position of the current Statement in the
// context StatementList. This is important because we only want to
// see those variables that are defined before the reference site
int pos = s != scopeProvider ? s.index : LocalVarScope.NO_POSITION;

// finally we query the scopeProvider for the visible local variables
scopeProvider.getLocalVarScope(s, pos).getVisibleLocalVars();

}

� Polymorphic References We have explained above how ref-
erences work in principle: they are real pointers to the refer-
enced element, based on the target’s unique ID. In the section
on Xtext we have seen how from a given location only one kind
of reference for any given syntactic form can be implemented.
Consider the following example, where we refer to a global
variable a and an event parameter (timestamp) from within
the guard condition expression:

int a;
int b;

statemachine linefollower {
in event initialized(int timestamp);
states (initial=initializing) {

state initializing {
on initialized [now() - timestamp > 1000 && a > 3] -> running

dsl engineering 237

}
state running {
}

}
}

Both references to local variables and to event parameters use
the same syntactic form: a text string that represents the name
of the respective target element. As we have discussed above,
in Xtext, this is implemented with a single reference concept,
typically called SymbolReference, that can reference to any
kind of Symbol. LocalVariableDeclaration and EventPara-

meter would both extend Symbol, and scopes would make sure
both kinds are visible from within guard expressions35.

35 The problem with this approach is
that the reference itself contains no type
information about what it references,
it is simply a SymbolReference. Pro-
cessing code has to inspect the type
of the referenced symbol to find out
what a particular SymbolReference
actually means. It can also be a problem
regarding modularity, because every
referenceable concept must extend
Symbol. Referenceable elements con-
tributed by an independently developed
language which we may want to embed
into the C language will not extend
Symbol, though! We discuss language
modularization and composition in
Section 16.2.

In MPS this is done differently. To solve the example above,
one would create a LocalVariableReference and an Event-

ParameterReference. The former references variables and the
latter references event parameters. Both have an editor that
renders the name of the referenced element, and each of them
has their own scope definition36. The following is the respective

36 This retains modularity. Adding
new kinds of references to existing
expression languages can be done
in a modular fashion, since the new
reference expression comes with its
own, independent scoping rule.

code for the EventParameterReference expression:

concept EventParameterReference extends Expression

link {parameter}
search scope:

(referenceNode, linkTarget, enclosingNode, ...)
->join(ISearchScope | sequence<node<EventArg>>) {

enclosingNode.ancestor<Transition, +>.trigger.event.args;
}

Entering the reference happens by typing the name of the refer-
enced element (cf. the concept of smart references introduced
above). In the case in which there are a LocalVariableDecla-

ration and an EventParameter of the same name, the user
has to make an explicit decision, at the time of entry (the name
won’t bind, and the code completion menu requires a choice).
It is important to understand that, although the names are sim-
ilar, the tool still knows whether a particular reference refers to
a LocalVariableDeclaration or to an EventParameter, be-
cause the reference is encoded using the ID of the target37.

37 It may not, however, be obvious to
the user, so use this approach with
caution and/or use different syntax
highlighting to distinguish the two. The
real benefit of this approach is that if
two independent language extensions
define such scopes independently,
there will not be any ambiguity if these
extensions are used together in a single
program.

9
Constraints

Constraints are Boolean expressions that must be true for
every program expressed with a specific language. Together
with type systems, which are discussed in the next chap-
ter, they ensure the static semantics of a language. This
chapter introduces the notion of constraints, some consid-
erations regarding languages suitable for expressing con-
straints, and provides examples with our tools.

As we explained in the DSL Design part of the book, not all
programs that conform to the structure (grammar, AS, meta
model) of a language are valid. Language definitions include
further restrictions that cannot be expressed purely by struc-
ture. Such additional restrictions are typically called constraints.

Constraints are Boolean conditions that have to evaluate to
true in order for the model to be correct ("does expr hold?")1. 1 Constraints represent the static se-

mantics of a language. The execution
semantics are typically represented by
transformations, generators or inter-
preters. We discuss those in Chapter 11.

An error message is reported if the expression evaluates to
false ("expr does not hold!"). Constraints are typically asso-
ciated a particular language concept ("for each instance of con-
cept C, expr-with-C must hold")2. There are two major kinds

2 In addition to just associating a con-
straint with a language concept, addi-
tional applicability conditions or match
patterns may be used.

of constraints we can distinguish: well-formedness and type
systems. Examples for well-formedness constraints include:

• Uniqueness of names in lists of elements (e.g., functions in
a namespace).

• Every non-start state of a state machine has at least one in-
coming transition.

• A variable is defined before it is used (statement ordering).

Type system rules are different in that they verify the correct-
ness of types in programs, e.g., they make sure you don’t as-

240 dslbook.org

sign a float to an int. In expression languages particularly,
type calculation and checking can become quite complicated,
and therefore warrant special support. This is why we distin-
guish between constraints in general (covered in this chapter)
and type systems (which we cover in the next chapter).

Constraints can be implemented with any language or frame-
work that is able to query a model and report errors to the user.
To make expressing constraints efficient3, it is useful if the lan- 3 Constraint checking should also

be efficient in terms of speed and
memory usage, even for large models.
To this end, it is useful if the constraint
language supports impact analysis,
so we can find out efficiently which
constraints have to be reevaluated for
any given change to a program.

guage has the following characteristics:

• It should be able to effectively navigate and filter the model.
Support for path expressions (as in aClass.operations.

arguments.type as a way to find out the types of all ar-
guments of all operations in a class) is extremely useful.

• Support for higher-order functions is useful, so that one can
write generic algorithms and traversal strategies.

• A good collections language, often making use of higher-
order functions, is very useful, so it is easily possible to filter
collections, create subsets or get the set of distinct values in
a list.

• Finally, it is helpful to be able to associate a constraint declar-
atively with the language concept (or structural pattern) for
whose instances it should be executed.

Here is an example constraint written in a pseudo-language:
constraint for:

Class
expression:

this.operations.arguments.type.filter(ComplexNumber).isNotEmpty &&
!this.imports.any(i|i.name == "ComplexNumberSupportLib")

message:
"class "+this.name+" uses complex numbers, "+

"so the ComplexNumberSupportLib must be imported"

Some kinds of constraints require specialized data structures
to be built or maintained in sync with the program. Examples
include dead code detection, missing returns in some branches
of a method’s body, or read access to an uninitialized variable.
To be able to find these kinds of errors statically, a dataflow
graph has to be constructed from the program. It models the
various execution paths through a (part of a) program. Once a
dataflow graph is constructed, it can be used to check whether
there exists a path from program start to a variable read with-
out coming across a write to the same variable. We show an
example of the use of a data flow graph in the MPS example
(Section 9.2).

dsl engineering 241

9.1 Constraints in Xtext

Just like scopes, constraints are implemented in Java or any
other JVM language4. Developers add methods to a validator 4 As mentioned earlier, a language

that provides higher-order functional
abstractions such as Xtend is very
useful for navigating and querying
ASTs.

class generated by the Xtext project wizard. In the end, these
validations plug into the EMF validation framework5.

5 Other EMF EValidator implementa-
tions can be used in Xtext as well.

A constraint checking method is a Java method with the fol-
lowing characteristics: it is public, returns void, can have an
arbitrary name, it has a single argument of the type for which
the check should apply, and it has the @Check annotation. For
example, the following method is a check that is invoked for
all instances of CustomState (i.e. not for start states and back-
ground states). It checks that each such state can actually be
reached by verifying that it has incoming transitions (expressed
via a ChangeStateStatement):

@Check(CheckType.NORMAL)
public void checkOrphanEndState(CustomState ctx) {

CoolingProgram coopro = Utils.ancestor(ctx, CoolingProgram.class);
TreeIterator<EObject> all = coopro.eAllContents();
while (all.hasNext()) {

EObject s = all.next();
if (s instanceof ChangeStateStatement) {

ChangeStateStatement css = (ChangeStateStatement) s;
if (css.getTargetState() == ctx) return;

}
}
error("no transition ever leads into this state",

CoolingLanguagePackage.eINSTANCE.getState_Name());
}

The method retrieves the cooling program that owns the ctx

state, then retrieves all of its descendants and iterates over
them. If the descendant is a ChangeStateStatement and its
targetState property references the current state, then we re-
turn: we have found a transition leading into the current state.
If we don’t find one of these, we report an error. An error
report contains the error message, a severity (INFO, WARNING,
ERROR), the element to which it is attached6, as well as the par- 6 The error message in Eclipse will be

attached to this program element.ticular feature7 of that element that should be highlighted. The
7 Feature is EMF’s term for properties,
references and operations of EClasses.

CheckType.NORMAL in the annotation defines when this check
should run:

• CheckType.NORMAL: run when the file is saved.

• CheckType.FAST: run after each model change (more or less
after each keypress).

• CheckType.EXPENSIVE: run only if requested explicitly via
the context menu.

242 dslbook.org

Note that neither Xtext nor any of the other tools supports
impact analysis by default. Impact analysis is a strategy for
finding out whether a particular constraint can potentially be
affected by a particular change, and only evaluating the con-
straint if it can. Impact analysis can improve performance if
this analysis is faster than evaluating the constraint itself. For
local constraints this is usually not the case. Only for non-local
constraints that cover large parts of the model (and possibly
require loading additional fragments), is impact analysis im-
portant. Xtext uses a pragmatic approach in the sense that
these constraints must be marked as EXPENSIVE by the user
and run only on request (over lunch, during nightly build). As
an example, let us get back to the example about orphan states.
The implementation of the constraint checks orphan-ness sep-
arately for each state. In doing so, it gets all descendants of the
cooling program for each state. This can be a scalability problem
for larger programs. To address this issue, one would write a
single constraint for the whole cooling program that identifies
all orphan states in one or maybe two scans through the pro-
gram. This constraint could then be marked as EXPENSIVE as
programs get really big8. 8 In general, local constraints (as shown

in the code above) are easier to write
than the more optimized global con-
straints. However, the latter often
perform better. Unless it is clear from
the start that programs will become
big, it is a good idea to first write local,
simpler and maybe less efficient con-
straints, and then use profiling to detect
performance bottlenecks later. As usual,
premature optimization leads to code
that is hard to maintain.

9.2 Constraints in MPS

9.2.1 Simple Constraints

MPS’ approach to constraints is very similar to Xtext’s9. The

9 Note that in MPS, constraints are
implemented as part of the type system,
in Non-Typesystem Rules. MPS also has a
language aspect called Constraints, but
as we have seen before, this is used for
scopes and context constraints.

main difference is that the constraint is written in BaseLan-
guage, an extended version of Java that has some of the fea-
tures that makes constraints more concise. Here is the code for
the same state unreachable constraint, which we can make use
of in the state machines extension to C:

checking rule stateUnreachable {
applicable for concept = State as state
do {

if (!state.initial &&
state.ancestor<Statemachine>.

descendants<Transition>.
where({~it => it.target == state; }).isEmpty) {

error "orphan state - can never be reached" -> state;
}

}
}

Currently there is no way to control when a constraint is run10, 10 In contrast to Xtext, constraints
can also not be marked as FAST or
EXPENSIVE.

it is decided based on some MPS-internal algorithm which
tracks changes to a model and reevaluates constraints as neces-

dsl engineering 243

sary. However, pressing F5 in a program or explicitly running
the model checker forces all constraints to be reevaluated.

9.2.2 Dataflow

As we have said earlier, dataflow analysis can be used to de-
tect dead code, null access, unnecessary ifs (because it can be
shown statically that the condition is always true or false) or
read-before-write errors. The foundation for data flow analysis
is the data flow graph. This is a data structure that describes the
flow of data through a program’s code. Consider the following
example:

int i = 42;
j = i + 1;
someMethod(j);

The 42 is "flowing" from the init expression in the local vari-
able declaration into the variable i and then, after adding 1,
into j, and then into someMethod. Data flow analysis consists of
two tasks: building a data flow graph for a program, and then
performing analysis on this data flow graph to detect problems
in the program.

MPS comes with predefined data structures for representing
data flow graphs, a DSL for defining how the graph can be de-
rived from language concepts (and hence, programs) and a set
of default analyses that can be integrated into your language11. 11 MPS also comes with a framework for

developing custom analyses; however,
this is beyond the scope of this book.

We will look at all these ingredients in this section.

� Building a Data Flow Graph Data flow is specified in the
Dataflow aspect of language definitions. There you can add
data flow builders (DFBs) for your language concepts. These
are programs expressed in MPS’ data flow DSL that build the
data flow graph for instances of those concepts in programs.
Here is the DFB for LocalVariableDeclaration.

data flow builder for LocalVariableDeclaration {
(node)->void {

if (node.init != null) {
code for node.init
write node = node.init

} else {
nop

}
}

}

If the LocalVariableDecaration has an init expression (it is
optional!), then the DFB for the init expression has to be exe-
cuted using the code for statement. Then we perform an ac-
tual data flow definition: the write node = node.init spec-

244 dslbook.org

ifies that write access is performed on the current node. The
statement also expresses that whatever value was in the init

expression is now in the node itself. If there is no init expres-
sion, we still want to mark the LocalVariableDeclaration

node as visited by the data flow builder using the nop state-
ment – the program flow has come across this node12. 12 A subsequent analysis reports all

program nodes that have not been
visited by a DFB as dead code. So
even if a node has no further effect
on a program’s data flow, it has to be
marked as visited using nop.

To illustrate a read statement, we can take a look at the
LocalVariableRef expression which read-accesses the vari-
able it references. Its data flow is defined as read node.var,
where var is the name of the reference that points to the refer-
enced variable.

In an AssignmentStatement, we first execute the DFB for
the rvalue and then "flow" the rvalue into the lvalue – the
purpose of an assignment:
data flow builder for AssigmentStatement {

(node)->void {
code for node.rvalue
write node.lvalue = node.rvalue

}
}

For a StatementList, we simply mark the list as visited and
then execute the DFBs for each statement in the list. We are
now ready to inspect the data flow graph for the simple func-
tion below. Fig. 9.1 shows the data flow graph.

Figure 9.1: An example of a data flow
for a simple C function. You can access
the data flow graph for a program
element (e.g., a C function) by selecting
Language Debug -> Show Data Flow
Graph from the element’s context menu.
This will render the data flow graph
graphically and constitutes a good
debugging tool when building your
own data flow graphs and analyses.

void trivialFunction() {
int8 i = 10;
i = i + 1;

}

Most interesting data flow analysis has to do with loops and
branching. So specifying the correct DFBs for things like if,
switch and for is important. As an example, we look at the
DFB for the IfStatement. We start with the obligatory nop to
mark the node as visited. Then we run the DFB for the condi-
tion, because that is evaluated in all cases. Then it becomes in-
teresting: depending on whether the condition is true or false,
we either run the thenPart or we jump to where the else if

parts begin. Here is the code so far:
nop
code for node.condition
ifjump after elseIfBlock // elseIfBlock is a label defined later
code for node.thenPart
{ jump after node }

The ifjump statement means that we may jump to the specified
label (i.e. we then execute the else ifs). If not (we just "run
over" the ifjump), then we execute the thenPart. If we execute
the thenPart, we are finished with the whole IfStatement

dsl engineering 245

– no else ifs or else parts are relevant, so we jump after
the current node (the IfStatement) and we’re done. However,
there is an additional catch: in the thenPart, there may be
a return statement. So we may never actually arrive at the
jump after node statement. This is why it is enclosed in curly
braces: this says that the code in the braces is optional, so if the
data flow does not visit it, that’s fine (and no dead code error is
reported).

Let’s continue with the else ifs. We arrive at the label
elseIfBlock if the condition was false, i.e. the above ifjump

actually happened. We then iterate over the elseIfs and exe-
cute their DFB. After that, we run the code for the elsePart,
if there is one. The following code can only be understood if
we know that, if we execute one of the else ifs, then we jump
after the whole IfStatement. This is specified in the DFB for the
ElseIfPart, which we’ll illustrate below. Here is the rest of
the code for the IfStatement’s DFB:

label elseIfBlock
foreach elseIf in node.elseIfs {

code for elseIf
}
if (node.elsePart != null) {

code for node.elsePart
}

We can now inspect the DFB for the ElseIfPart. We first run
the DFB for the condition. Then we may jump to after that
else if, because the condition may be false and we want to
try the next else if, if there is one. Alternatively, if the con-
dition is true, we run the DFB for the body of the ElseIfPart.
Then two things can happen: either we jump to after the whole
IfStatement (after all, we have found an else if that is true),
or we don’t do anything at all anymore because the current
else if contains a return statement. So we have to use the
curly braces again for the jump to after the whole if. The code
is below, and an example data flow graph is shown in figure
Fig. 9.2.

code for node.condition
ifjump after node
code for node.body
{ jump after node.ancestor<IfStatement> }

Figure 9.2: A data flow graph for the an
if statement if (i > 0) j = 1;
else j = 2;

The DFB for a for loop makes use of the fact that loops can be
represented using conditional branching. Here is the code:

code for node.iterator
label start
code for node.condition
ifjump after node

246 dslbook.org

code for node.body
code for node.incr
jump after start

We first execute the DFB for the iterator (which is a subcon-
cept of LocalVariableDeclaration, so the DFB shown above
works for it as well). Then we define a label start so we can
jump to this place from further down. We then execute the
condition. Then we have an ifjump to after the whole loop
(which covers the case in which the condition is false and the
loop ends). In the other case (where the condition is still true)
we execute the code for the body and the incr part of the for

loop. We then jump to after the start label we defined above.

� Analyses MPS supports a number of data flow analyses
out of the box13. The following utility class uses the unreach- 13 These analyses operate only on the

data flow graph, so the same analyses
can be used for any language, once the
DFBs for that language map programs
to data flow graphs.

able code analysis:
public class DataflowUtil {

private Program prog;

public DataflowUtil(node<> root) {
// build a program object and store it
prog = DataFlow.buildProgram(root);

}

public void checkForUnreachableNodes() {
// grab all instructions that
// are unreachable (predefined functionality)
sequence<Instruction> allUnreachableInstructions =

((sequence<Instruction>) prog.getUnreachableInstructions());

// remove those that may legally be unreachable
sequence<Instruction> allWithoutMayBeUnreachable =

allUnreachableInstructions.where({~instruction =>
!(Boolean.TRUE.equals(instruction.

getUserObject("mayBeUnreachable"))); });

// get the program nodes that correspond
// to the unreachable instructions
sequence<node<>> unreachableNodes = allWithoutMayBeUnreachable.

select({~instruction => ((node<>) instruction.getSource()); });

// output errors for each of those unreachable nodes
foreach unreachableNode in unreachableNodes {

error "unreachable code" -> unreachableNode;
}

}
}

The class builds a Program object in the constructor. Programs
are wrappers around the data flow graph and provide access
to a set of predefined analyses on the graph. We will make
use of one of them here in the checkForUnreachableNodes

method. This method extracts all unreachable nodes from the
graph (see comments in the code above) and reports errors for
them. To actually run the check, we call this method from a
non-typesystem rule for C functions:

dsl engineering 247

checking rule check_DataFlow {
applicable for concept = Function as fct
overrides false
do {

new DataflowUtil(fct.body).checkForUnreachableNodes();
}

}

9.3 Constraints in Spoofax

Spoofax uses rewrite rules to specify all semantic parts of a lan-
guage definition. In this section, we first provide a primer on
rewrite rules. Next we show how they can be used to specify
constraints in language definitions14. 14 Rewrite rules are used for all kinds of

other purposes in Spoofax, and we will
encounter them again, for example in
the chapter on transformation and code
generation, Section 11.4. This is why we
explain them in some detail here.

9.3.1 Rewrite Rules

Rewrite rules are functions that operate on terms, transforming
one term to another. Rewrite rules in Spoofax are provided as
part of the Stratego program transformation language. A basic
rewrite rule that transforms a term pattern term1 to a term
pattern term2 has the following form:

rule-name: term1 -> term2

Term patterns have the same form as terms: any term is a le-
gal term pattern. In addition to the basic constructors, string
literals, integer literals, and so on, they also support variables
(e.g., v or name) and wildcards (indicated by _). As an exam-
ple, the following rewrite rule rewrites an Entity to the list of
properties contained in that entity:

get-properties:
Entity(name, properties) -> properties

So, for an Entity("User", [Property("name", String)]), it
binds "User" to the variable name, and [Property("name",

"String")] to the variable properties. It then returns the
collection properties. While rewrite rules can be viewed as
functions, they have one important difference: they can be de-
fined multiple times for different patterns15. In the case of 15 This is comparable to polymorphic

overloading.get-properties, we could add another definition that works
for property access expressions:

get-properties:
PropAccess(expr, property) -> property

Rules can have complex patterns. For example, it is possible
to write a rule that succeeds only for entities with only a name

property16:

16 Note how this rule uses a wildcard
since it doesn’t care about the name of
the entity.

248 dslbook.org

is-name-only-entity:
Entity(_, [Property("name", "String")]) -> True()

Rewrite rules can be invoked using the syntax <rule-name>

term17. The angle brackets make it easy to distinguish rule in- 17 For example, <get-properties>
Entity("Unit", []) would return an
empty list of properties.

vocations from terms, and makes it possible to use invocations
in term expressions.

Stratego provides a with clause that can be used for addi-
tional code that should be considered for rewrite rules. The
with clause is most commonly used for assignments and calls
to other rules. As an example, we can write the rule above us-
ing a with. This rule assigns the value of get-properties to a
variable result and returns that as the result value of the rule:

invoke-get-properties:
Entity(name, properties) -> result
with

result := <get-properties> Entity(name, properties)

Rules can also have conditions. These can be specified using
where18. These clauses typically use the operators listed in the 18 If the pattern of a rule does not

match, or if its conditions do not
succeed, a rule is said to fail. As we will
see later, whether rules succeed or fail
helps guide the execution sequence of
sets of languages.

following table:

Expression Description
<e> t Applies e to t, or fails if e is unsuccessful.
v := t Assign a term expression t to a variable v.
!t => p Match a term t against a pattern p, or fail.
not(e) Succeeds if e does not succeed.
e1; e2 Sequence: apply e1. If it succeeds, apply e2.
e1 <+ e2 Choice: apply e1, if it fails apply e2 instead.

An example of a rule with a where clause is the following:

has-properties:
Entity(name, properties) -> True()
with

properties := <get-properties> Entity(name, properties);
where

not(!properties => [])

This rule only succeeds for entities where the where condition
not(!properties => []) holds19. That is, it succeeds as long 19 !x => y matches a term x against

a pattern y. It does not mean logical
negation.

as an entity does not have an empty list (indicated by []) of
properties. Rewrite rules can have any number of where and
with clauses, and they are evaluated in the order they appear.

Like functions or methods in other languages, rewrite rules
can have parameters. Stratego distinguishes between parame-
ters that pass other rules and parameters that pass terms, using
a vertical bar to separate the two separate lists20. The Stratego

20 Rules that take both rule and term
parameters have a signature of the
form rule(r|t), those with only
rule parameters use rule(r), and
those with only term parameters use
rule(|t).standard library provides a number of higher-order rules, i.e.

dsl engineering 249

rules that take other rules as their argument. These rules are
used for common operations on abstract syntax trees: for ex-
ample, map(r) applies a rule r to all elements of a list:

get-property-types:
Entity(_, properties) -> types
with

types := <map(get-property-type)> properties

get-property-type:
Property(_, type) -> type

Rules like map specify a traversal on a certain term structure:
they specify how a particular rule should be applied to a term
and its subterms. Rules that specify traversals are also called
strategies21. In Spoofax, strategies are used to control traversals 21 This is where the name of the Stratego

transformation language comes from.in constraints, transformation, and code generation.

9.3.2 Basic Constraint Rules

Spoofax uses rules with the name constraint-error to indi-
cate constraints that trigger errors, constraint-warning for
warnings, and constraint-note for notes. To report an error,
warning or information note, these rules have to be overwrit-
ten for the relevant term patterns. The following example is
created by default by the Spoofax project wizard. It simply
reports a note for any module named example:

constraint-note:
Module(name, _) -> (name, "This is just an example program.")
where

!name => "example"

The condition checks if the module name matches the string
"example". The rule returns (via its right-hand side) a tu-
ple with the tree node where the marker should appear and
a string message that should be shown. All constraint rules
have this form.

Most constraint rules use string interpolation for error mes-
sages. Interpolated strings have the form $[...] where vari-
ables can be escaped using [...]. The following example uses
string interpolation to report a warning22. 22 The rule uses the a standard library

rule string-starts-with-capitals.
These and other library rules are
documented on the Spoofax website at
www.spoofax.org/.

constraint-warning:
Entity(theName, _) -> (theName,

$[Entity [theName] does not have a capitalized name])
where

not(<string-starts-with-capital> theName)

9.3.3 Index-Based Constraint Rules

Some constraint rules interact with the Spoofax index23. One

23 Notable examples include constraints
that forbid references to undefined
program elements and duplicate defini-
tions. Newly created Spoofax projects
provide default constraint rules for
these cases, which can be customized.way to do this is to use URI annotations on the abstract syntax.

250 dslbook.org

These are placed on each reference and definition. For exam-
ple, a reference to a Mobl variable v is represented as Var("v").
With an annotation, it reads as follows:

Var("v"{[Var(),"v","function","module"]})

The annotation is added directly to the name, surrounded with
curly braces24. Unresolved references are represented by terms 24 The annotation itself is a URI

Var://module/function/v, repre-
sented as a list consisting of the names-
pace, the name and the path in reverse
order.

such as the following (notice the Unresolved term, surround-
ing the namespace):

Var("u"{[Unresolved(Var()),"u","function","module"]})

In most statically typed languages, references that cannot be
statically resolved indicate an error. The following constraint
rule reports an error for these cases:

constraint-error:
x -> (x, $[Unable to resolve reference.])
where

!x => _{[Unresolved(t) | _]}

This rule matches any term x in the abstract syntax, and reports
an error if it has an Unresolved annotation25. Note how the 25 For dynamic languages, or languages

with optional types, the constraint
could be removed or relaxed. In those
cases, name resolution may only play a
role in providing editor services such as
code completion.

pattern _{[Unresolved(t) | _]} matches any term (indicated
by the wildcard _) that has a list annotation where the head of
the list is Unresolved(t) and the tail matches _.

In addition to annotations, the Spoofax index provides an
API for inspecting naming relations in programs. The follow-
ing table shows some of the key rules the index provides.

index-uri Gets the URI of a term.
index-namespace Gets the namespace of a term.
index-lookup Returns the first definition of a reference.
index-lookup-all Returns all definitions of a reference.
index-get-files-of Gets all files a definition occurred in.
index-get-all-in-file Gets all definitions for a given file path.
index-get-current-file Gets the path of the current file.

We can use the index API to detect duplicate definitions. In
most languages, duplicate definitions are always disallowed.
In the case of Mobl, duplicate definitions are not allowed for
functions or entities, but they are allowed for variables, just as
in JavaScript. The following constraint rules checks for dupli-
cate entity declarations:

constraint-error:
Entity(name, _) -> (name, $[Duplicate definition])
where

defs := <index-lookup-all> name;
<gt> (<length> defs, 1)

dsl engineering 251

This rule matches any entity declaration. Then, it fires a helper
rule is-duplicates-allowed. Next, the constraint rule deter-
mines all definition sites of the entity name. If the list has more
than one element, the rule reports an error. This is checked
by comparing the length of the list with 1 by calling the gt

("greater than") rule. More sophisticated constraints and error
messages can be specified using a type system, as we show in
the next chapter.

10
Type Systems

Type systems are a subset of constraints – they implement
type calculations and type checks. These can be relatively
complex, so special support beyond general-purpose con-
straint checking is useful. In this chapter we discuss what
type systems do in general, we discuss various strategies for
computing types, and we provide the usual examples with
Xtext, MPS and Spoofax.

Let us start with a definition of type systems from Wikipedia:

A type system may be defined as a tractable syntactic frame-
work for classifying phrases according to the kinds of values
they compute. A type system associates types with each com-
puted value. By examining the flow of these values, a type sys-
tem attempts to prove that no type errors can occur. The type
system in question determines what constitutes a type error,
but a type system generally seeks to guarantee that operations
expecting a certain kind of value are not used with values for
which that operation makes no sense.

In summary, type systems associate types with program el-
ements and then check whether these types conform to pre-
defined typing rules. We distinguish between dynamic type
systems, which perform the type checks as the program ex-
ecutes, and static type systems, where type checks are per-
formed ahead of execution, mostly based on type specifications
in the program. This chapter focuses exclusively on static type
checks1.

1 If a DSL uses dynamic typing, the
type checks are performed at runtime
based on the actual types of values.
Many of the ways of expressing typing
rules are similar in this case. However,
all the DSLs I have built so far use
static typing – the fact you can actually
have static type systems is a primary
benefit of external DSLs. DSLs with
dynamic type systems are probably
better implemented as internal DSLs,
relying on the dynamic type system of
the host language. Internal DSLs are
beyond the scope of this book.

254 dslbook.org

10.1 Type Systems Basics

To introduce the basic concepts of type systems, let us go back
to the example used at the beginning of the section on syntax.
As a reminder here is the example code, and Fig. 10.1 shows
the abstract syntax tree.

var x: int;
calc y: int = 1 + 2 * sqrt(x)

Figure 10.1: Abstract syntax tree for
the above program. Boxes represent
instances of language concepts, solid
lines represent containment, dotted
lines represent cross-references.

Using this example, we can illustrate in more detail what type
systems have to do:

Declare Fixed Types Some program elements have fixed types.
They don’t have to be derived or calculated – they are al-
ways the same and known in advance. Examples include
the integer constants IntConst (whose type is IntType), the
square root concept sqrt (whose type is double), as well
as the type declarations themselves (the type of IntType is
IntType, the type of DoubleType is Double- Type).

Derive Types For some program elements, the type has to be
derived from the types of other elements. For example, the
type of a VarRef (the variable reference) is the type of the
referenced variable. The type of a variable is the type of its
declared type. In the example above, the type of x and the
reference to x is IntType.

Calculate Common Types Most type systems have some kind of
type hierarchy. In the example, IntType is a subtype of

dsl engineering 255

DoubleType (so IntType can be used wherever DoubleType
is expected). A type system has to support the specifica-
tion of such subtype relationships. Also, the type of certain
program elements may be calculated from the arguments
passed to them; in many cases the resulting type will be the
"more general" one based on the subtyping relationship. Ex-
amples include the Plus and Multi concepts: if the left and
right arguments are two IntTypes, the result is an IntType.
In the case of two DoubleTypes, the result is a DoubleType.
If an IntType and a DoubleType are used, the result is a
DoubleType, the more general of the two.

Type Checks Finally, a type system has to check for type errors
and report them to the user. To this end, a language specifies
type constraints or type checks that are checked at editing
time by the type system based on the calculated types. In
the example, a type error would occur if something with a
DoubleType were assigned to an IntType variable.

The type of a program element is generally not the same as its
language concept2. Different instances of the same concept can 2 For example, the concept (meta class)

of the number 1 is IntConst and its
type is IntType. The type of the sqrt
is DoubleType and its concept is Sqrt.
Only for type declarations themselves
the two are (usually) the same: the type
of an IntType is IntType.

have different types: a + calculates its type as the more general
of the two arguments. So the type of each + instance depends
on the types of the arguments of that particular instance.

Types are often represented with the same technology as
the language concepts. As we will see, in the case of MPS
types are just nodes, i.e. instances of concepts. In Xtext, we use
EObjects, i.e. instances of EClasses as types. In Spoofax, any
ATerm can be used as a type. In all cases, we can even define
the concepts as part of the language. This is useful, because
most of the concepts used as types also have to be used in the
program text whenever types are explicitly declared (as in var

x: int).

10.2 Type Calculation Strategies

Conceptually, the core of a type system can be considered to
be a function typeof that calculates the type for a program el-
ement. This function can be implemented in any way suitable;
after all, it is just program code. However, in practice, three
approaches seem to be used most: recursion, unification and
pattern matching. We will explore each of these conceptually,
and then provide examples in the tool sections.

256 dslbook.org

10.2.1 Recursion

Recursion is widely used in computer science and we assume
that every reader is familiar with it. In the context of type
systems, the recursive approach for calculating a type defines a
polymorphic function typeof, which takes a program element
and returns its type, while calling itself3 to calculate the types 3 Or, most likely, one of the polymor-

phic overrides.of those elements on which its own type depends. Consider
the following example grammar (using Xtext notation):

LocalVarDecl:
"var" name=ID ":" type=Type ("=" init=Expr)?;

The following examples are structurally valid example sen-
tences:

var i: int // 1
var i: int = 42 // 2
var i: int = 33.33 // 3
var i = 42 // 4

Let’s develop the pseudo-code for typeof function the Local-

VarDecl. A first attempt might look as follows:

typeof(LocalVarDecl lvd) {
return typeof(lvd.type)

}

typeof(IntType it) { return it }
typeof(DoubleType dt) { return dt }

Notice how typeof for LocalVarDecl recursively calls typeof

for its type property. Recursion ends with the typeof func-
tions for the types; they return themselves. This implementa-
tion successfully calculates the type of the LocalVarDecl, but
it does not address the type check that makes sure that, if an
init expression is specified, it has the same type (or a subtype)
of the type property. This could be achieved as follows:

typeof(LocalVarDecl lvd) {
if isSpecified(lvd.init) {

assert typeof(lvd.init) isSameOrSubtypeOf typeof(lvd.type)
}
return typeof(lvd.type)

}

Notice (in the grammar) that the specification of the variable
type (in the type property) is also optional. So we have created
a somewhat more elaborate version of the function:

typeof(LocalVarDecl lvd) {
if !isSpecified(lvd.type) && !isSpecified(lvd.init)

raise error

if isSpecified(lvd.type) && !isSpecified(lvd.init)
return typeof(lvd.type)

if !isSpecified(lvd.type) && isSpecified(lvd.init)
return typeof(lvd.init)

dsl engineering 257

// otherwise...
assert typeof(lvd.init) isSameOrSubtypeOf typeof(lvd.type)
return typeof(lvd.type)

}

10.2.2 Unification

Unification is the second well-known approach to type calcu-
lation. Let’s start with a definition from Wikipedia:

Unification is an operation . . . which produces from . . . logic terms
a substitution which . . . makes the terms equal modulo some
equational theory.

While this sounds quite sophisticated, we have all used unifi-
cation in high-school for solving sets of linear equations. The
"equational theory" in this case is algebra. Here is an example:

(1) 2 * x == 10
(2) x + x == 10
(3) x + y == 2 * x + 5

Substitution refers to assignment of values to x and y. A solu-
tion for this set of equations is x := 5, y := 10.

Using unification for type systems means that language de-
velopers specify a set of type equations which contain type
variables (cf. the x and y) as well as type values (the num-
bers in the above example). Some kind of engine is then try-
ing to make all equations true by assigning type values to the
type variables in the type equations. The interesting property
of this approach is that there is no distinction between typing
rules and type checks. We simply specify a set of equations
that must be true for the types to be valid4. If an equation 4 Consequently they can be evaluated

"in both ways". They can be used for
type checking, but they can also be
used to compute "missing" types, i.e.
support type inference. MPS (which
uses this approach) also exploits this
declarative nature of typing rules by
supporting type-aware code completion
(Ctrl-Shift-Space), where MPS
computes the required type from the
current context and then only shows
code completion menu entries that fit
the context regarding their type (and
not just based on the structure).

cannot be satisfied for any assignment of type values to type
variables, a type error is detected. To illustrate this, we return
to the LocalVarDecl example introduced above.

var i: int // 1
var i: int = 42 // 2
var i: int = 33.33 // 3
var i = 42 // 4

The following two type equations constitute the complete type
system specification. The :==: operator expresses type equa-
tion (left side must be the same type as right side), :<=: refers
to subtype-equation (left side must be same type or subtype
of right side, the pointed side of < points to the "smaller", the
more specialized type)5.

5 The operators are taken from MPS,
which uses this unification for the type
system.

typeof(LocalVarDecl.type) :>=: typeof(LocalVarDecl.init)
typeof(LocalVarDecl) :==: typeof(LocalVarDecl.type)

258 dslbook.org

Let us look at the four examples cases. We use capital letters for
free type variables. In the first case, the init expression is not
given, so the first equation is ignored. The second equation can
be satisfied by assigning T, the type of the variable declaration,
to be int. The second equations acts as a type derivation rule
and defines the type of the overall LocalVarDecl to be int.

// var i: int
typeof(int) :>=: typeof(int) // ignore
typeof(T) :==: typeof(int) // T := int

In the second case the type and the init expression are given,
and both have types that can be calculated independently of
the equations specified for the LocalVarDecl (they are fixed).
So the first equation has no free type variables, but it is true

with the type values specified (two ints). Notice how in this
case the equation acts as a type check: if the equation were not
true for the two given values, a type error would be reported.
The second equation works the same as above, deriving T to be
int.

// var i: int = 42
typeof(int) :>=: typeof(int) // true
typeof(T) :==: typeof(int) // T := int

The third case is similar to the second case; but the first equa-
tion, in which all types are specified, is not true, so a type
error is raised.

// var i: int = 33.33
typeof(int) :>=: typeof(double) // error!
typeof(T) :==: typeof(int) // T := int

Case four is interesting because no variable type is explicitly
specified; the idea is to use type inference to derive the type
from the init expression. In this case there are two free vari-
ables in the equations; substituting both with int solves both
equations6. 6 Notice how the unification approach

automatically leads to support for type
inference!// var i = 42

typeof(U) :>=: typeof(int) // U := int
typeof(T) :==: typeof(U) // T := int

To further illustrate how unification works, consider the fol-
lowing example, in which we specify the typing rules for array
types and array initializers:

var i: int[]
var i: int[] = {1, 2, 3}
var i = {1, 2, 3}

Compared to the LocalVarDecl example above, the additional
complication in this case is that we need to make sure that all

dsl engineering 259

the initialization expressions (inside the curly braces) have the
same or compatible types. Here are the typing equations:

typevar T
foreach (e: init.elements)

typeof(e) :<=: T

typeof(LocalVarDecl.type) :>=: new ArrayType(T)
typeof(LocalVarDecl) :==: typeof(LocalVarDecl.type)

We introduce an additional type variable T and iterate over all
the expression in the array initializer, establishing an equation
between each of these elements and T. This results in a set of
equations that each must be satisfied7. The only way to achieve 7 This clearly illustrates that the

:<=: operator is not an assignment,
since if it were, only the last of the
init.elements would be assigned to T,
which clearly makes no sense.

this is for all array initializer members to be of the same (sub-
)type. In the examples, this makes T to be int. The rest of
the equations works as explained above. Notice that if we’d
written var i = {1, 33.33, 3}, then T := double, but the
equations would still work because we use the :>=: operator.

10.2.3 Pattern Matching

In pattern matching we simply list the possible combinations
of types in a big table. Cases that are not listed in the table will
result in errors. For our LocalVarDecl example, such a table
could look like this:

typeof(type) typeof(init) typeof(LocalVarDecl)

int int int

int - int

- int int

double double double

double - double

- double double

double int double

To avoid repeating everything for all valid types, variables could
be used. T+ refers to T or subtypes of T.

typeof(type) typeof(init) typeof(LocalVarDecl)

T T T

T - T

- T T

T T+ T

Pattern matching is used for binary operators in MPS and also
for matching terms in Spoofax.

260 dslbook.org

10.3 Xtext Example

Up to version 1.0, Xtext provided no support for implementing
type systems8. In version 2.0 a type system integrated with the 8 Beyond implementing everything

manually and plugging it into the
constraints.

JVM’s type system is available9. It is not as versatile as it could
9 We illustrate it to some extent in
the section on language modularity
(Section 16.2).

be, since it is limited to JVM-related types and cannot easily
be used for languages that have no relationship with the JVM,
such as C or C++.

As a consequence of this limitation and the fact that Xtext
is widely used, two third-party libraries have been developed:
the Xtext Typesystem Framework (developed by the author10), 10 code.google.com/a/eclipselabs

.org/p/xtext-typesystem/and XTypes (developed by Lorenzo Bettini11. In the remainder
11 xtypes.sourceforge.net/

of this section we will look at the Xtext Typesystem Frame-
work12). 12 For a comparison of the various type

system implementation approaches for
Xtext, see this SLE 2012 paper

L. Bettini, D. Stoll, and M. Voelter.
Approaches and tools for implementing
type systems in xtext. In SLE 2012, 2012

� Xtext Typesystem Framework The Xtext Typesystem Frame-
work is based on the recursive approach. It provides an in-
terface ITypesystem with a method typeof(EObject) which
returns the type for the program element passed in as an argu-
ment. In its simplest form, the interface can be implemented
manually with arbitrary Java code. To make sure type errors
are reported as part of the Xtext validation, the type system
framework has to be integrated into the Xtext validation frame-
work manually:
@Inject
private ITypesystem ts;

@Check(CheckType.NORMAL)
public void validateTypes(EObject m) {

ts.checkTypesystemConstraints(m, this);
}

As we have discussed in Section 10.1, many type systems rely
on a limited set of typing strategies13. The DefaultTypesystem 13 Assigning fixed types, deriving the

type of an element from one of its
properties, calculating the type as the
common type of its two arguments.

class implements ITypesystem and provides support for declar-
atively specifying these strategies. In the code below, a sim-
plified version of the type system specification for the cool-
ing language, the initialize method defines one type (the
type of the IntType is a clone of itself) and defines one typ-
ing constraint (the expr property of the IfStatement must be
a Boolean). Also, for types which cannot be specified declara-
tively, an operation type(..) can be implemented to program-
matically define types. The example below shows this for the
NumberLiteral.
public class CLTypesystem extends DefaultTypesystem {

private CoolingLanguagePackage cl = CoolingLanguagePackage.eINSTANCE;

dsl engineering 261

@Override
protected void initialize() {

useCloneAsType(cl.getIntType());
ensureFeatureType(cl.getIfStatement(),

cl.getIfStatement_Expr(), cl.getBoolType());
}

public EObject type(NumberLiteral s, TypeCalculationTrace trace) {
if (s.getValue().contains(".")) {

return create(cl.getDoubleType());
}
return create(cl.getIntType());

}
}

In addition to the API used in the code above, the Typesys-
tem Framework also comes with a textual DSL to express typ-
ing rules (Fig. 10.2 shows a screenshot). From the textual type
system specification, a generator generates the implementation
of the Java class that implements the type system using the
APIs14. The DSL provides the following advantages compared 14 In that sense, the DSL is just a facade

on top of a framework; however, it is a
nice example of how a DSL can provide
added value over a framework or API.

to the specification in Java:

• The notation is much more concise compared to the API.

• Referential integrity and code completion with the target
language meta model is provided.

• If the typing rules are incomplete, a static error is shown
in the editor, as opposed to getting runtime errors during
initialization of the framework (see the warning in Fig. 10.2).

• Ctrl-Click on a property jumps to the typing rule that de-
fines the type for that property.

� Type System for the Cooling Language The complete type
system for the cooling language is 200 lines of DSL code, and
another 100 lines of Java code. We’ll take a look at some rep-
resentative examples. Primitive types usually use a copy of
themselves as their type15: 15 It has to be a copy as opposed to

the element itself, because the actual
program element must not be pulled
out of the EMF containment tree.

typeof BoolType -> clone
typeof IntType -> clone
typeof DoubleType -> clone
typeof StringType -> clone

Alternatively, since all primitive types extend an abstract meta
class PrimitiveType, this could be shortened to the follow-
ing, where the + operator specifies that the rule applied for the
specified concept and all its subconcepts:

typeof PrimitiveType + -> clone

262 dslbook.org

Figure 10.2: The Xtext-based editor
for the type system specification DSL
provided by the Xtext Typesystem
Framework. It is a nice example of
the benefits of a DSL over an API
(on which it is based), since it can
statically show inconsistencies in the
type system definition, has a more
concise syntax and provides customized
go-to-definition functionality.

For concepts that have a fixed type that is different from the
concept itself (or a clone), the type can be specified explicitly:

typeof StringLiteral -> StringType

Type systems are most important, and most interesting, in the
context of expressions. Since all expressions derive from the
abstract Expr concept, we can declare that this class is abstract,
and hence no typing rule is given16: 16 However, the editor reports a warning

if there are concrete subclasses of an
abstract class for which no type is
specified either.

typeof Expr -> abstract

The notation provided by the DSL groups typing rules and
type checks for a single concept. The following is the typing
information for the Plus concept. It declares the type of Plus
to be the common type of the left and right arguments (the
"more general" one) and then adds two constraints that check
that the left and right argument are either ints or doubles17.

17 These rules do not support using
+ for concatenating strings and for
concatenating strings with numbers
(as in "a" + 1). However, support for
this feature can be provided as well by
using a coercion rule.

dsl engineering 263

typeof Plus -> common left right {
ensureType left :<=: IntType, DoubleType
ensureType right :<=: IntType, DoubleType

}

The typing rules for Equals are also interesting. It specifies
that the resulting type is boolean, that the left and right

arguments must be COMPARABLE, and that the left and right
arguments be compatible. COMPARABLE is a type characteristic:
this can be considered as collection of types. In this case it
is IntType, DoubleType and BoolType. The :<=>: operator
describes unordered compatibility: the types of the two prop-
erties left and right must either be the same, or left must
be a subtype or right, or vice versa.
characteristic COMPARABLE {

IntType, DoubleType, BoolType
}
typeof Equals -> BoolType {

ensureType left :<=: char(COMPARABLE)
ensureType right :<=: char(COMPARABLE)
ensureCompatibility left :<=>: right

}

There is also support for ordered compatibility, as can be seen
from the typing rule for AssignmentStatement below. It has
no type (it is a statement), but the left and right argument
must exhibit ordered compatibility: they either have to be the
same types, or right must be a subtype of left, but not vice
versa:
typeof AssignmentStatement -> none {

ensureCompatibility right :<=: left
}

The framework uses the generation gap pattern, i.e. from the
DSL-based type specification, a generator creates a class CLType-
systemGenerated (for the cooling language) that contains all
the code that can be derived from the type system specifica-
tion. Additional specifications that cannot be expressed with
the DSL (such as the typing rule for NumberLiteral shown
earlier, or type coercions) can be implemented in Java18.

18 The type system DSL is incomplete,
since some aspects of type systems have
to be coded in a lower level language
(Java). However, in this case this is
appropriate, since it keeps the type
system DSL simple and, since the DSL
users are programmers, it is not a
problem for them to write a few lines of
Java code.

10.4 MPS Example

MPS includes a DSL for type system rule definition. It is based
on unification, and pattern matching for binary operators. We
discuss each of them.

� Unification The type of a LocalVariableReference is cal-
culated with the following typing rule19. It establishes an equa-

19 Since only the expression within the
do {...} block has to be written by
the developer, we’ll only show that
expression in the remaining examples.

264 dslbook.org

tion between the type of the LocalVariableReference itself
and the variable it references. typeof is a built-in operator that
returns the type for its argument.

rule typeof_LocalVariableReference {
applicable for concept = LocalVariableReference as lvr
overrides false

do {
typeof(lvr) :==: typeof(lvr.variable);

}
}

The rules for the Boolean NotExpression contains two equa-
tions. The first one makes sure that the negated expression is
Boolean. The second one types the NotExpression itself to be
Boolean20. 20 Just as in Xtext, in MPS types are

instances of language concepts, so
they can be instantiated like any other
concept. MPS supports two ways of
doing this. The first one (as shown
in the first equation above) uses the
BaseLanguage new expression. The
second one uses a quotation, where
a "piece of tree" can be inlined into
program code. It uses the concrete
syntax of the quoted construct – here: a
BooleanType – in the quotation.

typeof(notExpr.expression) :==: new node<BooleanType>();
typeof(notExpr) :==: <boolean>;

A more interesting example is the typing of structs. Consider
the following C code:

struct Person {
char* name;
int age;

}

int addToAge(Person p, int delta) {
return p.age + delta;

}

Figure 10.3: Structure diagram of the
language concepts involved in typing
structs.

At least two program elements have to be typed: the parameter
p as well as the p.age expression. The type of the FunctionPa-

rameter concept is the type of its type property. This is not
specific to the fact that the parameter refers to a struct.

typeof(parameter) :==: typeof(parameter.type);

The language concept that represents the Person type in the
parameter is a StructType. A StructType refers to the Struct-
Declaration whose type it represents, and extends Type, which
acts as the super type for all types in mbeddr C21.

21 This is essentially a use of the
Adapter pattern.

p.age is an instance of a StructAttributeReference. It is
defined as follows (see Fig. 10.4 as well as the code below). It is
an Expression, owns another expression property (on the left
of the dot), as well as a reference to a StructAttribute (name
or age in the example).

Figure 10.4: Structure diagram of
the language concepts involved in
references to struct attributes.

concept StructAttributeReference extends Expression
implements ILValue

children:
Expression context 1

references:
StructAttribute attribute 1

dsl engineering 265

The typing rule for the StructAttributeReference is shown
in the code below. The context, the expression on which we
use the dot operator, has to be a GenericStructType, or a
subtype thereof (i.e. a StructType which points to an actual
StructDeclaration). Second, the type of the whole expres-
sion is the type of the reference attribute (e.g., int in the
case of p.age).

typeof(structAttrRef.context) :<=: new node<GenericStructType>();
typeof(structAttrRef) :==: typeof(structAttrRef.attribute);

This example also illustrates the interplay between the type
system and other aspects of language definition, specifically
scopes. The referenced StructAttribute (on the right side of
the dot) may only reference a StructAttribute that is part of
the the StructDeclaration that is referenced from the Struct-
Type. The following scope definition illustrates how we access
the type of the expression from the scoping rule:

link {attribute}
search scope:

(model, scope, referenceNode, linkTarget, enclosingNode)->join(
ISearchScope | sequence<node< >>) {
node<> exprType = typeof(referenceNode.expression);
if (exprType.isInstanceOf(StructType)) {

return (exprType as StructType).struct.attributes;
} else {

return null;
}

}

� Pattern Matching As we will discuss in the chapter on lan-
guage extension and composition, MPS supports incremental
extension of existing languages. Extensions may also intro-
duce new types, and, specifically, may allow existing operators
to be used with these new types. This is facilitated by MPS’
use for pattern matching in the type system, specifically for bi-
nary operators such as +, > or ==. As an example, consider the
introduction of complex numbers into C. It should be possible
to write code like this:

complex c1 = (1, 2i);
complex c2 = (3, 5i);
complex c3 = c1 + c2; // results in (4, 7i)

The + in c1 + c2 should be the + defined by the original C lan-
guage22. Reusing the original + requires that the typing rules

22 Alternatively, we could define a new
+ for complex numbers. While this
would work technically (remember
there is no parser ambiguity problems),
it would mean that users, when enter-
ing a +, would have to decide between
the original plus and the new plus for
complex numbers. This would not be
very convenient from a usability per-
spective. By reusing the original plus
we avoid this problem.

defined for PlusExpression in the original C language will
now have to accept complex numbers; the original typing rules
must be extended. To enable this, MPS supports overloaded
operations containers. The following container, taking from the

266 dslbook.org

mbeddr C core language, defines the type of + and - if both
arguments are int or double.

overloaded operations rules binaryOperation

operation concepts: PlusExpression | MinusExpression
left operand type: <int>
right operand type: <int>
operation type: (operation, leftOperandType, rightOperandType)->node<> {

<int>;
}

operation concepts: PlusExpression | MinusExpression
left operand type: <double>
right operand type: <double>
operation type: (operation, leftOperandType, rightOperandType)->node<> {

<double>;
}

To integrate these definitions with the regular typing rules, the
following typing rule must be written23. The typing rules tie in 23 Note that only one such rule must

be written for all binary operations.
Everything else will be handled with
the overloaded operations containers.

with overloaded operation containers via the operation type

construct:

rule typeof_BinaryExpression {
applicable for concept = BinaryExpression as binex

do {
node<> optype = operation type(binex , left , right);
if (optype != null) {

typeof(binex) :==: optype;
} else {

error "operator " + be.concept.name + " cannot be applied to " +
left.concept.name + "/" + right.concept.name -> be;

}
}

}

The important aspect of this approach is that overloaded oper-
ation containers are additive. Language extensions can simply
contribute additional containers. For the complex number ex-
ample, this might look like the following: we declare that as
soon as one of the arguments is of type complex, the resulting
type will be complex as well.

PlusExpression | MinusExpression one operand type: <complex> operation type
:

(operation, leftOperandType, rightOperandType)->node<> {
<complex>;

}

The type system DSL in MPS covers a large fraction of the
type system rules encountered in practice. The type system for
BaseLanguage, which is an extension of Java, is implemented
in this way, as is the C type system in mbeddr. However, for
exceptional cases, procedural BaseLanguage code can be used
to implement typing rules as well.

dsl engineering 267

10.5 Spoofax Example

Spoofax’ rewrite rules support both the recursive approach and
pattern matching in specifying type systems. However, in most
projects the recursive approach will be found. Therefore we
will focus on it in the remainder of the section.

� Typing Rules in Spoofax For typing rules in Spoofax, the
basic idea is to use rewrite rules to rewrite language constructs
to their types. For example, the following rule rewrites integer
numbers to the numeric type. This is an example of assigning
a fixed type to a language element.

type-of: Int(value) -> NumType()

Similarly, we can rewrite a + expression to the numeric type:

type-of: Add(exp1, exp2) -> NumType()

However, it is good practice to assign types only to well-typed
language constructs. Thus, we should add type checks for the
subexpressions:

type-of:
Add(exp1, exp2) -> NumType()
where

<type-of> exp1 => NumType();
<type-of> exp2 => NumType()

Spoofax allows for multiple typing rules for the same language
construct. This is particular useful for typing overloaded oper-
ators, since each case can be handled by a separate typing rule.
For example, when the operator + is overloaded to support
string concatenation, we can add the following typing rule:

type-of:
Add(exp1, exp2) -> StringType()
where

<type-of> exp1 => StringType();
<type-of> exp2 => StringType()

� Persistence of Typing Information Spoofax stores informa-
tion about the definition sites of names in an in-memory data
structure called the index. This typically includes information
about types. For example, the type of property and variable
references is initially not available at these references, but only
at the declaration. But when Spoofax discovers a declaration,
it stores its type in the index. Since declaration and references
are annotated with the same URI, this information can also be
accessed at references. Consider the following name binding
rules which also involve type information:

268 dslbook.org

Property(p, t): defines Property p of type t
Param(p, t): defines Variable p of type t

These rules match property and parameter declarations, bind-
ing their name to p and their type to t. Spoofax stores this type
in the index as an information about the property or parameter
name. In the typing rules for variable references and property
accesses, we need to retrieve this type information from the
index:

type-of:
Var(name) -> <index-lookup-type> name

type-of:
PropAccess(exp, name) -> <index-lookup-type> name

Both rules rewrite references to the type of their definition sites.
First, the definition of a reference is looked up in the index.
Next, this definition is rewritten to its type. This uses the
index-lookup-type rule, which implements the actual type
lookup in the index.

In the previous example, the type was explicitly declared in
property and parameter declarations. But the type of a defini-
tion site is not always explicitly declared. For example, variable
declarations in Mobl come with an initial expression, but with-
out an explicit type24. 24 The type is inferred from the initial

expression.
var x = 42;

The type of x is the type of its initial expression 42, that is,
NumType(). To make this type of x explicit, we need to calculate
the type of the initial expression. The following name binding
rule makes this connection between name binding and type
system:

Declare(v, e):
defines Variable v of type t in subsequent scope
where e has type t

� Additional Types In Spoofax, types are represented as terms.
The constructors for these terms are specified in the syntax def-
inition as labels to productions. Without the ability to define
additional constructors, type systems are restricted to types
which users can explicitly state in programs, for example in
variable declarations. But many type systems require addi-
tional types which do not originate from the syntax of the lan-
guage. Typical examples are top and bottom types in type
hierarchies25. For example, Java’s type system has a special

25 A top type is a supertype of every
other type; a bottom type is a subtype of
every other type.type for null values at the bottom of its type hierarchy, which

dsl engineering 269

cannot be used as a type in Java programs. Spoofax allows
constructors for additional types in signatures to be defined:

signature constructors
FunType: List(Type) * Type -> Type

This defines an additional constructor FunType for Type. In
general, a constructor definition is of the form cons: Arg-1

* ...* Arg-n -> Sort, where cons is the constructor name,
Sort is the sort this constructor contributes to, and Arg-1 to
Arg-n are the sorts of its arguments. In the example, the first
subterm should be a list of parameter types (List(Type)), while
the second subterm should be the return type. We can employ
the so-defined function type in the typing rules for function
definitions and calls:

Function(f, p*, t):
defines Function f of type FunType(t*, t)
where p* has type t*

type-of:
Call(name, arg*) -> type
where

<index-lookup-type> name => FunType(type*, type)

� Type Constraints Like any other constraint, type constraints
are specified in Spoofax by rewrite rules which rewrite lan-
guage constructs to errors, warnings or notes. For example, we
can define a constraint on additions26: 26 An expression is non-well-typed, or

ill-typed, if it cannot be rewritten to
a type. But reporting an error on all
ill-typed expressions will make it hard
to discover the root cause of the error,
since every expression with an ill-typed
subexpression is also ill-typed. That is
why we also check the subexpressions
of the addition to be well-typed. The
types of the subexpressions are then
used to construct a meaningful error
message.

constraint-error:
exp -> (exp, $[Operator + cannot be applied to arguments

[<pprint> type1], [<pprint> type2].])
where

!exp => Add(exp1, exp2);
<not(type-of)> exp;
type1 := <type-of> exp1;
type2 := <type-of> exp2

� Type Compatibility Whether two types are compatible is
again defined by rewrite rules. These rules rewrite a pair of
types to the second element of the pair, if the first one is com-
patible with it. In the simplest case, both types are the same:

is-compatible-to: (type, type) -> type

This rule only succeeds if it gets a tuple with two types that
are identical (they both match the same variable type). A type
might also be compatible with any type with which its super-
type is compatible:

is-compatible-to:
(subtype, type) -> type
where

270 dslbook.org

supertype := <supertype> subtype;
<is-compatible-to> (supertype, type)

Here, the subtype relation is defined by a rewrite rule, which
rewrites a type to its supertype:

supertype: IntType() -> FloatType()

This approach only works for type systems in which each type
has at most one supertype. When a type system allows for
multiple supertypes, we have to use lists of supertypes and
need to adapt the rule for is-compatible-to accordingly:

supertypes: IntType() -> [FloatType()]

is-compatible-to:
(subtype, type) -> type
where

supertype* := <supertypes> subtype;
<fetch-elem(is-compatible-to(|type))> supertype*

Here, fetch-elem tries to find an element in a list of super-
types, which is compatible to type. It uses a variant of the rule
is-compatible-to in order to deal with a list of types. This
variant does not rewrite a pair of types, but only the first type.
The second type is passed as a parameter to the rewrite rule. It
can be defined in terms of the variant for pairs:

is-compatible-to(|type2): type1 -> <is-compatible-to> (type1, type2)

The compatibility of types can easily be extended to compati-
bility of lists of types:

is-compatible-to:
(type1*, type2*) -> type*
where

type* := <zip(is-compatible-to)> (type1*, type2*)

A list type1* of types is compatible with another list type2*
of types, if each type in type1* is compatible with the cor-
responding type in type2*. zip pairs up the types from both
lists, rewrites each of these pairs by applying is-compatible-to

to them, and collects the results in a new list type*.
With the extension for lists, we can define a constraint for

function calls, which ensures that the types of the actual argu-
ments are compatible with the types of the formal parameters:

constraint-error:
Call(name, arg*) -> (arg*,

$[Function [name] cannot be applied to arguments
[<pprint> arg-type*].])

where
fun-type := <index-lookup-type> name ;
!fun-type => FunType(para-type*, type) ;
arg-type* := <map(type-of)> arg* ;
<not(is-compatible-to)> (arg-type*, par-type*)

11
Transformation and Generation

In the case of both transformation and generation, another
artifact is created from a program, often a program in a
less abstract language. This is in contrast to interpretation,
which executes programs directly without creating interme-
diate artifacts. Transformation refers to the case in which
the created artifact is an AST, and code generation refers
to the case in which textual concrete syntax is created. In
some systems, for example MPS, the two are unified into a
common approach.

Transformation of models is an essential step in working with
DSLs. We typically distinguish between two different cases: if
models are transformed into other models, we call this model
transformation. If models are transformed into text (usually
source code, XML or other configuration files), we refer to code
generation1. However, as we will see in the examples below, de- 1 As we discuss in Part I, we do not

cover generation of byte code or ma-
chine code. This is mainly for the
following reason: by generating the
source code of a GPL, we can reuse this
GPL’s compiler or interpreter, including
all its optimizations (or platform inde-
pendence). We’d have to rebuild these
optimizations in the DSL’s generator.
This is a lot of work, and requires skills
that are quite different from those most
DSL developers (including me) posses.

pending on the approach and tooling used, this distinction is
not always easy to make, and the boundary becomes blurred.

A fundamentally different approach to processing models
is interpretation. While in the case of transformation and gen-
eration the model is migrated to artifacts expressed in a dif-
ferent language, in the case of interpretation no such migra-
tion happens. Instead, an interpreter traverses an AST and di-
rectly performs actions depending on the contents of the AST.
Strictly speaking, we have already seen examples of interpreta-
tion in the sections on constraints and type systems: constraint
and type checks can be seen as an interpreter where the ac-
tions performed as the tree is traversed are checks of various
kinds. However, the term interpretation is typically only used

272 dslbook.org

for cases in which the actions actually execute the model. Exe-
cution refers to performing the actions that are associated with
the language concepts as defined by the execution semantics of
the concepts. We discuss interpretation in the next chapter2. 2 We elaborate on the trade-offs be-

tween transformation and generation
versus interpretation in the chapter on
language design (Section 4.3.5).

Note that when developing transformations and code gener-
ators, special care must be taken to preserve or record trace in-
formation that can be used for error reporting and debugging.
In both cases, we have to be able to go back from the gener-
ated code to the higher-level abstractions it has been generated
from, so we that can report errors in terms of the higher-level
abstractions or show the higher-level source code during a de-
bugging session. We discuss this challenge to some extent in
Chapter 15.

11.1 Overview of the approaches

Classical code generation traverses a program’s AST and out-
puts programming language source code (or other text). In
this context, a clear distinction is made between models and
source code. Models are represented as an AST expressed with
some preferred AS formalism (or meta meta model); an API
exists for the transformation to interact with the AST. In con-
trast, the generated source code is treated as text, i.e. a se-
quence of characters. The tool of choice for transforming an
AST into text are template languages. They support the syn-
tactic mixing of model traversal code and to-be-generated text,
separated by some escape character3. Since the generated code 3 Xpand and Xtend use «guillemets».

is treated merely as text, there is no language awareness (and
corresponding tool support) for the target language while edit-
ing templates. Xtend4, the language used for code generation 4 Xtend is also sometimes referred

to as Xtend2, since it has evolved
from the old oAW Xtend language.
In this chapter we use Xtend to re-
fer to Xtend2. It can be found at
www.eclipse.org/xtend/.

in Xtext, is an example of this approach.
Classical model transformation is the other extreme, in that

it works with ASTs only and does not consider the concrete
syntax of either the source or the target languages. The source
AST is transformed using the source language AS API and a
suitable traversal language. As the tree is traversed, the API of
the target language AS is used to assemble the target model5. 5 Note that in this chapter we look at

transformation in the context of re-
finement, i.e. the target model is less
abstract and more detailed than the
source model. Model transformations
can also be used for other purposes,
including the creation of views, refac-
torings and reverse engineering.

For this to work smoothly, most specialized transformation lan-
guages assume that the source and target models are build
with the same AS formalism (e.g., EMF Ecore). Model trans-
formation languages typically provide support for efficiently
navigating source models, and for creating instances of AS of

dsl engineering 273

the target language (tree construction). Examples for this ap-
proach once again include Xtext’s Xtend, as well as QVT Oper-
ational6 and ATL7. MPS can also be used in this way. A slightly 6 en.wikipedia.org/wiki/QVT

7 www.eclipse.org/atl/different approach just establishes relations between the source
and target models instead of "imperatively" constructing a tar-
get tree as the source is traversed. While this is often less in-
tuitive to write down, the approach has the advantage that it
supports transformation in both directions, and also supports
model diff8. QVT relational9 is an example of this approach.

8 It does so by "relating" two instances
of the same language and marking both
as readoqnly; the engine then points
out the difference between the two.

In addition to the two classical cases described above, there
are also hybrid approaches that blur the boundaries between
these two clear-cut extremes. They are based on the support
for language modularization and composition, in the sense that
the template language and the target language can be com-
posed. As a consequence, the tooling is aware of the syntactic
structure and the static semantics of the template language and
the target language. Both MPS and Spoofax support this ap-
proach to various extents.

In MPS, a program is projected and every editing opera-
tion directly modifies the AST, while using a typically textual-
looking notation as the "user interface". Template code (the
code that controls the transformation process) and target-lan-
guage code (the code you want to generate) can be represented
as nested ASTs, each using its own textual syntax. MPS uses
a slightly different approach based on a concept called anno-
tations. Projectional editors can store arbitrary information in
an AST. Specifically, they can store information that does not
correspond to the language underlying a particular ASTs. MPS
code generation templates exploit this approach: template code
is fundamentally an instance of the target language. This "ex-
ample model" is then annotated with template annotations that
define how the example model relates to the source model,
and which example nodes must be replaced by (further trans-
formed) nodes from the source model. This allows any lan-
guage to be "templatized" without changing the language def-
inition itself. The MPS example below will elaborate on this
approach.

Spoofax, with its Stratego transformation language, uses a
similar approach based on parser technology. As we have al-
ready seen, the underlying grammar formalism supports flex-
ible composition of grammars. So the template language and
the target language can be composed, retaining tool support for

274 dslbook.org

both of these languages. Execution of the template directly con-
structs an AST of the target language, using the concrete syntax
of the target language to specify its structure. The Spoofax ex-
ample will provide details.

11.2 Xtext Example

Since Xtext is based on EMF, generators can be built using
any tool that can generate code from EMF models, includ-
ing Acceleo10, Jet11 and of course Xtend. Xtend is a Java-like 10 www.acceleo.org/ pages/home/en

11 www.eclipse.org/
modeling/m2t/?project=jet

general-purpose language that removes some of Java’s syntac-
tic noise (it has type inference, property access syntax, opera-
tor overloading) and adds syntactic sugar (extension methods,
multiple-dispatch and closures). Xtend comes with an inter-
preter and a compiler, the latter generating Java source. Xtend
is built with Xtext, so it comes with a powerful Xtext-based edi-
tor. One particularly interesting language feature in the context
of code generators are Xtend’s template expressions. Inside these
expressions, a complete template language is available (similar
to the older Xpand language). Xtend also provides automatic
whitespace management12. The functional abstractions pro- 12 Indentation of template code is

traditionally a challenge, because it
is not clear whether whitespace in
templates is intended to go into the
target file, or is just used for indenting
the template itself.

vided by Xtend (higher-order functions in particular) make it
very well suited for navigating and querying models. In the
rest of this section we will use Xtend for writing code genera-
tors and model transformations.

11.2.1 Generator

We will now look at generating the C code that implements
cooling programs. Fig. 11.1 shows a screenshot of a typical
generator. The generator is an Xtend class that implements
IGenerator, which requires the doGenerate method to be im-
plemented. The method is called for each model file that has
changed13 (represented by the resource argument), and it has

13 This is achieved by a Builder that
comes with Xtext. Alternatively, Xtend
generators can also be run from the
command line, from another Java
program or from ant and maven. Also,
other strategies can be implemented in
the Eclipse IDE itself, based on custom
builder participants, buttons or menu
entries.

to output the corresponding generated code via the fsa (file
system access) object14.

14 Like any other Xtext language aspect,
the generator has to be registered with
the runtime module, Xtext’s main
configuration data structure. Once this
is done, the generator is automatically
called for each changed resource
associated with the respective language.

When generating code from models, there are two distinct
cases. In the first case, the majority of the generated code is
fixed; only some isolated parts of the code depend on the in-
put model. In this case a template language is the right tool,
because template control code can be "injected" into code that
looks similar to what should be generated. In the other case
there are fine-grained structures, such as expressions. Since

dsl engineering 275

Figure 11.1: The top-level structure of
a generator written in Xtend is a class
that implements the IGenerator inter-
face, which requires the doGenerate
method. Inside generator methods,
template expressions (delimited with
triple single quotes) are typically used.
Inside those, guillemets (the small
double angle brackets) are used to
switch between to-be-generated code
(gray background) and template control
code. Note also the gray whitespace
in the init function. Gray whitespace
is whitespace that will end up in the
generated code. White whitespace
is used for indentation of template
code; Xtend figures out which is which
automatically.

these are basically trees, using template languages for these
parts of programs seems unnatural and results in a lot of syn-
tactic noise. A more functional approach is useful. Xtend can
deal with both cases elegantly and we will illustrate both cases
as part of this example.

We start with the high-level structure of the C code gen-
erated for a cooling program. The following piece of code
illustrates Xtend’s power to navigate a model as well as the
template syntax for text generation.

def compile(CoolingProgram program) {
’’’
<<FOR appl: program.moduleImports.map(mi|mi.module).filter(typeof(
Appliance))>>

<<FOR c: appl.contents>>
#define <<c.name>> <<c.index>>

<<ENDFOR>>
<<ENDFOR>>

276 dslbook.org

// more ...
’’’

}

The FOR loop iterates over the moduleImports collection of the
program, follows the module reference of each of these, and
then selects all Appliances from the resulting collection. The
nested loop then iterates over the contents of each appliance
and generates a #define15. After the #define we generate

15 Notice how the the first two and the
last two lines are enclosed in guillemets.
Since we are in template expression
mode (inside the triple single quotes)
the guillemets escape to template
control code. The #define is not in
guillemets, so it is generated into the
target file.the name of the respective content element and then its index.

From within templates, the properties and references of model
elements (such as the name or the module or the contents) can
simply be accessed using the dot operator. map and filter

are collection methods defined by the Xtend standard library16. 16 map creates a new collection from
an existing collection where, for each
element in the existing collection,
the expression after the | creates
the corresponding value for the new
collection. filter once again creates
a new collection from an existing one
where only those elements are included
that are an instance of the type passed
as an argument to filter.

We also have to generate an enum for the states in the cooling
program.

typedef enum states {
null_state,
<<FOR s : program.concreteStates SEPARATOR ",">>

<<s.name>>
<<ENDFOR>>

};

Here we embed a FOR loop inside the enum text. Note how we
use the SEPARATOR keyword to put a comma between two sub-
sequent states. In the FOR loop we access the concreteStates

property of the cooling program. However, if you look at the
grammar or the meta model, you will see that no concrete-

States property is defined there. Instead, we call an extension
method17; since it has no arguments, it looks like property ac- 17 An extension method is an additional

method for an existing class, defined
without invasively changing the defini-
tion of the class.

cess. The method is defined further down in the Cooling-

LanguageGenerator class and is essentially a shortcut for a
complex expression:

def concreteStates(CoolingProgram p) {
p.states.filter(s | !(s instanceof BackgroundState) && !(s instanceof
ShadowState))

}

The following code is part of the generator that generates the
code for a state transition. It first generates code to execute the
exit actions of the current state, then performs the state change
(current_state = new_state;) and finally executes the entry
actions of the new state (not shown):

if (new_state != current_state) {
<<IF program.concreteStatesWitExitActions.size > 0>>

// execute exit action for state if necessary
switch (current_state) {

<<FOR s: p.concreteStatesWitExitActions>>
case <<s.name>>:

<<FOR st: s.exitStatements>>

dsl engineering 277

<<st.compileStatement>>
<<ENDFOR>>
break;

<<ENDFOR>>
default:

break;
}
<<ENDIF>>

// The state change
current_state = new_state;

// similar as above, but for entry actions
}

The code first uses an IF statement to check whether the pro-
gram has any states with exit actions (by calling the concrete-

StatesWitExitActions extension method). The subsequent
switch statement is only generated if we have such states.
The switch switches over the current_state, and then adds
a case for each state with exit actions18. Inside the case we it- 18 The s.name expression in the case is

actually a reference to the enum literal
generated earlier for the particular
state. From the perspective of Xtend,
we simply generate text: it is not
obvious from the template that the
name corresponds to an enum literal.
Potential structural or type errors are
only revealed upon compilation of the
generated code.

erate over all the exitStatements and call compileStatement
for each of them. compileStatement is marked with dispatch,
which makes it a multimethod: it is polymorphically over-
loaded based on its argument19. For each statement in the cool-

19 Note that Java can only perform a
polymorphic dispatch based on the
this pointer. Xtend can dispatch
polymorphically over the arguments of
methods marked as dispatch.

ing language, represented by a subclass of Statement, there
is an implementation of this method. The next piece of code
shows some example implementations.
class StatementExtensions {

def dispatch compileStatement(Statement s){
// raise error if the overload for the abstract class is called

}

def dispatch compileStatement(AssignmentStatement s){
s.left.compileExpr +" = " + s.right.compileExpr +";"

}

def dispatch compileStatement(IfStatement s){
’’’
if(<<s.expr.compileExpr>>){

<<FOR st : s.statements>>
<<st.compileStatement>>

<<ENDFOR>>
}<<IF s.elseStatements.size > 0>> else {

<<FOR st : s.elseStatements>>
<<st.compileStatement>>

<<ENDFOR>>
}<<ENDIF>>
’’’

}

// more ...
}

The implementation of the overloaded methods simply returns
the text string that represents the C implementation for the re-
spective language construct20. Notice how the implementation 20 The two examples shown are simple

because the language construct in the
DSL closely resembles the C code in the
first place.

for the IfStatement uses a template string, whereas the one
for AssignmentStatement uses normal string concatenation.

278 dslbook.org

The compileStatement methods are implemented in the class
StatementExtensions. However, from within the Cooling-

LanguageGenerator they are called using method syntax (st.
compileStatement). This works because they are injected as
extensions using the following statement:
@Inject extension StatementExtensions

Expressions are handled in the same way as statements. The in-
jected class ExpressionExtensions defines a set of overloaded
dispatch methods for Expression and all its subtypes. Since
expressions are trees, a compileExpr method typically calls
compileExpr recursively on the children of the expression, if
it has any. This is the typical idiom to implement generators
for expression languages21. 21 Earlier we distinguished between

generating a lot of code with only
specific parts being model-dependent,
and fine-grained tree structures in
expressions: this is an example of the
latter.

def dispatch String compileExpr (Equals e){
e.left.compileExpr + " == " + e.right.compileExpr

}

def dispatch String compileExpr (Greater e){
e.left.compileExpr + " > " + e.right.compileExpr

}

def dispatch String compileExpr (Plus e){
e.left.compileExpr + " + " + e.right.compileExpr

}

def dispatch String compileExpr (NotExpression e){
"!(" + e.expr.compileExpr + ")"

}

def dispatch String compileExpr (TrueExpr e){
"TRUE"

}

def dispatch String compileExpr (ParenExpr pe){
"(" + pe.expr.compileExpr + ")"

}

def dispatch compileExpr (NumberLiteral nl){
nl.value

}

11.2.2 Model-to-Model Transformation

For model-to-model transformations, the same argument can
be made as for code generation: since Xtext is based on EMF,
any EMF-based model-to-model transformation engine can be
used with Xtext models. Examples include ATL, QVT-O, QVT-
R and Xtend22. 22 Of course you could use any JVM-

based compatible programming lan-
guage, including Java itself. However,
Java is really not very well suited, be-
cause of its clumsy support for model
navigation and object instantiation.
Scala and Groovy are much more
interesting in this respect.

Model-to-model transformations are similar to code genera-
tors in the sense that they traverse over the model. But instead
of producing a text string as the result, they produce another
AST. So the general structure of a transformation is similar. In
fact, the two can be mixed. Let us go back to the first code
example of the generator:

dsl engineering 279

def compile(CoolingProgram program) {
val transformedProgram = program.transform
’’’
<<FOR appl : transformedProgram.modules.map(m|m.module).filter(typeof(
Appliance))>>

<<FOR c : appl.contents>>
#define <<c.name>> <<c.index>>

<<ENDFOR>>
<<ENDFOR>>

// more ...
’’’

}

We have added a call to a function transform at the beginning
of the code generation process. This function creates a new
CoolingProgram from the original one, and we store it in the
transformedProgram variable. The code generator then uses
the transformedProgram as the source from which it gener-
ates code. In effect, we have added a "preprocessor" model-to-
model transformation to the generator23. 23 As discussed in the design section

(Section 4.3), this is one of the most
common uses of model-to-model
transformations.

The transform function (see below) enriches the existing
model. It creates a new state (EMERGENCY_STOP), creates a new
event (emergency_button_pressed) and then adds a new tran-
sition to each existing state that checks whether the new event
occurred, and if so, transitions to the new EMERGENCY_STOP

state. Essentially, this adds emergency stop behavior to any
existing state machine. Let’s look at the implementation:
class Transformation {

@Inject extension CoolingBuilder
CoolingLanguageFactory factory = CoolingLanguageFactory::eINSTANCE

def CoolingProgram transform(CoolingProgram p) {
p.states += emergencyState
p.events += emergencyEvent
for (s: p.states.filter(typeof(CustomState)).filter(s|s !=
emergencyState)) {
s.events += s.eventHandler [

symbolRef [
emergencyEvent()

]
changeStateStatement(emergencyState())

]
}
return p;

}

def create result: factory.createCustomState emergencyState() {
result.name = "EMERGENCY_STOP"

}

def create result: factory.createCustomEvent emergencyEvent() {
result.name = "emergency_stop_button_pressed"

}
}

The two create methods create new objects, as the create

prefix suggests24. However, simply creating objects could be

24 The factory used in these methods
is the way to create model elements in
EMF. It is generated as part of the EMF
code generatordone with a regular method as well:

280 dslbook.org

def emergencyState() {
val result = factory.createCustomState
result.name = "EMERGENCY_STOP"
result

}

What is different in create methods is that they can be called
several times, and they still only ever create one object (for each
combination of actual argument values). The result of the first
invocation is cached, and all subsequent invocations return the
object created during the first invocation. Such a behavior is very
useful in transformations, because it removes the need to keep
track of already created objects. For example, in the transform

method, we have to establish references to the state created by
emergencyState and the event created by emergencyEvent. To
do that, we simply call the same create extension again. Since
it returns the same object as during the first call in the first two
lines of transform, this actually establishes references to those
already created objects25. 25 This is a major difference between

text generation and model transforma-
tion. In text, two textual occurrences of
a symbol are the same thing (in some
sense, text strings are value objects).
In model transformation the identity
of elements does matter. It is not the
same if we create one new state and
then reference it, or if we create five
new states. So a good transformation
language helps keep track of identities.
The create methods are a very nice
way of doing this.

We can now look at the implementation of transform itself.
It starts by adding the emergencyState and the emergencyEvent
to the program26. We then iterate over all CustomStates except

26 These are the first calls to the respec-
tive functions, so the objects are actually
created at this point.

the emergency state we’ve just created. Notice how we just call
the emergencyState function again: it returns the same object.
We then use a builder to add the following code to each of the
existing states.

on emergency_button_pressed {
state EMERGENCY_STOP

}

This code could be constructed by procedurally calling the re-
spective factory methods:

val eh = factory.createEventHandler
val sr = factory.createSymbolRef
sr.symbol = emergencyEvent
val css = factory.createChangeStateStatement
css.targetState = emergencyState
eh.statements += css
s.events += eh

The notation used in the actual implementation is more concise
and resembles the tree structure of the code much more closely.
It uses the well-known builder. Builders are implemented in
Xtend with a combination of closures and implicit arguments
and a number of functions implemented in the CoolingBuilder
class27. Here is the code:

27 Of course, if you add the line count
and effort for implementing the builder,
then using this alternative over the
plain procedural one might not look so
interesting. However, if you just create
these builder functions once, and then
create many different transformations,
this approach makes a lot of sense.

class CoolingBuilder {

CoolingLanguageFactory factory = CoolingLanguageFactory::eINSTANCE

dsl engineering 281

def eventHandler(CustomState it, (EventHandler)=>void handler) {
val res = factory.createEventHandler
res

}

def symbolRef(EventHandler it, (SymbolRef)=>void symref) {
val res = factory.createSymbolRef
it.events += res

}

def symbol(SymbolRef it, CustomEvent event) {
it.symbol = event

}

def changeStateStatement(EventHandler it, CustomState target) {
val res = factory.createChangeStateStatement
it.statements += res
res.targetState = target

}
}

This class is imported into the generator with the @Inject

extension construct, so the methods can be used "just so".

11.3 MPS Example

MPS comes with a textgen language for text generation. It
is typically just used at the end of the transformation chain
where code expressed in GPLs (like Java or C) is generated to
text so it can be passed to existing compilers. Fig. 11.2 shows
the textgen component for mbeddr C’s IfStatement. MPS’
text generation language basically appends text to a buffer.
We won’t discuss this aspect of MPS any further, since MPS
textgen is basically a wrapper language around a StringBuffer.
However, this is perfectly adequate for the task at hand, since
it is only used in the last stage of generation where the AST is
essentially structurally identical to the generated text28.

28 If you want to generate text that is
structurally different, then the textgen
language is a bit of a pain to use; in this
case, the MPS philosophy recommends
that you build a suitable intermediate
language (such as for XML, or even for
a particular schema).

DSLs and language extensions typically use model-to-model
transformations to "generate" code expressed in a low-level
programming language29. Writing transformations in MPS in-

29 The distinction between code gen-
erators and model-to-model transfor-
mations is much less clear in this case.
While it is a model-to-model transfor-
mation (we map one AST onto another)
the transformations look very much
like code generators, since the concrete
syntax of the target language is used in
the "template".

volves two ingredients. Templates define the actual transfor-
mation. Mapping configurations define which template to run
when and where. Templates are valid sentences of the target
language. Macros are used to express dependencies on and
queries over the input model. For example, when the guard
condition (a C expression) should be generated into an if state-
ment in the target model, you first write an if statement with a
dummy condition in the template. The following would work:
if (true) {}. Then the nodes that should be replaced by the
transformation with nodes from the input model are annotated

282 dslbook.org

Figure 11.2: The AST-to-text generator
for an if statement. If first checks if
the condition happens to be a true
literal, in which case the if statement is
optimized away and only the thenPart
is output. Otherwise we generate an if
statement, the condition in parentheses,
and then the thenPart. We then iterate
over all the elseIfs; an elseIf has its
own textgen, and we delegate to that
one. We finally output the code for the
else part.

with macros. In our example, this would look like this: if

(COPY_SRC[true]){}. Inside the COPY_SRC macro you put an
expression that describes which elements from the input model
should replace the dummy node true: we use node.guard to
replace it with the guard condition of the input node (expected
to be of type Transition here). When the transformation is
executed, the true node will be replaced by what the macro
expression returns – in this case, the guard of the input transi-
tion. We will explain this process in detail below.

� Template-based Translation of the State Machine State machines
live inside modules. Just like structs, they can be instantiated.
The following code shows an example. Notice the two global
variables c1 and c2, which are instances of the same state ma-
chine Counter.

module Statemachine imports nothing {

statemachine Counter {
in events

start()
step(int[0..10] size)

out events
started()
resetted()
incremented(int[0..10] newVal)

local variables
int[0..10] currentVal = 0
int[0..10] LIMIT = 10

states (initial = start)
state start {

on start [] -> countState { send started(); }
}
state countState {

on step [currentVal + size > LIMIT] -> start { send resetted(); }
on step [currentVal + size <= LIMIT] -> countState {

currentVal = currentVal + size;
send incremented(currentVal);

dsl engineering 283

}
on start [] -> start { send resetted(); }

}
}

Counter c1;
Counter c2;

void aFunction() {
trigger(c1, start);

}
}

State machines are translated to the following lower-level C
entities (this high level structure is clearly discernible from the
two main templates shown in Fig. 11.3 and Fig. 11.7):

• An enum for the states (with a literal for each state).

• An enum for the events (with a literal for each event).

• A struct declaration that contains an attribute for the cur-
rent state, as well as attributes for the local variables de-
clared in the state machine.

• And finally, a function that implements the behavior of the
state machine using a switch statement. The function takes
two arguments: one named instance, typed with the struct
mentioned in the previous item, and one named event that
is typed to the event enum mentioned above. The function
checks whether the instance’s current state can handle the
event passed in, evaluates the guard, and if the guard is
true, executes exit and entry actions and updates the cur-
rent state.

Figure 11.3: The MPS generator that
inserts two enum definitions and a
struct into the module which contains
the StateMachine.

The MPS transformation engine works in phases. Each phase
transforms models expressed in some languages to other mod-
els expressed in the same or other languages. Model elements
for which no transformation rules are specified are copied from
one phase to the next. Reduction rules are used to intercept

284 dslbook.org

program elements and transform them as generation progresses
through the phases. Fig. 11.4 shows how this affects state ma-
chines. A reduction rule is defined that maps state machines to
the various elements we mentioned above. Notice how the sur-
rounding module remains unchanged, because no reduction
rule is defined for it.

Figure 11.4: State machines are trans-
formed (via a model-to-model trans-
formation, if you will) into two enums,
a struct and a function. These are
then transformed to text via the regular
com.mbeddr.core textgen.

Let us look in more detail at the template in Fig. 11.3. It re-
duces a Statemachine, the input node, to two enums and a
struct. We use template fragments (marked with <TF ...

TF>) to highlight those parts of the template that should actu-
ally be used to replace the input node as the transformation ex-
ecutes. The surrounding module dummy is scaffolding: it is only
needed because enums and structs must live in Implementa-

tionModules in any valid instance of the mbeddr C language30. 30 Since the templates are projected ex-
ample instances of the target language,
the template has to be a valid instance of
any MPS-implemented language.

We have to create an enum literal for each state and each
event. To achieve this, we iterate over all states (and events,
respectively). This is expressed with the LOOP macros in the
template in Fig. 11.3. The expression that determines what we
iterate over is entered in the Inspector, MPS’ equivalent to a
properties window; Fig. 11.5 shows the code for iterating over
the states31. For the literals of the events enum we use a similar

31 Note that the only really interesting
part of Fig. 11.5 is the body of the
anonymous function (node.states;),
which is why from now on we will only
show this part.expression (node.events;).

Figure 11.5: The inspector is used to
provide the implementation details for
the macros used in the templates. This
one belongs to a LOOP macro, so we
provide an expression that returns a
collection, over which the LOOP macro
iterates.

The LOOP macro iterates over collections and then creates an
instance of the concept it is attached to for each iteration. In
the case of the two enums, the LOOP macro is attached to an

dsl engineering 285

EnumLiteral, so we create an EnumLiteral for each event and
state we iterate over. However, these various EnumLiterals
must all have different names. In fact, the name of each literal
should be the name of the state/event for which it is created.
We can use a property macro, denoted by the $ sign, to achieve
this. A property macro is used to replace values of proper-
ties32. In this case we use it to replace the name property of the 32 The node macros used above

(COPY_SRC) replace whole nodes, as
opposed to primitive properties of nodes.

generated EnumLiteral with the name of the state/event over
which we loop. Here is the implementation expression of the
property macro:

node.cEnumLiteralName();

In the code above, cEnumLiteralName is a behavior method33. 33 Behavior methods are defined as part
of the behavior aspect of the concepts,
such as State.

It concatenates the name of the parent Statemachine with the
string __state_ and the name of the current state (in order to
get a unique name for each state):

concept behavior State {

public string cEnumLiteralName() {
return this.parent : Statemachine.name + "__state_" + this.name;

}

}

The first of the struct attributes is also interesting. It is used to
store the current state. It has to be typed to the state enum that
is generated from this particular state machine. The type of the
attribute is an EnumType; EnumTypes extend Type and reference
the EnumDeclaration whose type they represent. How can we
establish the reference to the correct EnumDeclaration? We
use a reference macro (->$) to retarget the reference. Fig. 11.6
shows the macro’s expression.

Figure 11.6: A reference macro has to
return either the target node, or the
name of the target node. The name is
then resolved using the scoping rules
for the particular reference concept.

Note how a reference macro expects either the target node
(here: an EnumDeclaration) as the return value, or a string.
That string would be the name of the target element. Our im-
plementation returns the name of the states enum generated in
the same template. MPS then uses the target language’s scop-
ing rules to find and link to the correct target element34.

34 This is not a global name lookup!
Since MPS knows the reference is an
EnumLiteralRef expression, the scope
of that concept is used. As long as the
name is unique within the scope, this is
completely deterministic. Alternatively,
the actual node can be identified and
returned from the reference macro
using mapping labels. However, using
names is much more convenient and
works also for cross-model references,
where mapping labels don’t work.

Let us now address the second main template, Fig. 11.7,
which generates the execute function. The switch expression
is interesting. It switches over the current state of the cur-

286 dslbook.org

Figure 11.7: The transformation tem-
plate for generating the switch-based
implementation of a StateMachine.
Looking at the template fragment mark-
ers (<TF ... TF>) reveals that we
only generate the switch statement,
not the function that contains it. The
reason is that we need to be able to
embed the state machine switch into
other function-like concepts as well
(e.g., operations in components defined
in the mbeddr components extension),
so we have separated the generation of
the function from the generation of the
actual state machine behavior. See the
text for more details.

rent state machine instance. That instance is represented by
the instance parameter passed into the function. It has a
__currentState field. Notice how the function that contains
the switch statement in the template has to have the instance

argument, and how its type, the struct, has to have the __cur-
rentState attribute in the template. If the respective elements
were not there in the template, we couldn’t write the template
code! Since there is a convention that in the resulting function
the argument will also be called instance, and the attribute
will also be called __currentState, we don’t have to use a
reference macro to retarget the two.

Inside the switch we LOOP over all the states of the state
machine and generate a case, using the state’s corresponding
enum literal. Inside the case, we embed another switch that
switches over the event argument. Inside this inner switch we
iterate over all transitions that are triggered by the event we
currently iterate over:

dsl engineering 287

context state.transitions.where({~it => it.trigger.event == node; });

We then generate an if statement that checks at runtime whether
the guard condition for this transition is true. We copy in the
guard condition using the COPY_SRC macro attached to the true
dummy node. The COPY_SRC macro copies the original node,
but it also applies additional reduction rules for this node (and
all its descendants), if there are any. For example, in a guard
condition it is possible to reference event arguments. The ref-
erence to size in the step transition is an example:
statemachine Counter {

in events
step(int[0..10] size)
...

states (initial = start)
...
state countState {

on step [currentVal + size > LIMIT] -> start { send resetted(); }
}

}

Event arguments are mapped to the resulting C function via a
void* array. A reference to an event argument (EventArgRef)
hence has to be reduced to accessing the n-th element in the
array (where n is the index of the event argument in the list of
arguments). Fig. 11.8 shows the reduction rule. It accesses the
array, casts the element to a pointer to the type of the argument,
and then dereferences everything35. 35 The reduction rule creates code

that looks like this (for an int event
attribute): *((int*)arguments[0]).

Figure 11.8: The reduction rule for
references to event arguments (to
be used inside guard conditions of
transitions).

Inside the if statement, we have to generate the code that
has to be executed if a transition fires. We first copy in all
the exit actions of the current state. Once again, the int8

exitActions; is just an arbitrary dummy statement that will
be replaced by the statements in the exit actions (COPY_SRCL
replaces a node with a list of nodes). The respective expression
is this:
(node, genContext, operationContext)->sequence<node<>> {

if (node.parent : State.exitAction != null) {
return node.parent : State.exitAction.statements;

}
new sequence<node<>>(empty);

}

288 dslbook.org

We then do the same for the transition actions of the current
transition, set the instance->__currentState to the target state
of the transition using a reference macro (node.targetState.
cEnumLiteralName();), and then we handle the entry actions
of the target state. Finally we return, because at most one tran-
sition can fire as a consequence of calling the state machine
execute function.

As the last example I want to show how the TriggerSM-

Statement is translated. It injects an event into a state machine:
Counter c1;

void aFunction() {
trigger(c1, start);

}

It must be translated to a call to the generated state machine
execute function that we have discussed above. For simplicity,
we explain a version of the TriggerSMStatement that does not
include event arguments. Fig. 11.9 shows the template.

Figure 11.9: The reduction rule for a
trigger statement. It is transformed to
a call to the function that implements
the behavior of the state machine that is
referenced in the first argument of the
trigger statement.

We use a dummy function someMethod so that we can embed a
function call, because we have to generate a function call to the
execute function generated from the state machine. Only the
function call is surrounded with the template fragment mark-
ers (and will be generated). The function we call in the template
code is the smExecuteFunction. It has the same signature as the
real, generated state machine execute function. We use a refer-
ence macro to retarget the function reference in the function
call. It uses the following expression, which returns the name
of the function generated for the state machine referenced in
the statemachine expression of the trigger statement:

dsl engineering 289

StatemachineType.machine.cFunctionName();

Note how the first argument to the trigger statement can be
any expression (local variable reference, global variable refer-
ence, a function call). However, we know (and enforce via
the type system) that the expression’s type must be a State-

machineType, which has a reference to the Statemachine whose
instance the expression represents. So we can cast the expres-
sion’s type to StatemachineType, access the machine reference,
and get the name of the execute function generated from that
state machine36.

36 This is an example of where we use
the type system in the code generator,
and not just for checking a program for
type correctness.

The second argument of the trigger statement is a reference
to the event we want to trigger. We can use another reference
macro to find the enum literal generated for this event. The
macro code is straight forward:

node.event.cEnumLiteralName();

� Procedural Transformation of a Test Case Instead of using the
template-based approach shown above, transformations can
also be written manually against the MPS API. To do this, a
mapping script is called from the mapping configuration (in-
stead of the mapping configuration containing rules). Such a
mapping script can contain arbitrary BaseLanguage code that
operates on the output model of the transformation37. 37 This is essentially similar to the

implementation code for intentions or
refactorings (Section 13.6); those also
modify a model using the MPS Node
API.

As part of the mbeddr project, we have built a Builder ex-
tension to BaseLanguage. In the example below, we will build
the following code:

module SomeModule imports nothing {

exported test case testCase1 { }

exported int32 main(int32 argc, string*[] argv) {
return test testCase1;

}
}

The code below builds the code above. Notice how by de-
fault we work with concepts directly (as when we mention
StatementList or ExecuteTestExpression). However, we can
also embed expression in the builder using the #(..) ex-
pression. Nodes created by the builder can be named (as in
tc:TestCase) so they can be used as a reference target later
(testcase -> tc).

node<ImplementationModule> immo = build ImplementationModule
name = #(aNamePassedInFromAUserDialog)
contents += tc:TestCase

290 dslbook.org

name = "testCase1"
type = VoidType
contents += #(MainFunctionHelper.createMainFunction())
body = StatementList statements += ReturnStatement

expression = ExecuteTestExpression
tests += TestCaseRef

testcase -> tc

Builders in MPS are a first-class extension to BaseLanguage,
which means that the IDE can provide support. For example, if
a concept has a mandatory child (e.g. the body in a Function),
the IDE will report an error if no node is put into this child
slot. Code completion can be provided as well38.

38 Users do not have to build the helper
functions we have seen for Xtext/Xtend
above. On the other hand, the MPS
builder extension is specific to building
MPS node trees, whereas the approach
taken by Xtext/Xtend is generic, as long
as users define the helper functions.

11.4 Spoofax Example

In Spoofax, model-to-model transformations and code genera-
tion are both specified by rewrite rules39. This allows for the 39 Rewrite rules were introduced in

Section 9.3.1.seamless integration of model-to-model transformation steps
into the code generation process; the clear distinction between
model-to-model transformation and code generation vanishes40. 40 Similar to MPS, it is also possible

to express model-to-model transfor-
mations using the concrete syntax of
the target language, even though this
requires a bit more setup and care.

We look at the various approaches supported by Spoofax in this
chapter.

� Code Generation by String Interpolation Pure code genera-
tion from abstract syntax trees to text can be realized by rewrit-
ing to strings. The following simple rules rewrite types to their
corresponding representation in Java. For entity types, we use
their name as the Java representation:

to-java: NumType() -> "int"
to-java: BoolType() -> "boolean"
to-java: StringType() -> "String"
to-java: EntType(name) -> name

Typically, more complex rules are recursive and use string in-
terpolation41 to construct strings from fixed and variable parts. 41 We used string interpolation already

before to compose error messages in
Section 9.3.

For example, the following two rewrite rules generate Java code
for entities and their properties:

to-java:
Entity(x, ps) ->
$[class [x] {

[ps’]
}

]
with

ps’ := <map(to-java)> ps

to-java:
Property(x, t) ->
$[private [t’] [x];

public [t’] get_[x] {
return [x];

dsl engineering 291

}

public void set_[x] ([t’] [x]) {
this.[x] = [x];

}
]
with

t’ := <to-java> t

String interpolation takes place inside $[...] brackets and
allows us to combine fixed text with variables that are bound to
strings. Variables can be inserted using brackets [...] without
a dollar sign42. Instead of variables, we can also directly use 42 You can also use any other kind of

bracket: {...}, <...>, and (...) are
allowed as well.

the results from other rewrite rules that yield strings or lists of
strings:

to-java:
Entity(x, ps) ->
$[class [x] {

[<map(to-java)> ps]
}

]

Indentation is important, both for the readability of rewrite
rules and of the generated code: the indentation leading up
to the $[...] brackets is removed, but any other indentation
beyond the bracket level is preserved in the generated output.
In this way we can indent the generated code, as well as our
rewrite rules. Applying to-java to the initial shopping entity
will yield the following Java code:

class Item {

private String name;

public String get_name {
return name;

}

public void set_name (String name) {
this.name = name;

}

private boolean checked;

public boolean get_checked {
return checked;

}

public void set_checked (boolean checked) {
this.checked = checked;

}

private Num order;

public Num get_order {
return order;

}

public void set_order (Num order) {
this.order = order;

}
}

292 dslbook.org

When we prefer camelcase in method names, we need to slightly
change our code generation rules, replacing get_[x] and set_[x]

by get[<to-upper-first>x] and set[<to-upper-first>x].
We also need to specify the following rewrite rule:

to-upper-first: s -> s’
where

[first|chars] := <explode-string> s ;
upper := <to-upper> first ;
s’ := <implode-string> [upper|chars]

explode-string turns a string into a list of characters, to-upper
upper-cases the first character, and implode-string turns the
characters back into a string43.

43 All these strategies are part of Strat-
ego’s standard library, documented
at releases.strategoxt.org/docs/
api/libstratego-lib/stable/docs/.

� Editor Integration To integrate the code generation into our
editor, we first have to define the following rewrite rule:

generate-java:
(selected, position, ast, path, project-path) -> (filename, result)
with

filename := <guarantee-extension(|"java")> path;
result := <to-java> ast

While we are free to choose the name of this rule44, the patterns 44 The rule is subsequently registered as
a builder to make it known to Spoofax;
see below.

on the left- and right-hand side need to follow Spoofax’ con-
vention for editor integration. On the left-hand side, it matches
the current selection in the editor, its position in the abstract
syntax tree, the abstract syntax tree itself (ast), the path of the
source file in the editor45, and the path of the project this file 45 By default, generation happens on a

per-file basis. We can also just generate
code for the current selection: to do so,
we can replace the last line by result
:= <to-java> selected.

belongs to. As the right-hand side shows, the rule produces
the name of the generated file and its content as a string. The
file name is derived from the source file’s path, while the file
content is generated from the abstract syntax tree.

Once we have defined this rule, we can register it as a builder
in editor/Lang-Builders.esv. Here, we add the following
rule:

builder: "Generate Java code (selection)" = generate-java (openeditor) (
realtime)

This defines a label for our transformation, which is added
to the editor’s Transform menu. Additional options, such as
(openeditor) and (realtime), can be used to customize the
behaviour of the transformation. The following table illustrates
the available options.

dsl engineering 293

Option Description
(openeditor) Opens the generated file in an editor.
(realtime) Re-generates the file as the source is edited.
(meta) Excludes the transformation

from the deployed plugin.
(cursor) Transforms always the tree node at the cursor.

� Code Generation by Model Transformation Rewrite rules with
string interpolation support a template-based approach to code
generation. Thus, they share two typical problems of template
languages. First, they are not syntax safe, that is, they do not
guarantee the syntactical correctness of the generated code: we
might accidently generate Java code which can not be parsed
by a Java compiler. Such errors can only be detected by test-
ing the code generator. Second, they inhibit subsequent trans-
formation steps. For example, we might want to optimize the
generated Java code, generate Java bytecode from it, and finally
optimize the generate Java Bytecode. At each step, we would
first need to parse the generated code from the previous step
before we can apply the actual transformation.

Both problems can be avoided by generating abstract syntax
trees instead of concrete syntax, i.e. by using model-to-model
transformations instead of code (text) generation. This can
be achieved by constructing terms on the right-hand side of
rewrite rules:

to-java: NumType() -> IntBaseType()
to-java: BoolType() -> BooleanBaseType()
to-java: StringType() -> ClassType("java.lang.String")
to-java: EntType(t) -> ClassType(t)

to-java:
Entity(x, ps) -> Class([], x, ps’)

ps’ := <mapconcat(to-java)> ps

to-java:
Property(x, t) -> [field, getter, setter]
with

t’ := <to-java> t ;
field := Field([Private()], t’, x) ;
getter := Method([Public()], t’, $[get_[x]], [],

[Return(VarRef(x))]) ;
setter := Method([Public()], Void(), $[set_[x]],

[Param(t’, x)], [assign]) ;
assign := Assign(FieldRef(This(), x), VarRef(x))

When we generate ASTs instead of concrete syntax, we can eas-
ily compose transformation steps into a transformation chain
by using the output of transformation n as the input for trans-
formation n+ 1. But this chain will still result in abstract syntax
trees. To turn them back into text, it has to be pretty-printed
(or serialized). Spoofax generates a language-specific rewrite

294 dslbook.org

rule pp-<LangName>-string which rewrites an abstract syntax
tree into a string according to a pretty-printer definition46.

46 We will discuss these pretty-printer
definitions and how they can be cus-
tomized in Section 13.4

� Concrete Object Syntax Both template-based and term-based
approaches to code generation have distinctive benefits. While
template-based generation with string interpolation allows for
concrete syntax in code generation rules, AST generation guar-
antees syntactical correctness of the generated code and en-
ables transformation chains. To combine the benefits of both
approaches, Spoofax can parse user-defined concrete syntax
quotations at compile-time, checking their syntax and replac-
ing them with equivalent abstract syntax fragments47.

47 This feature is not as easy to use as it
seems from this description: you need
to think ahead about what you want
to be able to quote, what to unquote,
what character sequences to use for
that and how to avoid ambiguities. You
need a good conceptual understanding
of the mapping between concrete and
abstract syntax. A partial solution for
the problems is an approach called
interactive disambiguation, and is
discussed in

L. C. L. Kats, K. T. Kalleberg, and
E. Visser. Interactive disambiguation
of meta programs with concrete object
syntax. In SLE 2012

For example, a Java return statement can be expressed as
|[return |[x]|;]|, rather than the abstract syntax form
Return(VarRef(x)). Here, |[...]| surrounds Java syntax.
It quotes Java fragments inside Stratego code. Furthermore,
|[x]| refers to a Stratego variable x, matching the expression
in the return statement. In this case, |[...]| is an antiquote,
switching back to Stratego syntax in a Java fragment.

To enable this functionality, we have to customize Stratego,
Spoofax’ transformation language. This requires four steps.
First, we need to combine Stratego’s syntax definition with the
syntax definitions of the source and target languages. There, it
is important to keep the sorts of the languages disjunct. This
can be achieved by renaming sorts in an imported module,
which we do in the following example for the Java and the
Stratego module:

module Stratego-Mobl-Java
imports Mobl
imports Java [ID => JavaId]
imports Stratego [Id => StrategoId

Var => StrategoVar
Term => StrategoTerm]

Second, we need to define quotations, which will enclose con-
crete syntax fragments of the target language in Stratego rewrite
rules48. We add a syntax rule for every sort of concrete syntax 48 These define the |[...]| escapes

mentioned above.fragments that we want to use in our rewrite rules:

exports context-free syntax

"|[" Module "]|" -> StrategoTerm {"ToTerm"}
"|[" Import "]|" -> StrategoTerm {"ToTerm"}
"|[" Entity "]|" -> StrategoTerm {"ToTerm"}
"|[" EntityBodyDecl "]|" -> StrategoTerm {"ToTerm"}

"|[" JClass "]|" -> StrategoTerm {"ToTerm"}
"|[" JField "]|" -> StrategoTerm {"ToTerm"}
"|[" JMethod "]|" -> StrategoTerm {"ToTerm"}
"|[" JFeature* "]|" -> StrategoTerm {"ToTerm"}

dsl engineering 295

With these rules, we allow quoted Mobl and Java fragments
wherever an ordinary Stratego term is allowed. The first four
rules concern Mobl, our example source language49. As quotes, 49 We like to use concrete syntax for

modules (Module), import declara-
tions (Import), entities (Entity), and
properties and functions of entities
(EntityBodyDecl).

we use |[...]|. The second set of rules work similarly for
Java, our example target language. All syntax rules extend
Term from the Stratego grammar, which we renamed to Stra-

tegoTerm during import. We use ToTerm as a constructor la-
bel. This allows Stratego to recognize places where we use
concrete object syntax inside Stratego code. It will then lift
the subtrees at these places into Stratego code. For exam-
ple, the abstract syntax of |[return |[x]|;]| would be
ToTerm(Return(...)). Stratego lifts this to NoAnnoList(Op(

"Return", [...])), which is the abstract syntax tree for the
term Return(x).

Third, we need to define antiquotations, which will enclose
Stratego code in target language concrete syntax fragments.
Here, we add a syntax rule for every sort where we want to
inject Stratego code into concrete syntax fragments:

exports context-free syntax
"|[" StrategoTerm "]|" -> JavaId {"FromTerm"}

This rule allows antiquoted Stratego terms to be used wherever
a Java identifier can be used50. We use FromTerm as a construc- 50 We renamed Id from the Java gram-

mar to JavaID during import.tor in the abstract syntax tree. Like ToTerm, Stratego uses this
to recognize places where we switch between concrete object
syntax and Stratego code. For example, the abstract syntax of
|[return |[x]|;]| would be

ToTerm(Return(FromTerm(Var("x"))))

Stratego lifts this to the following, which is the abstract syntax
tree for the term Return(x):

NoAnnoList(Op("Return", [Var("x")]))

Finally, we need to create a <filename>.meta file for every
transformation file <filename>.str with concrete syntax frag-
ments. In this file, we tell Spoofax to use our customized Strat-
ego syntax definition:

Meta([Syntax("Stratego-Mobl-Java")])

Now, we can use concrete syntax fragments in our rewrite
rules51:

51 Since Spoofax replaces concrete syn-
tax fragments with equivalent abstract
syntax fragments, indentation in the
fragments is lost. But the generated
code will still be indented by the pretty-
printer.

to-java:
|[entity |[x]| { |[ps]| }]| ->
|[class |[x]| { |[<mapconcat(to-java)> ps]| }]|

to-java:

296 dslbook.org

|[|[x]| : |[t]|]| ->
|[private |[t’]| |[x]|;

public |[t’]| |[x]| { return |[x]|; }

public void |[x]| (|[t’]| |[x]|) { this.|[x]| = |[x]|; }]|
with

t’ := <to-java> t

Using concrete object syntax in Stratego code combines the
benefits of string interpolation and code generation by model
transformation. With string interpolation, we can use the syn-
tax of the target language in code generation rules, which makes
them easy to write. However, it is also easy to make syntactic
errors, which are only detected when the generated code is
compiled. With code generation by model transformation, we
can check if the generated abstract syntax tree corresponds to
the grammar of the target language. Actually we can check
each transformation rule and detect errors early. With concrete
object syntax, we can now use the syntax of the target language
in code generation. This syntax is checked by the parser which
is derived from the combined grammars of the target language
and Stratego.

This comes at the price of adding quotations and antiquo-
tation rules manually. These rules might be generated from a
declarative, more concise embedding definition in the future.
However, we cannot expect full automation here, since choices
for the syntactic sorts involved in the embedding and of quo-
tation and antiquotation symbols require an understanding of
Stratego, the target language, and the transformation we want
to write. These choices have to be made carefully in order to
avoid ambiguities52. 52 This is the core difference to MPS’

projectional editor in this respect. In
MPS, generator macros can be attached
to any program element expressed
in any language. There is no need to
define quotations and antiquotations for
each combination.

In general, there is room for more improvements of the em-
bedding of the target language into Stratego. When the target
language comes with a Spoofax editor, we want to get editor
services like code completion, hover help, and content folding
in the embedded editor as well. Until now, only syntax high-
lighting has been supported, using the Stratego coloring rules.
Keywords of the target language will be highlighted like Strat-
ego keywords and embedded code fragments will be given a
gray background color.

12
Building Interpreters

Interpreters are programs that execute DSL programs by
directly traversing the DSL program and performing the
semantic actions associated with the respective program el-
ements. The chapter contains examples for interpreters with
Xtext, MPS and Spoofax.

Interpreters are programs that read a model, traverse the AST
and perform actions corresponding to the execution semantics
of the language constructs whose instances appear in the AST1. 1 They may also produce text (in which

case such an interpreter is typically
called a generator), and/or inspect
the structure and check constraints (in
which case they are called a validator).
In this section we focus on interpreters
that directly execute the program.

How an interpreter implementation looks like depends a lot on
the programming language used for implementing it. Also, the
complexity of the interpreter directly reflects the complexity of
the language it processes in terms of size, structure and se-
mantics2. The following list explains some typical ingredients

2 For example, building an interpreter
for a pure expression language with a
functional programming language is al-
most trivial. In contrast, the interpreters
for languages that support parallelism
can be much more challenging.

that go into building interpreters for functional and procedu-
ral languages. It assumes a programming language that can
polymorphically invoke functions or methods.

� Expressions For program elements that can be evaluated
to values, i.e., expressions, there is typically a function eval

that is defined for the various expression concepts in the lan-
guage, i.e. it is polymorphically overridden for subconcepts of
Expression. Since nested expressions are almost always rep-
resented as nested trees in the AST, the eval function calls it-
self with the program elements it owns, and then performs
some semantic action on the result3. Consider an expression

3 The expression generator we saw
in the previous chapter exhibited the
same structure: the eval template for
some kind of expression calls the eval
templates for its children.

3 * 2 + 5. Since the + is at the root of the AST, eval(Plus)
would be called (by some outside entity). It is implemented
to add the values obtained by evaluating its arguments. So it

298 dslbook.org

calls eval(Multi) and eval(5). Evaluating a number literal is
trivial, since it simply returns the number itself. eval(Multi)
would call eval(3) and eval(2), multiplying their results and
returning the result of the multiplication as its own result, al-
lowing plus to finish its calculation. Technically, eval could be implemented

as a method of the AST classes in an
object-oriented language. However, this
is typically not done, since the inter-
preter should be kept separate from the
AST classes, for example, because there
may be several interpreters, or because
the interpreter is developed by other
people than the AST.

� Statements Program elements that don’t produce a value
only make sense in programming languages that have side ef-
fects. In other words, execution of such a language concept
produces some effect either on global data in the program (re-
assignable variables, object state) or on the environment of the
program (sending network data or rendering a UI). Such pro-
gram elements are typically called Statements. Statements are
either arranged in a list (typically called a statement list) or
arranged recursively nested as a tree (an if statement has a
then and an else part which are themselves statements or
statement lists). To execute those, there is typically a func-
tion execute that is overloaded for all of the different state-
ment types4. Note that statements often contain expressions 4 It is also overloaded for

StatementList which iterates over
all statements and calls execute for
each one.

and more statement lists (as in if (a > 3) { print a; a=0;

} else { a=1;}), so an implementation of execute may call
eval and perform some action based on the result (such as de-
ciding whether to execute the then-part of the else-part of the
if statement). Executing the then-part and the else-part boils
down to calling execute on the respective statement lists.

� Environments Languages that support assignment to vari-
ables (or modify any other global state) require an environment
during execution to remember the values for the variables at
each point during program execution5. The interpreter must 5 Consider int a = 1; a = a + 1;.

In this example, the a in a + 1 is a
variable reference. When evaluating this
reference, the system must "remember"
that it has assigned 1 to that variable in
the previous statement.

keep some kind of global hash table, known as the environment,
to keep track of symbols and their values, so it can look them
up when evaluating a reference to that symbol. Many (though
not all) languages that support assignable variables allow re-
assignment to the same variable (as we do in a = a + 1;). In
this case, the environment must be updateable. Notice that in a

= a + 1 both mentions of a are references to the same variable,
and both a and a+1 are expressions. However, only a (and not
a + 1) can be assigned to: writing a + 1 = 10 * a; would
be invalid. The notion of an lvalue is introduced to describe
this. lvalues can be used "on the left side" of an assignment.
Variable references are typically lvalues (if they don’t point to
a const variable). Complex expressions usually are not6.

6 Unless they evaluate to something that
is in turn an lvalue. An example of this
is would be *(someFunc(arg1, arg2))
= 12;, in C, assuming that someFunc
returns a pointer to an integer.

dsl engineering 299

� Call Stacks The ability to call other entities (functions, pro-
cedures, methods) introduces further complexity, especially re-
garding parameter and return value passing, and the values of
local variables. Assume the following function:

int add(int a, int b) {
return a + b;

}

When this function is called via add(2, 3) the actual argu-
ments 2 and 3 have to be bound to the formal arguments a and
b. An environment must be established for the execution of
add that keeps track of these assignments7. Now consider the 7 If functions can also access global

state (i.e. symbols that are not explicitly
passed in via arguments), then this
environment must delegate to the
global environment in case a referenced
symbol cannot be found in the local
environment.

following recursive function:

int fac(int i) {
return i == 0 ? 1 : fac(i - 1);

}

In this case, each recursive call to fac requires that a new en-
vironment is created, with its own binding for the formal vari-
ables. However, the original environment must be "remem-
bered" because it is needed to complete the execution of the
outer fac after a recursively called fac returns. This is achieved
using a stack of environments. A new environment is pushed
onto the stack as a function is called (recursively), and the stack
is popped, returning to the previous environment, as a called
function returns. The return value, which is often expressed
using some kind of return statement, is usually placed into
the inner environment using a special symbol or name (such
as __ret__). It can then be picked up from there as the inner
environment is popped.

12.1 Building an Interpreter with Xtext

The example discussed in this sec-
tion is built using the Xtext inter-
preter framework that ships with
the Xtext typesystem framework dis-
cussed earlier: code.google.com/a/
eclipselabs.org/p/
xtext-typesystem/

This example describes an interpreter for the cooling language8.

8 The interpreter in this section is
built with Java because this is how we
did it in the actual project. Instead,
since the interpreter just operates on
the EMF API, it can be written with
any JVM language. In particular,
Xtend would be well suited because of
support for functional programming
and more generally more concise
syntax, especially regarding working
with EMF abstract syntax trees.

It is used to allow DSL users to "play" with the cooling pro-
grams before or instead of generating C code. The interpreter
can execute test cases (and report success or failure) as well as
simulate the program interactively. Since no code generation
and no real target hardware is involved, the turn-around time
is much shorter and the required infrastructure is trivial – only
the IDE is needed to run the interpreter. The execution engine,
as the interpreter is called here, has to handle the following
language aspects:

300 dslbook.org

• The DSL supports expressions and statements, for example
in the entry and exit actions of states. These have to be
supported in the way described above.

• The top-level structure of a cooling program is a state ma-
chine. So the interpreter has to deal with states, events and
transitions.

• The language supports deferred execution (i.e. perform a set
of statements at a later time), so the interpreter has to keep
track of deferred parts of the program.

• The language supports writing tests for cooling programs,
including mock behavior for hardware elements. A set of
constructs exists to express this mock behavior (specifically,
ramps to change temperatures over time). These background
tasks must be handled by the interpreter as well.

� Expressions and Statements We start our description of the
execution engine inside out, by looking at the interpreter for ex-
pressions and statements first. As mentioned above, for inter-
preting expressions, there is typically an overloaded eval op-
eration, that contains the implementation of expression evalu-
ation for each subtype of a generic Expression concept. How-
ever, Java doesn’t have polymorphically overloaded member
methods9. We compensate this by generating a dispatcher

9 Java only supports polymorphic
dispatch on the this pointer, but not on
method arguments.

that calls a different method for each subtype of Expression10.
10 If the interpreter had been built
with Xtend instead, we would not
have had to generate the dispatcher
for the StatementExecutor or the
ExpressionEvaluator, since Xtend
provides polymorphic dispatch on
method arguments. However, the
fundamental logic and structure of the
interpreter would have been similar.

The generation of this dispatcher is integrated with Xtext via a
workflow fragment, i.e. the dispatcher is generated during the
overall Xtext code generation process. The fragment is config-
ured with the abstract meta classes for expressions and state-
ments. The following code shows the fragment configuration:
fragment = de.itemis.interpreter.generator.InterpreterGenerator {

expressionRootClassName = "Expression"
statementRootClassName = "Statement"

}

This fragment generates an abstract class that acts as the basis
for the interpreter for the particular set of statements and ex-
pressions. As the following piece of code shows, the expression
evaluator class contains an eval method that uses instanceof
checks to dispatch to a method specific to the subclass, thereby
emulating polymorphically overloaded methods11. The spe-

11 A similar class is generated for the
statements. Instead of eval, the method
is called execute and it does not return
a value. In every other respect the
StatementExecutor is similar to the
ExpressionEvaluator.

cific methods throw an exception and are expected to be over-
ridden by a manually written subclass that contains the actual
interpreter logic for the particular language concepts12:

12 The class also uses a logging frame-
work (based on the LogEntry class)
that can be used to create a tree-shaped
trace of expression evaluation, which,
short of building an actual debug-
ger, is very useful for debugging and
understanding the execution of the
interpreter.

dsl engineering 301

public abstract class AbstractCoolingLanguageExpressionEvaluator
extends AbstractExpressionEvaluator {

public AbstractCoolingLanguageExpressionEvaluator(ExecutionContext ctx) {
super(ctx);

}

public Object eval(EObject expr, LogEntry parentLog)
throws InterpreterException {

LogEntry localLog = parentLog.child(LogEntry.Kind.eval, expr,
"evaluating "+expr.eClass().getName());

if (expr instanceof Equals)
return evalEquals((Equals)expr, localLog);

if (expr instanceof Unequals)
return evalUnequals((Unequals)expr, localLog);

if (expr instanceof Greater)
return evalGreater((Greater)expr, localLog);

// the others...
}

protected Object evalEquals(Equals expr, LogEntry log)
throws InterpreterException {

throw new MethodNotImplementedException(expr,
"evalEquals not implemented");

}

protected Object evalUnequals(Unequals expr, LogEntry log)
throws InterpreterException {

throw new MethodNotImplementedException(expr,
"evalUnequals not implemented");

}

// the others...
}

Before we dive into the details of the interpreter code below, it
is worth mentioning that the "global data" held by the execu-
tion engine is stored and passed around using an instance of
EngineExecutionContext. For example, it contains the envi-
ronment that keeps track of symbol values, and it also has ac-
cess to the type system implementation class for the language.
The ExecutionContext is available through the eec() method
in the StatementExecutor and ExpressionEvaluator.

Let us now look at some example method implementations.
The following code shows the implementation of evalNumber-
Literal, which evaluates number literals such as 2 or 2.3 or
-10.2. To recap, the following grammar is used for defining
number literals:

Atomic returns Expression:
...
({NumberLiteral} value=DECIMAL_NUMBER);

terminal DECIMAL_NUMBER:
("-")? (’0’..’9’)* (’.’ (’0’..’9’)+)?;

With this in mind, the implementation of evalNumberLiteral
should be easily understandable. We first retrieve the actual
value from the NumberLiteral object, and we find the type of
the number literal using the typeof function in the type sys-

302 dslbook.org

tem13. Based on this distinction, evalNumberLiteral returns 13 The type system basically inspects
whether the value contains a dot or
not and returns either a DoubleType or
IntType.

either a Java Double or Integer as the value of the Number-

Literal. In addition, it creates log entries that document these
decisions.

protected Object evalNumberLiteral(NumberLiteral expr, LogEntry log) {
String v = ((NumberLiteral) expr).getValue();
EObject type = eec().typesystem.typeof(expr,

new TypeCalculationTrace());
if (type instanceof DoubleType) {

log.child(Kind.debug, expr, "value is a double, " + v);
return Double.valueOf(v);

} else if (type instanceof IntType) {
log.child(Kind.debug, expr, "value is a int, " + v);
return Integer.valueOf(v);

}
return null;

}

The evaluator for NumberLiteral was simple because number
literals are leaves in the AST and have no children, and no
recursive invocations of eval are required. This is different for
the LogicalAnd, which has two children in the left and right

properties. The following code shows the implementation of
evalLogicalAnd.

protected Object evalLogicalAnd(LogicalAnd expr, LogEntry log) {
boolean leftVal = ((Boolean)evalCheckNullLog(expr.getLeft(), log))

.booleanValue();
if (!leftVal) return false;
boolean rightVal = ((Boolean)evalCheckNullLog(expr.getRight(), log))

.booleanValue();
return rightVal;

}

The first statement calls the evaluator, for the left property.
If leftVal is false we return without evaluating the right ar-
gument14. If it is true we evaluate the right argument15. The 14 Most programming languages never

evaluate the right argument of a logical
and if the left one is false and the
overall expression can never become
true.

15 The argument evaluation uses a util-
ity method called evalCheckNullLog
which automatically creates a log entry
for this recursive call and stops the
interpreter if the value passed in is
null (which would mean the AST is
somehow broken).

value of the LogicalAnd is then the value of rightVal.
So far, we haven’t used the environment, since we haven’t

worked with variables and their (changing) values. Let’s now
look at how variable assignment is handled. We first look at the
AssignmentStatement, which is implemented in the Statement-
Executor:

protected void executeAssignmentStatement(AssignmentStatement s,
LogEntry log) {

Object l = s.getLeft();
Object r = evalCheckNullLog(s.getRight(), log);
SymbolRef sr = (SymbolRef) l;
SymbolDeclaration symbol = sr.getSymbol();
eec().environment.put(symbol, r);
log.child(Kind.debug, s, "setting " + symbol.getName() + " to " + r);

}

The first two lines get the left argument as well as the value
of the right argument. Note how only the right value is evalu-
ated: the left argument is a symbol reference (ensured through

dsl engineering 303

a constraint, since only SymbolRefs are lvalues in this lan-
guage). We then retrieve the symbol referenced by the symbol
reference and create a mapping from the symbol to the value in
the environment, effectively "assigning" the value to the sym-
bol during the execution of the interpreter.

The implementation of the ExpressionEvaluator for a sym-
bol reference (if it is used not as an lvalue) is shown in the
following code. We use the same environment to look up the
value for the symbol. We then check whether the value is null
(i.e. nothing has been assigned to the symbol as yet). In this
case we return the default value for the respective type and log
a warning16, otherwise we return the value. 16 This is specialized functionality in

the cooling language; in most other
languages, we would probably just
return null, since nothing seems to
have been assigned to the symbol yet.

protected Object evalSymbolRef(SymbolRef expr, LogEntry log) {
SymbolDeclaration s = expr.getSymbol();
Object val = eec().environment.get(s);
if (val == null) {

EObject type = eec().typesystem.typeof(expr,
new TypeCalculationTrace());

Object neutral = intDoubleNeutralValue(type);
log.child(Kind.debug, expr,

"looking up value; nothing found, using neutral value: " +
neutral);

return neutral;
} else {

log.child(Kind.debug, expr, "looking up value: " + val);
return val;

}
}

The cooling language does not support function calls, so we
demonstrate function calls with a similar language that sup-
ports them. In that language, function calls are expressed as
symbol references that have argument lists. Constraints make
sure that argument lists are only used if the referenced symbol
is actually a FunctionDeclaration17. Here is the grammar. 17 This is a consequence of the sym-

bol reference problem discussed in
Section 8.2FunctionDeclaration returns Symbol:

{FunctionDeclaration} "function" type=Type name=ID "("
(params+=Parameter ("," params+=Parameter)*)? ")" "{"
(statements+=Statement)*

"}";

Atomic returns Expression:
...
{SymbolRef} symbol=[Symbol|QID]

("(" (actuals+=Expr)? ("," actuals+=Expr)* ")")?;

The following is the code for the evaluation function for the
symbol reference. It must distinguish between references to
variables and to functions18. 18 This is once again a consequence

of the fact that all references to any
symbol are handled via the SymbolRef
class. We discussed this in Section 7.5.

protected Object evalSymbolRef(SymbolRef expr, LogEntry log) {
Symbol symbol = expr.getSymbol();
if (symbol instanceof VarDecl) {

return log(symbol, eec().environment.getCheckNull(symbol, log));
}
if (symbol instanceof FunctionDeclaration) {

FunctionDeclaration fd = (FunctionDeclaration) symbol;

304 dslbook.org

return callAndReturnWithPositionalArgs("calling "+fd.getName(),
fd.getParams(), expr.getActuals(), fd.getElements(),
RETURN_SYMBOL, log);

}
throw new InterpreterException(expr,

"interpreter failed; cannot resolve symbol reference "
+expr.eClass().getName()); }

The code for handling the FunctionDeclaration uses a prede-
fined utility method callAndReturnWithPositionalArgs19. It 19 It is part of the interpreter framework

used in this example.accepts as arguments the list of formal arguments of the called
function, the list of actual arguments (expressions) passed in
at the call site, the list of statements in the function body, a
symbol that should be used for the return value in the envi-
ronment, as well as the obligatory log. The utility method is
implemented as follows:

protected Object callAndReturnWithPositionalArgs(String name,
EList<? extends EObject> formals, EList<? extends EObject> actuals,
EList<? extends EObject> bodyStatements) {

eec().environment.push(name);
for(int i=0; i<actuals.size(); i++) {

EObject actual = actuals.get(i);
EObject formal = formals.get(i);
eec().environment.put(formal, evalCheckNullLog(actual, log));

}
eec().getExecutor().execute(bodyStatements, log);
Object res = eec().environment.get(RETURN_SYMBOL);
eec().environment.pop();
return res;

}

Remember that each invocation of a function has to get its own
environment to handle the local variables for the particular in-
vocation. We can see this in the first line of the implemen-
tation above: we first create a new environment and push it
onto the call stack. Then the implementation iterates over the
actual arguments, evaluates each of them and "assigns" them
to the formals by creating an association between the formal
argument symbol and the actual argument value in the new
environment. It then uses the StatementExecutor to execute
all the statements in the body of the function. Notice that as
the executed function deals with its own variables and func-
tion calls, it uses the new environment created, pushed onto
the stack and populated by this method. When the execution
of the body has finished, we retrieve the return value from the
environment. The return statement in the function has put it
there under a name we have prescribed, the RETURN_SYMBOL,
so we know how to find it in the environment. Finally, we pop
the environment, restoring the caller’s state of the world and
return the return value as the resulting value of the function
call expression.

dsl engineering 305

� States, Events and the Main program Changing a state20 from 20 State as in state machine, not as in
program state.within a cooling program is done by executing a ChangeState-

Statement, which simply references the state that should be
entered. Here is the interpreter code in StatementExecutor:
protected void executeChangeStateStatement(ChangeStateStatement s,

LogEntry l) {
engine.enterState(s.getTargetState(), log);

}

public void enterState(State targetState, LogEntry logger)
throws TestFailedException, InterpreterException,

TestStoppedException {
logger.child(Kind.info, targetState,

"entering state "+targetState.getName());
context.currentState = targetState;
executor.execute(ss.getEntryStatements(), logger);
throw new NewStateEntered();

}

executeChangeStateStatement calls back to an engine method
that handles the state change21. The method sets the current 21 Since this is a more global operation

than executing statements, it is handled
by the engine class itself, and not by the
StatementExecutor.

state to the target state passed into the method (the current
state is kept track of in the execution context). It then executes
the set of entry statements of the new state. After this it throws
an exception NewStateEntered, which stops the current exe-
cution step. The overall engine is step driven, i.e. an external
"timer" triggers distinct execution steps of the engine. A state
change always terminates the current step. The main method
step() triggered by the external timer can be considered the
main program of the interpreter. It looks like this:
public int step(LogEntry logger) {

try {
context.currentStep++;
executor.execute(getCurrentState().getEachTimeStatements(),

stepLogger);
executeAsyncStuff(logger);
if (!context.eventQueue.isEmpty()) {

CustomEvent event = context.eventQueue.remove(0);
LogEntry evLog = logger.child(Kind.info, null,

"processing event from queue: "+event.getName());
processEventFromQueue(event, evLog);
return context.currentStep;

}
processSignalHandlers(stepLogger);

} catch (NewStateEntered ignore) {}
return context.currentStep;

}

It first increments a counter that keeps track of how many steps
have been executed since the interpreter has been started. It
then executes the each time statements of the current state.
This is a statement list defined by a state that needs to be re-
executed in each step while the system is in the respective state.
It then executes asynchronous tasks. We’ll explain those below.
Next it checks if an event is in the event queue. If so, it removes
the first event from the queue and executes it. After processing

306 dslbook.org

an event the step is always terminated. Lastly, if there was no
event to be processed, we process signal handlers (the check

statements in the cooling programs).
Processing events checks whether the current state declares

an event handler that can deal with the currently processed
event. If so, it executes the statement list associated with this
event handler.

private void processEventFromQueue(CustomEvent event, LogEntry logger) {
for (EventHandler eh: getCurrentState().getEventHandlers()) {

if (reactsOn(eh, event)) {
executor.execute(eh.getStatements(), logger);

}
}

}

The DSL also supports executing code asynchronously, i.e. af-
ter a specified number of steps (representing logical program
time). The grammar looks as follows:

PerformAsyncStatement:
"perform" "after" time=Expr "{"

(statements+=Statement)*
"}";

The following method interprets the PerformAsyncStatements:

protected void executePerformAsyncStatement(PerformAsyncStatement s,
LogEntry log) throws InterpreterException {

int inSteps = ((Integer)evalCheckNullLog(s.getTime(), log)).intValue();
eec().asyncElements.add(new AsyncPerform(eec().currentStep + inSteps,

"perform async", s, s.getStatements()));
}

It registers the statement list associated with the PerformAsync-
Statement in the list of async elements in the execution con-
text. The call to executeAsyncStuff at the beginning of the
step method described above checks whether the time has
come and executes those statements:

private void executeAsyncStuff(LogEntry logger) {
List<AsyncElement> stuffToRun = new ArrayList<AsyncElement>();
for (AsyncElement e: context.asyncElements) {

if (e.executeNow(context.currentStep)) {
stuffToRun.add(e);

}
}
for (AsyncElement e : stuffToRun) {

context.asyncElements.remove(e);
e.execute(context, logger.child(Kind.info, null, "Async "+e));

}
}

12.2 An Interpreter in MPS

Building an interpreter in MPS is essentially similar to building
an interpreter in Xtext and EMF. All concepts would apply in

dsl engineering 307

the same way22. However, since MPS’ BaseLanguage is itself 22 Instead of EObjects you would work
with the node<> types that are available
on MPS to access ASTs.

built with MPS, it can be extended. So instead of using a gener-
ator to generate the dispatcher that calls the eval methods for
the expression classes, suitable modular language extensions
can be defined in the first place.

� A Dispatch Expression For example, BaseLanguage could
be extended with support for polymorphic dispatch (similar to
what Xtend does with dispatch methods). An alternative solu-
tion involves a dispatch expression, a kind of "pimped switch".
Fig. 12.1 shows an example.

Figure 12.1: An extension to MPS’
BaseLanguage that makes writing
interpreters simpler. The dispatch
statement has the neat feature that, on
the right side of the ->, the $ reference
to the ex expression is already down-
cast to the type mentioned on the left of
the ->.

The dispatch expression tests whether the argument ex is an
instance of the type referenced in the cases. If so, the code
on the right side of the arrow is executed. Notice the special
expression $ used on the right side of the arrow. It refers to the
argument ex, but it is already downcast to the type on the left
of the case’s arrow. This way, writing annoying downcasts for
each property access can be avoided.

Note that this extension is modular in the sense that the
definition of BaseLanguage was not changed. Instead, an ad-
ditional language module was defined that extends BaseLan-
guage. This module can be used as part of the program that
contains the interpreter, making the dispatch statement avail-
able there23. Also, the $ expression is restricted to only be

23 We discuss language modularization
and composition in Section 4.6.

usable on the right side of the ->, allowing the overall base
language namespace to be kept clean24.

24 Xbase/Xtend comes with a similar
"pimped" switch statement directly.
It supports switching over integer and
enum literals (as Java’s switch does),
but it also supports switching over
types plus arbitrary Boolean guard
conditions. This makes it very suitable
for building interpreters, since, as we
have seen, an interpreter typically
dispatches its behavior based on the
metaclass of the node it processes,
plus optionally some of its context or
children (which can be expressed with a
guard condition in Xtend’s switch.)� Showing Results in the Editor Since MPS is a projectional

editor, it can show things in the editor that are read-only. For
example, the result of an interpreter run can be integrated di-
rectly into the editor. In Fig. 12.2, the bottom table contains
test cases for the calculate rule. Users enter a number for

308 dslbook.org

squareMeters, numberOfRooms and the expected result, and
in the last column, the editor shows the actual result of the
computation (colored red or green depending on whether the
actual result matches the expected result).

Figure 12.2: This screenshot shows an
mbeddr-based demo application in
which users can specify insurance rules.
The system includes an interpreter that
executes the test cases directly in the
IDE.

The interpreter is integrated via the evaluate button25. Its 25 In MPS, an editor can embed Swing
components, and these Swing compo-
nents can react to their own events and
modify the model in arbitrary ways.

action listener triggers the computation:
component provider: (editorContext, node)->JComponent {

JButton evalButton = new JButton("evaluate");
final node<ProductTestSuite> suite = node;
evalButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent p0) {
command {

foreach tc in suite.cases {
float result = new RateCalculator(tc).calculate(

suite.ancestor<ProductType, +>.rateCalculation);
tc.actualResult.value = result + "";

}
}

}
});
return evalButton;

}

The coloring of the cells (and making them read-only) is done
via query-based formatting:
style {

editable : false
background-color : (node, editorContext)->Color {

node.ancestor<TestCase>.isOK()
? Color.GREEN : Color.RED;

}
}

12.3 An Interpreter in Spoofax

So far we have seen procedural/functional interpreters in which
the program’s execution state is separate from the program it-

dsl engineering 309

self. As the interpreter runs, it updates the execution state.
Another approach to writing interpreters is state-based inter-
preters, where the execution of the interpreter is expressed as
a set of transformations between program states. State-based
interpreters can be specified with rewrite rules in Spoofax, re-
alizing transitions between execution states. This requires:

• A representation of states. The simplest way to represent
states are terms, but we can also define a new DSL for rep-
resenting the states in concrete syntax.

• An initialization transformation from a program in the DSL to
the initial state of the interpreter.

• A step transformation from an actual state of the interpreter
to the next state of the interpreter.

In the remainder of the section, we develop an interpreter for a
subset of Mobl. We start with a simple interpreter for expres-
sions, which we then extend to handle statements.

12.3.1 An Interpreter for Expressions

If we want to evaluate simple arithmetic expressions without
variables, the expression itself is the state of the interpreter26. 26 Remember how in the design chapter

we discussed building debuggers for
purely functional languages, and in
particular, expression languages. We ar-
gued that a debugger is trivial, because
there is no real "flow" of the program;
instead, the expression can be de-
bugged by simply showing the values
of all intermediate expressions in a tree-
like for. We exploit the same "flowless"
nature of pure expression languages
when building this interpreter.

Thus, no extra term signatures are needed and the initializa-
tion transformation is given by identity. For the step transfor-
mation, we can define rewrite rules for the different expression
kinds:
eval: Add(Int(x), Int(y)) -> Int(z) where z := <add> (x, y)
eval: Mul(Int(x), Int(y)) -> Int(z) where z := <mul> (x, y)

eval: Not(True()) -> False()
eval: Not(False()) -> True()

eval: And(True(), True()) -> True()
eval: And(True(), False()) -> False()
eval: And(False(), True()) -> False()
eval: And(False(), False()) -> False()

eval: LazyAnd(True(), True()) -> True()
eval: LazyAnd(False(), _) -> False()
eval: LazyAnd(_, False(), _) -> False()

We can orchestrate these rules in two different styles. First, we
can define an interpreter which performs only a single evalua-
tion step by applying one rule in each step:
eval-one: exp -> <oncebu(eval)> exp

Here, oncebu tries to apply eval at one position in the tree,
starting from the leaves (the bu in oncebu stands for bottom-
up). We could also use oncetd, traversing the tree top-down.

310 dslbook.org

However, evaluations are likely to happen at the bottom of the
tree, which is why oncebu is the better choice. The result of
eval-one will be a slightly simpler expression, which might
need further evaluation. Alternatively, we can directly apply
as many rules as possible, trying to evaluate the whole expres-
sion:

eval-all: exp -> <bottomup(try(eval))> exp

Here, bottomup tries to apply eval at every node, starting
at the leaves. The result of eval-all will be the final result of
the expression.

12.3.2 An Interpreter for Statements

If we want to evaluate statements, we need states which cap-
ture the value of variables and the list of statements which
needs to be evaluated. We can define these states with a signa-
ture for terms:

signature constructors

: ID * IntValue -> VarValue
: ID * BoolValue -> VarValue

State: List(VarValue) * List(Statement) -> State

The first two rules define binary tuples which combine a vari-
able name (ID) and a value (either IntValue or BoolValue).
The last rule defines a binary constructor State, which com-
bines a list of variable values with a list of statements27. We 27 This will represent the program as

it evolves over time. Starting with a
statement list, the program state over
time can be represented as a collection
of variable values and a remaining list
of yet to be interpreted statements. This
is what State represents.

first have to adapt the evaluation of expressions to handle vari-
able references in expressions.

eval(|varvals): exp -> <eval> exp
eval(|varvals): VarRef(var) -> <lookup> (var, varvals)

eval-one(|s): exp -> <oncebu(eval(|s))> exp
eval-all(|s): exp -> <bottomup(try(eval(|s)))> exp

The first two rules take the actual list of variable values of the
interpreter (varvals) as a parameter. The first rule integrates
the existing evaluation rules, which do not need any state in-
formation. The second rule looks up the current value val of
the variable var in the list of variable values. The last two rules
define small-step and big-step interpreters of expressions, just
as before.

We can now define evaluation rules for statements. These
rules rewrite the current state into a new state:

eval:
(varvals, [Declare(var, exp)|stmts]) -> (varvals’, stmts)
where

dsl engineering 311

val := <eval-all(|varvals)> exp;
varvals’ := <update> ((var, val), varvals)

eval:
(varvals, [Assign(VarRef(var), exp)|stmts]) -> (varvals’, stmts)
where

val := <eval-all(|varvals)> exp;
varvals’ := <update> ((var, val), varvals)

eval:
(varval, [Block(stmts1)|stmts2]) -> (varvals, <conc> (stmts1, stmts2))

The first rule handles variable declarations. On the left-hand
side, it matches the current list of variable values varvals, the
declaration statement Declare(var, exp), and the list of re-
maining statements stmts. It evaluates the expression to a
value and updates the list of variable values. The new state (on
the right-hand side of the signature) consists of the updated
variable values and the list of remaining statements28. The 28 Note how on the left side of the rule

the [head|tail] notation is used for
the statements, where stmts is the tail.
By "returning" stmts on the right, we
automatically remove the first element
from the list (it was the head).

second rule handling assignments is quite similar. The third
rule handles block statements, by concatenating the statements
from a block with the remaining statements. The following rule
handle an if statement:
eval:

(varvals, [If(exp, thenStmt, elseStmt)|stmts]) -> (varvals, [stmt|stmts])
where

val := <eval-all(|varvals)> exp;
if !val => True() then

stmt := thenStmt
else

!val => False();
stmt := elseStmt

end

First, it evaluates the condition. Depending on the result, it
chooses the next statement to evaluate. When the result is
True(), the statement from the thenStmt branch is chosen.
Otherwise the result has to be False() and the statement from
the elseStmt branch is chosen. If the result is neither True()

nor False(), the rule will fail. This ensures that the rule only
works when the condition can be evaluated to a Boolean value.
The following rule handles while loops:
eval:

(varvals, [While(exp, body)|stmts]) -> (varvals, stmts’)
where

val := <eval-all(|varvals)> exp;
if !val => True() then

stmts’ := [body, While(exp, body)|stmts]
else

!val => False();
stmts’ := stmts

end

Again, the condition is evaluated first. If it evaluates to True(),
the list of statements is updated to the body of the loop, the
while loop again, followed by the remaining statements. If it

312 dslbook.org

evaluates to False(), only the remaining statements need to
be evaluated.

The eval rules already define a small-step interpreter, going
from one evaluation state to the next. We can define a big-step
interpreter by adding a driver, which repeats the evaluation
until it reaches a final state:

eval-all: state -> <repeat(eval)> state

12.3.3 More Advanced Interpreters

We can extend the interpreter to handle function calls and ob-
jects in a similar way as we did for statements. First, we always
have to think about the states of the extended interpreter. Func-
tions will require a call stack, objects will require a heap. Next,
we need to consider how the old rules can deal with the new
states. Adjustments might be needed. For example, when we
support objects, the heap needs to be passed to expressions.
Expressions which create objects will change the heap, so we
cannot only pass it, but have to propagate the changes back to
the caller.

12.3.4 IDE Integration

We can integrate interpreters as builders into the IDE. For big-
step interpreters, we can simply calculate the overall execution
result and show it to the user. For small-step interpreters, we
can use the initialization transformation in the builder. This
will create an initial state for the interpreter. When we define
a concrete syntax for these states, they can be shown in an
editor. The transition transformation can then be integrated as
a refactoring on states, changing the current state to the next
one. In this way, the user can control the execution, undo steps,
or even modify the current state.

13
IDE Services

In this chapter we discuss various services provided by the
IDE. This includes code completion, syntax coloring, pretty-
printing, go-to-definition and find references, refactoring,
outline views, folding, diff and merge, tooltips and visual-
ization. In contrast to the other chapters, this one is not
organized by tool, but rather by IDE service. We then pro-
vide examples for each service with one or more of the tools.
Note that debugging debugging is discussed in Chapter 15.

In this chapter we illustrate typical services provided by the
IDE that are not automatically derived from the language def-
inition itself and for which additional configuration or pro-
gramming is required. Note that we are not going to show
every service with every example tool1.

1 If we don’t show how X works in
some tool, this does not mean that you
cannot do X with this particular tool.

13.1 Code Completion

Code completion is perhaps the most essential service pro-
vided by an IDE. We already saw that code completion is im-
plicitly influenced by scopes: if you press Ctrl-Space at the
location of a reference, the IDE will show you the valid targets
of this reference (as defined in the scope) in the code comple-
tion menu. Selecting one establishes the reference.

� Customizing Code Completion for a Reference in Xtext Con-
sider the cooling DSL. Cooling programs can reference sym-
bols. Symbols can be hardware building blocks, local variables
or configuration parameters. It would be useful in the code
completion menu to show what kind of symbol a particular
symbol is (Fig. 13.1).

Figure 13.1: Code completion in the
cooling language is customized to spec-
ify what kind of symbol a particular
reference target is (the kind is shown in
parantheses after the name).

314 dslbook.org

To customize code completion, you have to implement a
method in the ProposalProvider for your language. The method
name has to correspond to a rule/property whose code com-
pletion menu you want to customize2. In this example, we

2 This also works for containment
references or primitive properties
and not just for references (which are
affected by scopes).

want to customize the symbol property of the Atomic expres-
sion:
Atomic returns Expression:

...
({SymbolRef} symbol=[appliances::SymbolDeclaration|QID]);

The method takes various arguments; the first one, model, rep-
resents the program element for which the symbol property
should be completed.
public class CoolingLanguageProposalProvider

extends AbstractCoolingLanguageProposalProvider {

@Override
public void completeAtomic_Symbol(EObject model, Assignment assignment,

ContentAssistContext context,
ICompletionProposalAcceptor acceptor) {

...
}

}

Let us now look at the actual implementation of the method3. 3 For this particular example above,
where we only change the string rep-
resentation of the targets computed by
the scope (as opposed to changing the
actual contents of the code completion
menu), we could have overridden the
getStyledDisplayString method
instead. Its task is to provide the textual
representation for contents of the scope.

In line three we get the scope for the particular reference so we
can iterate over all the elements and change their appearance
in the code completion menu. To be able to get the scope, we
need the EReference for the particular reference. The first two
lines in this method are used to this end.
CrossReference crossReference = ((CrossReference)assignment.getTerminal());
EReference ref = GrammarUtil.getReference(crossReference);
IScope scope = getScopeProvider().getScope(model, ref);
Iterable<IEObjectDescription> candidates = scope.getAllElements();
for (IEObjectDescription od: candidates) {

String ccText = od.getName()+" ("+od.getEClass().getName()+")";
String ccInsert = od.getName().toString();
acceptor.accept(createCompletionProposal(ccInsert,

ccText, null, context));
}

Once we have the scope, we can iterate over all its contents
(i.e. the target elements)4. Inside the loop we then use the

4 Note how the scope does not directly
contain the target EObjects, but rather
IEObjectDescriptions. This is because
the code completion is resolved against
the index, a data structure maintained
by Xtext that contains all referenceable
elements. This approach has the advan-
tage that the target resource, i.e. the file
that contains the target element, does
not have to be loaded just to be able to
reference into it.

name of the target object plus the name of the EClass to con-
struct the string to be shown in the code completion menu
(ccText)5. The last line then calls the accept method on the

5 Note that we could use a rich string to
add some nice formatting to the string.

ICompletionProposalAcceptor to finally create a proposal.
Note how we also pass in ccInsert, which is the text to be in-
serted into the program if the particular code completion menu
item is selected.

� An Example with MPS The contents of the code completion
menu for references can be customized in MPS as well. It is

dsl engineering 315

instructive to look at this in addition to Xtext for two reasons.
The first one is brevity. Consider the following code, where we
customize the code completion menu for function calls:

link {function}
...
presentation :

(parameterNode, visible, smartReference, inEditor, ...)->string {
parameterNode.signatureInfo();

}

To customize the contents of the code completion menu, you
have to provide the expression that calculates the text in the
presentation section of the scope provider6. In this example 6 Styled/Rich strings are not supported

here.we call a method that calculates a string that represents the
complete signature of the function.

The second reason why this is interesting in MPS is that we
don’t have to specify the text that should be inserted if an ele-
ment is selected from the code completion menu: the reference
is established based on the UUID of the target node, and the
editor of the referencing node determines the presentation of
this reference7. 7 In the example of the function call, it

projects the name of the called function
(plus the actual arguments).� Code Completion for Simple Properties In Xtext, code com-

pletion can be provided for any property of a rule, not just for
references (i.e. also for children or for primitive properties such
as strings or numbers). The mechanism to do that is the same
as the one shown above. Instead of using the scope (only refer-
ences have scopes) one could use a statically populated list of
strings as the set of proposals, or one could query a database
to get a list of candidate values8. 8 Note that if we use this approach to

provide code completion for primitive
properties this does not affect the con-
straint check (in contrast to references,
where a scope affects the code comple-
tion menu and the constraint checks).
Users can always type something that
is not in the code completion menu. A
separate constraint check may have to
be written.

In MPS, the mechanism is different. Since this is a pure
editor customization and has nothing to do with scopes, this
behavior is customized in the editor definition. Consider a
LocalVariableDeclaration (as in int x = 0;) where we want
to customize the suggested name of the variable. So if you
press Ctrl-Space in the name field of the variable, we want to
suggest one or more reasonable names for the variable. Fig. 13.2
shows the necessary code.

An editor cell may have a cell menu (the menu you see when
you press Ctrl-Space). It consists of several parts. Each part
contributes a set of menu entries. In the example in Fig. 13.2,
we add a cell menu part of type property values, in which
we simply return a list of values (one, in the example; we use
the name of the type of the local variable, prefixed by an a).

316 dslbook.org

Figure 13.2: A cell menu
for the name property of a
LocalVariableDeclaration. In the
editor definition (top window) we select
the cell that renders the name. In the
inspector we can then define additional
properties for the selected cell. In this
case we contribute an additional cell
menu that provides the suggested
names.

� Editor Templates Templates are more complex syntactic struc-
tures that can be selected from the code completion menu. For
example, the code completion menu may contain an if-then-

else entry, which, if you select it, gets expanded into the fol-
lowing code in the program:

if (expr) {

} else {

}

Xtext provides templates for this purpose. These can be de-
fined either as part of the language, or by the user in the IDE.
Fig. 13.3 shows the if-then-else example as defined in the
IDE.

In MPS there are several ways to address this. One is simply
an intention (explained in more detail in Section 7.7). It will
not be activated via Ctrl-Space, but rather via Alt-Enter. In
every other respect it is identical: the intention can insert ar-
bitrary code into the program. Alternatively we can use a cell
menu (already mentioned above). Fig. 13.4 shows the code for
a cell menu that also creates the if-then-else structure illus-
trated above.

13.2 Syntax Coloring

There are two cases for syntax coloring: syntactic highlight-
ing and semantic highlighting. Syntactic highlighting is used
to color keywords, for example. These keywords are readily

dsl engineering 317

Figure 13.3: Template definitions
contain a name (the text shown in the
code completion menu), a description,
as well as the context and the pattern.
The context refers to a grammar rule.
The template will show up in the code
completion menu at all locations where
that grammar rule would be valid as
well. The pattern is the actual text that
will be inserted into the editor if the
template is selected. It can contain
variables. Once inserted, the user can
use TAB to step through the variables
and replace them with text. In the
example, we define the condition
expression as a variable.

Figure 13.4: A cell menu to insert the
if/then/else statement. Note how we
contribute two menu parts. The first
one inserts the default code completion
contents for Statement. The second
one provides an if/then/else statement
under the menu text if-then-else.
Notice how we can use a quotation
(concrete syntax expression) in the cell
menu code. Because of MPS’s support
for language composition, the editor
even provides code completion etc. for
the contents of the quotation in the editor
for the cell menu.

available from the grammar. No customization is necessary
beyond configuring the actual color. Semantic coloring colors
code fragments based on some query over the AST structure.
For example, in a state machine, if a state is unreachable (no
incoming transitions) the state may be colored in gray instead
of black.

� An Example with MPS Let us first look at syntax coloring
in MPS, starting with purely syntactic highlighting. Fig. 13.5
shows a collage of several ingredients: at the top we see the
editor for GlobalVariableDeclaration. GlobalVariableDe-

claration implements the interface IModuleContent. IModule-
Contents can be exported (which means they can be seen by

318 dslbook.org

Figure 13.5: In MPS, syntax color-
ing is achieved by associating one or
more style properties with the ele-
ments at hand. In this case we assign a
darkGreen text foreground color as well
as a bold font style.

modules importing the current one), so we define an editor
component (a reusable editor fragment) for IModuleContent

that renders the exported flag. This editor component is em-
bedded into the editor of GlobalVariableDeclaration, and is
also embedded into the editor of all other concepts that im-
plement IModuleCon- tent. The editor component simply de-
fines a keyword exported that is rendered in dark green and
in bold font. This can be achieved by specifying the respective
style properties for the editor cell9. 9 Groups of style definitions can also

be modularized into style sheets and
reused for several cells.

Semantic highlighting works essentially the same way. In-
stead of using a constant (darkGreen) for the color, we embed
a query expression. The code in Fig. 13.6 renders the state

keyword of a State in a Statemachine gray if that particular
state has no incoming transitions.

Figure 13.6: A style query that renders
the associated cell in gray if the state
(to which the cell belongs) has no
incoming transitions. We first find out
if the state has incoming transitions by
finding the Statemachine ancestor of
the state, finding all the Transitions
in the subtree under the Statemachine,
and then checking if one exists whose
targetState is the current state (node).
We then use the result of this query to
color the cell appropriately.

dsl engineering 319

� An Example with Xtext Xtext uses a two-phase approach.
First, you have to define the styles you want to apply to parts
of the text. This is done in the highlighting configuration of the
particular language:

public class CLHighlightingConfiguration extends
DefaultHighlightingConfiguration {

public static final String VAR = "var";

@Override
public void configure(IHighlightingConfigurationAcceptor acceptor) {

super.configure(acceptor);
acceptor.acceptDefaultHighlighting(VAR, "variables", varTextStyle());

}

private TextStyle varTextStyle() {
TextStyle t = defaultTextStyle().copy();
t.setColor(new RGB(100,100,200));
t.setStyle(SWT.ITALIC | SWT.BOLD);
return t;

}
}

The varTextStyle method creates a TextStyle object. The
method configure then registers this style with the framework
using a unique identifier (the constant VAR). The reason for reg-
istering it with the framework is that the styles can be changed
by the user in the running application using the preferences
dialog (Fig. 13.7). Figure 13.7: Preferences dialog that

allows users to change the styles
registered with the framework for a
highlighting configuration.

We now have to associate the style with program syntax10.

10 A particularly nice feature of Xtext
syntax coloring is that styles are com-
bined if more than one style applies to a
given program element.

The semantic highlighting calculator for the target language
is used to this end11. It requires the provideHighlightingFor

11 Even though it is called semantic
highlighting calculator, it is used for
syntactic and semantic highlighting. It
simply associates concrete syntax nodes
with styles; it does not matter how it
establishes the association (statically or
based on the structure of the AST).

method to be implemented. To highlight references to variables
(not the variables themselves!) with the style defined above
works the following way:

public void provideHighlightingFor(XtextResource resource,
IHighlightedPositionAcceptor acceptor) {

EObject root = resource.getContents().get(0);
TreeIterator<EObject> eAllContents = root.eAllContents();
while (eAllContents.hasNext()) {

EObject ref = (EObject) eAllContents.next();
if (ref instanceof SymbolRef) {

SymbolDeclaration sym = ((SymbolRef) o).getSymbol();
if (sym instanceof Variable) {

ICompositeNode n = NodeModelUtils.findActualNodeFor(ref);
acceptor.addPosition(n.getOffset(),

n.getLength(),
CLHighlightingConfiguration.VAR);

}
}

}
}

The method gets passed in an XtextResource, which repre-
sents a model file. From it we get the root element and iterate
over all its contents. If we find a SymbolRef, we continue with
coloring. Notice that in the cooling language we reference any

320 dslbook.org

symbol (variable, event, hardware element) with a SymbolRef,
so we now have to check whether we reference a Variable

or not12. If we have successfully identified a reference to a

12 This is the place where we could
perform any other structural or seman-
tic analysis (such as the check for no
incoming transitions) as well.variable, we now have to move from the abstract syntax tree

(on which we have worked all the time so far) to the concrete
syntax tree, so we can identify particular tokens that shall be
colored13. We use a utility method to find the ICompositeNode 13 The concrete syntax tree in Xtext is

a complete representation of the parse
result, including keywords, symbols
and whitespace.

that represents the SymbolRef in the concrete syntax tree. Fi-
nally we use the acceptor to perform the actual highlighting
using the position of the text string in the text. We pass in the
VAR style defined before14. 14 Notice how we color the complete

reference. Since it is only one text string
anyway, this is just as well. If we had
more structured concrete syntax (as in
state someState {}), and we only
wanted to highlight parts of it (e.g., the
state keyword), we’d have to do some
further analysis on the ICompositeNode
to find out the actual concrete syntax
node for the keyword.

� An Example with Spoofax Spoofax supports syntax color-
ing on the lexical and the syntactic level. At the lexical level,
tokens such as keywords, identifiers, or integers are colored.
This is the most common use case of syntax coloring. At the
syntactic level, we can color larger code fragments, for exam-
ple to highlight embeddings. In Spoofax, syntax coloring is
specified declaratively as part of the editor specification. For
the lexical level, Spoofax predefines the token classes keyword,
identifier, string, number, var, operator and layout. For
each of these, we can specify a color (either by name or by
RGB values) and optionally a font style (bold, italic, or both).
Spoofax generates the following default specification:

module MoblLang-Colorer.generated

colorer Default, token-based highlighting

keyword : 127 0 85 bold
identifier : default
string : blue
number : darkgreen
var : 255 0 100 italic
operator : 0 0 128
layout : 63 127 95 italic

colorer System colors

darkgreen = 0 128 0
green = 0 255 0
darkblue = 0 0 128
blue = 0 0 255
...
default = _

The generated specification can be customized on the lexical
level, but also extended on the syntactic level. These exten-
sions are based on syntactic sorts and constructor names. For
example, the following specification will color numeric types
in declarations in dark green:

dsl engineering 321

module DSLbook-Colorer

imports DSLbook-Colorer.generated

colorer

Type.NumType: darkgreen

Here Type is a sort from the syntax definition, while NumType

is the constructor for the integer type. There are other rules
for Type in the Mobl grammar, for example for the string type.
When we want other types also to be colored dark green, we
can either add more rules to the colorer specification, or replace
the current definition with Type._, where _ acts as a wildcard
and all types will be colored dark green, independent of their
constructor. Similarly, we can use a wildcard for sorts. For
example, _.NumType will include all nodes with a constructor
NumType, independent of their syntactic sort.

In the current example, predefined types like int and en-
tity types are all colored dark green, but only the predefined
types will appear in bold face. This is because Spoofax com-
bines specified colors and fonts. The rule on the syntactic level
specifies only a color, but no font. Since the predefined types
are keywords, they will get the font from the keyword specifi-
cation, which is bold. In contrast, entity types are identifiers,
which will get the default font from the identifier specification.

13.3 Go-to-Definition and Find References

Following a reference (go to definition, Ctrl-Click) as well as
finding references to a given program element works automat-
ically without any customization in any of the language work-
benches. However, one might want to change the default be-
havior, for example because the underlying program element
is not a reference at all (but you still want to go somewhere
when Ctrl-Clicking on it).

� Customizing the Target with Xtext Let us first look at how to
change the target of the go-to-definition functionality. Strictly
speaking, we don’t change go-to-definition at all. We just de-
fine a new hyperlinking functionality. Go-to-Definition is just
the default hyperlinking behavior15. As a consequence: 15 Hyperlinking gets its name from the

fact that, as you mouse over an element
while keeping the Ctrl key depressed,
you see the respective element in blue
and underlined. You can then click on it
to follow the hyperlink

• You can define hyperlinking for elements that are not refer-
ences in terms of the grammar (a hyperlink can be provided
for any program element).

322 dslbook.org

• You can have several hyperlinks for the same element. If you
Ctrl-Hover on it, a little menu opens up and you can select
the target you are interested in.

To add hyperlinks to a language concept, Xtext provides the
IHyperlinkHelper interface, which can be implemented by
language developers to customize hyperlinking behavior. It re-
quires one method, createHyperlinksTo, to be implemented16. 16 Typically, language develop-

ers will inherit from one of the
existing base classes, such as the
TypeAwareHyperlinkHelper.

A typical implementation looks as follows:

public void createHyperlinksTo(XtextResource from, Region region,
EObject to, IHyperlinkAcceptor acceptor) {

if (to instanceof TheEConceptIAmInterestedIn) {
EObject target = // find the target of the hyperlink
super.createHyperlinksTo(from, region, target, acceptor);

} else {
super.createHyperlinksTo(from, region, to, acceptor);

}
}

� Customized Finders in MPS In many cases, there are differ-
ent kinds of references to any given element. For example, for
an Interface in the mbeddr C components extension, refer-
ences to that interface can either be sub-interfaces (ISomething
extends IAnother) or components, which can either provide
an interface (so other components can call the interface’s oper-
ation), or they can require an interface, in which case the com-
ponent itself calls operations defined by the interface. When
finding references, we may want to distinguish between these
different cases.

Figure 13.8: The Find Usages dialog for
Interfaces. The two additional Find-
ers in the top left box are contributed
by the language.

MPS provides finders to achieve this. Fig. 13.8 shows the re-
sulting Find Usages dialog for an Interface after we have im-
plemented two custom finders in the language: one for compo-
nents providing the interface, and one for components requir-
ing the interface.

Implementing finders is simple, since, as usual, MPS pro-
vides a DSL for specifying them. The following code shows
the implementation.

finder findProviders for concept Interface
description: Providers

find(node, scope)->void {
nlist<> refs = execute NodeUsages (node , <same scope>);
foreach r in refs.select(it|it.isInstanceOf(ProvidedPort)) {

add result r.parent ;
}

}

getCategory(node)->string {
"Providers";

}

Figure 13.9: The result dialog of run-
ning Find Usages with our customized
finders. Note the Providers and Users
categories; these correspond to the
strings returned from getCategory in
the two finders.

dsl engineering 323

We specify a name for the finder (findProviders) as well as
the type to which it applies (references to which it will find:
Interface in the example). We then have to implement the
find method. Notice how in the first line of the implemen-
tation we delegate to an existing finder, Node Usages, which
finds all references. We then check whether the referencing el-
ement is a ProvidedPort, and if so, we add the parent of the
port, i.e. a Component, to the result17. Finally, getCategory re- 17 Note how we make use of extensions

to the MPS BaseLanguage to concisely
specify finders: execute and add
result are only available in the finder
specification language.

turns a string that is use to structure the result. Fig. 13.9 shows
an example result.

� Customizing the Target with Spoofax Spoofax provides a de-
fault hyperlinking mechanism from references to declarations.
Alternative hyperlinking functionality can be implemented in
rewrite rules. The names of these rules need to be specified
in the editor specification. For example, the following specifi-
cation tells Spoofax to use a custom rewrite rule to hyperlink
this expressions to the surrounding class:

references
reference Exp.This : resolve-this

On the left-hand side of the colon the reference rule specifies
a syntactic sort and a constructor, for which the hyperlinking
should be customized18. On the right-hand side of the colon, 18 As in colorer specifications, we can

use _ as a wildcard for syntactic sorts
and constructors.

the rule names a rewrite rule which implements the hyperlink-
ing:

resolve-this:
(link, position, ast, path, project-path) -> target
where

Entity(t) := <type-of> link ;
target := <index-lookup> t

This rule determines the type of a this expression and links it
to the declaration of this type19. 19 Like all rewrite rules implementing

hyperlinking functionality, the rule
needs to follow a Spoofax-defined
signature: on the left-hand side, it
matches a tuple consisting of the
link, the position of this node in
the abstract syntax tree, the tree itself
(ast), the path of the current file,
and the path of the current Eclipse
project (project-path). On the right-
hand side, it returns the target of the
hyperlink.

13.4 Pretty-Printing

Pretty-printing refers to the reverse activity from parsing20. A

20 This is also known as serialization or
formatting.

parser transforms a character sequence into an abstract syntax
tree. A pretty printer (re-)creates the text string from the AST.
As the term pretty printing suggests, the resulting text should
be pretty, i.e. whitespace must be managed properly.

So when and where is a formatter useful? There is the ob-
vious use case: users somehow mess up formatting, and they
want to press Ctrl-Shift-F to clean it up. However, there is

324 dslbook.org

more essential reason. If the AST is modified by a transforma-
tion, the updated text has to be rendered correctly. An AST
is modified, for example, as part of a quick fix (see the next
paragraph) or by a graphical editor that operates in parallel to
a text editor on the same AST.

� Pretty-Printing in MPS In MPS, pretty-printing is a non-
issue. The editor always pretty-prints as part of the projec-
tion21. However, version 3.0 of MPS will support the definition 21 On the flip side, MPS users do not

have the option of changing the layout
or formatting of a program, since the
projection rules implement the one
true way of formatting. Of course, this
can be considered a plus or a minus,
depending on the context.

of several different editors for a single concept. They may be
fundamentally different (e.g., providing a textual and a graph-
ical syntax for state machines) or just provide different "lay-
outs" for a single notation (different positions of the opening
curly brace, for example). More generally, there is no reason
why a projectional editor may not provide a certain degree of
freedom regarding layout. Users may be able to press ENTER to
start a new line in a long expression, or press TAB to indent a
statement22. However, MPS does currently not support this. 22 Note that such layout information

must be stored with the program, or
possibly in a separate layout model.
This is especially true if the notation
is graphical, which will always allow
some degree of custom layout and
positioning of shapes

� Pretty-Printing in Spoofax Spoofax generates a language-
specific rewrite rule pp-<LanguageName>-string which rewrites
an abstract syntax tree into a string according to a pretty-printer
definition (expressed in the Box language). Spoofax generates
a default pretty-printer definition from the syntax definition
of a language. For example, Spoofax generates the following
pretty-printer definition for Mobl:

[
Module -- KW["module"] _1 _2,
Module.2:iter-star -- _1,
Import -- KW["import"] _1,
Entity -- KW["entity"] _1 KW["{"] _2 KW["}"],
Entity.2:iter-star -- _1,
Property -- _1 KW[":"] _2,
Function -- KW["function"] _1 KW["("] _2 KW[")"]

KW[":"] _3 KW["{"] _4 KW["}"],
Function.2:iter-star-sep -- _1 KW[","],
Function.4:iter-star -- _1,
Param -- _1 KW[":"] _2,
EntType -- _1,
NumType -- KW["int"],
BoolType -- KW["boolean"],
StringType -- KW["string"],
Declare -- KW["var"] _1 KW["="] _2 KW[";"],
Assign -- _1 KW["="] _2 KW[";"],
Return -- KW["return"] _1 KW[";"],
Call -- _1 KW["."] _2 KW["("] _3 KW[")"],
PropAccess -- _1 KW["."] _2,
Plus -- _1 KW["+"] _2,
Mul -- _1 KW["*"] _2,
Var -- _1,
Int -- _1

]

dsl engineering 325

In the Box language, rules consist of constructors (i.e. AS el-
ements or language concepts) on the left-hand side of a rule
and a sequence of boxes and numbers on the right-hand side.
The basic box construct is a simple string, representing a string
in the output. Furthermore, two kinds of box operators can
be applied to sub-boxes: layout operators specify the layout of
sub-boxes in the surrounding box, and font operators specify
which font should be used. In the example, all strings are em-
bedded in KW[...] boxes. KW is a font operator, classifying the
sub-boxes as keywords of the language23. 23 Since font operators are only mean-

ingful when pretty-printing to HTML
or LaTeX, we do not dive into the
details here.

Numbers on the right-hand side can be used to combine
boxes from the subtrees: a number n refers to the boxes from
the n-th subtree. When the syntax definition contains nested
constructs, additional rules are generated for pretty-printing
the corresponding subtrees. On the left-hand side, these rules
have selectors, which consist of a constructor, a number select-
ing a particular subtree, and the type of the nesting. The fol-
lowing table shows all nesting constructs in syntax definitions
and their corresponding types in pretty-printing rules.

Construct Selector Type
optionals S? opt

non-empty lists S+ iter

possibly empty lists S* iter-star

separated lists S1 S2+ iter-sep

possibly empty separated lists S1 S2* iter-star-sep

alternatives S1 | S2 alt

sequences (S1 S2) seq

Additionally, user-defined pretty-printing rules can be defined
as well. Spoofax first applies the user-defined rules to turn an
abstract syntax tree into a hybrid tree which is only partially
pretty-printed. It then applies the default rules to pretty-print
the remaining parts. For example, we could define our own
pretty-printing rule for Mobl modules:

Module -- V vs=1 is=4 [H [KW["module"] _1] _2]

This rule lets Spoofax pretty-print the term Module("shopping",

[Entity(...), Entity(...)]) as

module shopping

entity ...

entity ...

326 dslbook.org

The V box operator places sub-boxes vertically. In the exam-
ple, it places the entities underneath the module shopping line.
The desired vertical separation between the sub-boxes can be
specified by the spacing option vs. Its default value is 0; that
is, no blank lines are added between the boxes. In the exam-
ple, a blank line is enforced by vs=1. For indenting boxes in
a vertical combination, the spacing option is can be specified.
All boxes except the first will be indented accordingly. In the
example, the module shopping line is unindented, while the
entities are indented by 4 spaces. The H box operator lays out
sub-boxes horizontally. In the example, it is used to lay out the
module keyword and its name in the same line. The desired
horizontal separation between the sub-boxes can be specified
by the spacing option hs. Its default value is 1; that is, a single
space is added between the boxes.

� Pretty-Printing in Xtext In Xtext, the use of whitespace can
be specified in a language’s Formatter. Formatters use a Java
API to specify whitespace policies for a grammar. Consider
an example from the cooling language. Assume we enter the
following code:

state Hello : entry { if true { } }

If we run the formatter (e.g., by pressing Ctrl-Shift-F in the
IDE), we want the resulting text to be formatted like this:

state Hello:
entry {

if true { }
}

The following formatter code implements this.

protected void configureFormatting(FormattingConfig c) {
CoolingLanguageGrammarAccess f =

(CoolingLanguageGrammarAccess) getGrammarAccess();

c.setNoSpace().before(
f.getCustomStateAccess().getColonKeyword_3());

c.setIndentationIncrement().after(
f.getCustomStateAccess().getColonKeyword_3());

c.setLinewrap().before(
f.getCustomStateAccess().getEntryKeyword_5_0());

c.setLinewrap().after(
f.getCustomStateAccess().getLeftCurlyBracketKeyword_5_1());

c.setIndentationIncrement().after(
f.getCustomStateAccess().getLeftCurlyBracketKeyword_5_1());

c.setLinewrap().before(
f.getCustomStateAccess().getRightCurlyBracketKeyword_5_3());

c.setIndentationDecrement().before(
f.getCustomStateAccess().getRightCurlyBracketKeyword_5_3());

}

dsl engineering 327

In the first line we get the CoolingLanguageGrammarAccess

object, an API to refer to the grammar of the language itself.
This API is the basis for an internal Java DSL for expressing
formatting rules. Let’s look at the first block of three lines. In
the first line we express that there should be no space before
the colon in the CustomState rule. Line two states that we want
to have indentation after the colon. The third line specifies that
the entry keyword should be on a new line. The next two
blocks of two lines manage the indentation of the entry action
code. In the first block we express a line wrap and incremented
indentation after the opening curly brace. The second block
expresses a wrap before the closing curly brace, as well as a
decrement in the indentation level24.

24 As you can see, specifying the for-
matting for a complete grammar can
require a lot of code! In my opinion,
there are two approaches to improve
this: one is reasonable defaults or global
configurations. Curly braces, for exam-
ple, are typically formatted the same
way. Second, a more efficient way of
specifying the formatting should be
provided. Annotations in the grammar,
or a DSL for specifying the formatting
(such as the Box language used by
Spoofax) should go a long way.

13.5 Quick Fixes

A quick fix is a semi-automatic fix for a constraint violation. It
is semi-automatic in the sense that it is made available to the
user in a menu, and after selecting the respective quick fix from
the menu, the code that implements the quick fix rectifies the
problem that caused the constraint violation25. 25 Notice that a quick fix only makes

sense for problems that have one or
more "obvious" fixes. This is not true
for all problems.� Quick Fixes in Xtext Xtext supports quick fixes for con-

straint violations. Quick fixes can either be implemented on
the concrete syntax (i.e. via text replacement) or on the abstract
syntax (i.e. via a model modification and subsequent serializa-
tion). As an example, consider the following constraint defined
in the cooling language’s CoolingLanguageJavaValidator:

public static final String VARIABLE_LOWER_CASE = "VARIABLE_LOWER_CASE";

@Check
public void checkVariable(Variable v) {

if (!Character.isLowerCase(v.getName().charAt(0))) {
warning("Variable name should start with a lower case letter",

al.getSymbolDeclaration_Name(), VARIABLE_LOWER_CASE);
}

}

Based on our discussion of constraint checks (Section 9.1), this
code should be fairly self-explanatory. What is interesting is
the third argument to the warning method: we pass in a con-
stant to uniquely identify the problem. The quick fix will be
tied to this constant. The following code is the quick fix, imple-
mented in the CoolingLanguageQuickfixProvider26. Notice 26 This code resides in the UI part of

the language, since, in contrast to the
constraint check, it is relevant only in
the editor.

how in the @Fix annotation we refer to the same constant that
was used in the constraint check.

328 dslbook.org

@Fix(CoolingLanguageJavaValidator.VARIABLE_LOWER_CASE)
public void capitalizeName(final Issue issue,

IssueResolutionAcceptor acceptor) {
acceptor.accept(issue, "Decapitalize name",

"Decapitalize the name.",
"upcase.png",

new IModification() {
public void apply(IModificationContext context)

throws BadLocationException {
IXtextDocument xtextDocument = context.getXtextDocument();
String firstLetter = xtextDocument.get(issue.getOffset(), 1);
xtextDocument.replace(

issue.getOffset(), 1, firstLetter.toLowerCase());
}

});
}

Quick fix methods accept the Issue that caused the problem as
well as an IssueResolutionAcceptor that is used to register
the fixes so they can be shown in the quick fix menu. The core
of the fix is the anonymous instance of IModification that,
when executed after it has been selected by the user, fixes the
problem. In our example, we grab the document that contains
the problem and use a text replacement API to replace the first
letter of the offending variable with its lower case version.

Working on the concrete syntax level is ok for simple prob-
lems like this one. More complex problems should be solved
on the abstract syntax though27. For these cases, one can use 27 Imagine a problem that requires

changes to the model in several places.
Often it is easy to navigate to these
places via the abstract syntax (following
references, climbing up the tree), but
finding the respective locations on the
concrete syntax would be cumbersome
and brittle.

an instance of ISemanticModification instead:

@Fix(CoolingLanguageJavaValidator.VARIABLE_LOWER_CASE)
public void fixName(final Issue issue, IssueResolutionAcceptor acceptor) {

acceptor.accept(issue, "Decapitalize name",
"Decapitalize the name",
"upcase.png",

new ISemanticModification() {
public void apply(EObject element, IModificationContext context) {

((Variable) element).setName(
Strings.toFirstLower(issue.getData()[0]));

}
});

}

A quick fix using an ISemanticModification basically works
the same way; however, inside the apply method we now use
the EMF Java API to fix the problem28. 28 Notice that after the problem is

solved, the changed AST is serialized
back into text. Depending on the scope
of the change, a formatter has to be
implemented for the language to make
sure the resulting serialized text looks
nice.

� Quick Fixes in MPS Quick fixes in MPS work essentially
the same way as in Xtext. Of course there are only quick fixes
that act on the abstract syntax – the concrete syntax is projected
in any case. Here is a constraint that checks that the name of an
element that implements INameAllUpperCase actually consists
of only upper case letters:

checking rule check_INameAllUpperCase {
applicable for concept = INameAllUpperCase as a

dsl engineering 329

do {
if (!(a.name.equals(a.name.toUpperCase()))) {

warning "name should be all upper case" -> a;
}

}
}

The quick fix below upper-cases the name if necessary. The
quick fix is associated with the constraint check by simply ref-
erencing the fix from the error message. Quick fixes are exe-
cuted by selecting them from the intentions menu (Alt-Enter)29.

29 As discussed in Section 7.7, MPS also
has intentions. These are essentially
quick fixes that are not associated with
an error. Instead, they can be invoked
on any instance of the concept for
which the intention is declared.

quick fix fixAllUpperCase

arguments:
node<IIdentifierNamedConcept> node

description(node)->string {
"Fix name";

}

execute(node)->void {
node.name = node.name.toUpperCase();

}

� Model Synchronization via Quick Fixes A particularly inter-
esting feature of MPS’ quick fixes is that they can be executed
automatically in the editor. This can be used for synchronizing
different parts of a model: a constraint check detects an incon-
sistency in the model, and the automatically executed quick fix
resolves the inconsistency.

Here is an example where this makes sense. Consider the in-
terfaces and components extension to C. An interface declares
a couple of operations, each with their own unique signature.
A component that provides the interface has to provide imple-
mentations for each of the operations, and the implementations
must have the same signature as the operation it implements.
A constraint checks the consistency between interfaces and im-
plementing components. An automatically executed quick fix
adds missing (empty) operation implementations and synchro-
nizes their signatures with the signatures of the operations in
the interface.

13.6 Refactoring

Refactoring addresses changing the program structure without
changing its behavior. It is typically used to "clean up" the pro-
gram structure after it has gotten messy over time. While DSLs

330 dslbook.org

and their programs tend to be simpler than GPL programs,
refactorings are still useful.

� Renaming in Xtext One of the most essential refactorings
is renaming a program element30. Xtext comes with rename

30 The reason why it is a refactoring
(and not just typing a new name) is be-
cause all references to this element have
to be updated. In textual languages,
such references are by name, and if the
name of the target element changes, so
has the text of the reference.

refactoring out of the box, every language supports rename
refactoring automatically31. The only thing the user has to re-

31 In fact, it works across languages and
even integrates with tools that are not
implemented with Xtext, such as the
JDT or XMI-persisted EMF models such
as GMF diagrams.

member is to not just type a new name, but instead invoke the
Rename refactoring, for example via Ctrl-Alt-R.

� Renaming in Spoofax Like code generators, refactorings need
to be specified in the editor specification and implemented
with rewrite rules. For example, the following specification
specifies a refactoring for renaming entities:

refactorings
refactoring Decl.Entity : "Rename Entity" = rename-entity (cursor)

shortcut : "org.eclipse.jdt.ui.edit.text.java.rename.element"
input

identifier : "new name" = ""

Note that in a projectional editor
such as MPS, renaming is not even a
refactoring. A reference is established
with the UUID of the target element.
Renaming it does not lead to any
structural change. And since the editor
for the referencing element defines how
to render the reference, it will just
display the updated name if it changes.

The specification starts with a syntactic sort and a constructor,
on which the refactoring should be available, followed by a la-
bel for the refactoring in the context menu, the implementing
rewrite rule, and two options. In the example, Spoofax is in-
structed to use the current cursor position to determine the
node on which the refactoring should be applied. The speci-
fication further defines a shortcut for the refactoring, which
should be the same key binding as the one used in the JDT for
renaming. Finally, it defines an interactive input dialog, with a
label "new name" and an empty default input. The refactoring
itself is implemented in a rewrite rule:

rename-entity:
(newname, Entity(name, elems), position, ast, path, project-path)

-> ([(ast, new-ast)], errors, [], [])
with

new-ast := <topdown(try(rename-entity-local(|name, newname)))> ast;
[Entity(), oldname|path] := <index-uri> name;
if <index-lookup> [Entity(), newname|path] then

errors := [(name, $[Entity of name [newname] already exists.])]
else

errors := []
end

rename-entity-local(|old-name, new-name):
Entity(old-name, elems) -> Entity(new-name, elems)

rename-entity-local(|old-name, new-name):
EntType(old-name) -> EntType(new-name)

As we have seen already for other editor services, rewrite rules
for refactorings have to adhere to a specific interface (i.e. signa-
ture). On the left-hand side, the example rule matches a tuple

dsl engineering 331

consisting of the input from the refactoring dialog (newname),
the node on which the refactoring is applied, its position in
the abstract syntax tree, the tree itself (ast), and the paths of
the current file and the project. On the right-hand side, it yields
a tuple consisting of a list of changes in the abstract syntax tree
and lists of fatal errors, normal errors and warnings.

For simplicity, the example rule changes the whole abstract
syntax tree into a new one and provides only duplicate def-
inition errors. To do so, the new abstract syntax tree is re-
trieved by traversing the old one in a topdown fashion, trying
to apply rewrite rules rename-entity-local32. These rules

32 try(s) tries to apply a strategy s
to a term. Thereby, it never fails. If s
succeeds, it will return the result of s.
Otherwise, it will return the original
term.

take the old and new entity name as parameters. They en-
sure that declarations and references to entities are renamed.
The first rule rewrites entity declarations, while the second one
rewrites types of the form EntType(name), where name refers
to an entity.

An error is detected if an entity with the new name already
exists. Therefore, we match the annotated URI of the old name,
change it to the new name, and look it up. If we find an entity,
the renamed entity would clash with the one just found.

� Introduce Local Variable in MPS A very typical refactoring
for a procedural language such as C is to introduce a new local
variable. Consider the following code:

int8 someFunction(int8 v) {
int8 y = somethingElse(v * FACTOR);
if (v * FACTOR > 20) {

return 1;
} else {

return 0;
}

}

As you can see, the first two lines contain the same expression
(v * FACTOR) twice. A nicer version of this code might look
like this:

int8 someFunction(int8 v) {
int8 product = v * FACTOR;
int8 y = somethingElse(product);
if (product > 20) {

return 1;
} else {

return 0;
}

}

The Introduce Local Variable refactoring performs this change.
MPS provides a DSL for refactorings, based on which the im-
plementation is about 20 lines of code. We’ll go through it in
steps33. We start with the declaration of the refactoring itself.

33 In the meantime, the MPS refactoring
API has changed to better separate UI
aspects (keystrokes, choosers) and the
refactoring itself. This is important to
support integration of refactorings with
IntelliJ IDEA and, in the future, Eclipse.
However, I decided to keep the old
style, since it is a little more concise and
easier to follow in the context of this
example.

332 dslbook.org

refactoring introduceLocalVariable ("Introduce Local Variable")

keystroke: <ctrl+alt>+<V>
target: node<Expression>
allow multiple: false

isApplicableToNode(node)->boolean {
node.ancestor<Statement>.isNotNull;

}

The code above specifies the name of the refactoring (intro-
duceLocalVariable), the label used in the refactoring menu,
the keystroke to execute it directly (Ctrl-Alt-V) as well as the
target, i.e. the language concept on which the refactoring can
be executed. In our case, we want to refactor Expressions,
but only if these expressions are used in a Statement34. We

34 We cannot refactor an expression
if it is used, for example, as the init
expression for a global constant.

find out about that by checking whether the Expression has a
Statement among its ancestors in the tree. Next, we define a
parameter for the refactoring:

parameters:
varName chooser: type: string

title: Name of the new Variable
init(refactoringContext)->boolean {

return ask for varName;
}

The parameter represents the name of the newly introduced
variable. In the refactoring’s init block we ask the user for
this parameter35. We are now ready to implement the refactor-

35 The ask for expression returns
false if the user selects Cancel in the
dialog that prompts the user for the
name. The execution of the refactoring
stops in this case.

ing algorithm itself in the refactor block. We first declare two
local variables that represent the expression on which we in-
voked the refactoring (we get it from the refactoringContext36)

36 If the refactoring was declared
to allow multiple, we can use
refactoringContext.nodes to ac-
cess all of the selected nodes.

and the Statement under which this expression is located. Fi-
nally, we get the index of the Statement37.

37 .index returns the index of an
element in the collection that owns the
element. It is available on any node.

node<Expression> targetExpr = refactoringContext.node;
node<Statement> targetStmt = targetExpr.ancestor<Statement>;
int index = targetStmt.index;

Next, we iterate over all siblings of the statement in which
the expression lives. As we do that, we look for all expres-
sions that are structurally similar to the one we’re executing
the refactoring on (using MatchingUtil.matchNodes). We re-
member a matching expression if it occurs in a statement that
is after the one that contains our target expression.

nlist<Expression> matchingExpressions = new nlist<Expression>;
sequence<node<>> siblings =

targetStmt.siblings.union(new singleton<node<Statement>>(stmt));
foreach s in siblings {

if (s.index >= index) {
foreach e in s.descendants<Expression> {

if (MatchingUtil.matchNodes(targetExpr, e)) {
matchingExpressions.add(e);

} } } }

dsl engineering 333

The next step is to actually introduce the new local variable.
We create a new LocalVariableDeclaration using the API.
We set the name to the one we’ve asked the user for (varName),
we set its type to a copy of the type calculated by the type
system for the target expression, and we initialize the variable
with a copy of the target expression itself. We then add this
new variable to the list of statements, just before the one which
contains our target expression. We use the add prev-sibling

built-in function for that.

node<LocalVariableDeclaration> lvd = new node<LocalVariableDeclaration>();
lvd.name = varName;
lvd.type = targetExpr.type.copy;
lvd.init = targetExpr.copy;
targetStmt.add prev-sibling(lvd);

There is one more step we have to do. We have to replace
all the occurrences of our target expression with a reference
to the newly introduced local variable. We had collected the
matchingExpressions above, so we can now iterate over this
collection38: 38 Note how the actual replacement is

done with the replace with built-in
function. It comes in very handy, since
we don’t have to manually find out
in which property or collection the
expression lives in order to replace it.

foreach e in matchingExpressions {
node<LocalVarRef> ref = new node<LocalVarRef>();
ref.var = lvd;
e.replace with(ref);

}

All in all, building refactorings is straightforward with MPS’
refactoring support. The implementation effort is reduced to
essentially the algorithmic complexity of the refactoring itself.
Depending on the refactoring, this can be non-trivial.

13.7 Labels and Icons

Labels and icons for language concepts are used in several
places, among them the outline view and the code completion
menu.

� Labels and Icons in Xtext Labels and icons are defined in
the language’s LabelProvider, which is generated by Xtext for
each language by default. To define the label text, you simply
override the text method for your element, which returns ei-
ther a String or a StyledString (which includes formatting
information). For the icon, override the image method. Here
are a couple of examples from the cooling language39: 39 Notice how the label and the im-

age are defined via methods, you can
change the text and the icon dynam-
ically, based on some property of the
model.

public class CoolingLanguageLabelProvider
extends DefaultEObjectLabelProvider {

String text(CoolingProgram prg) {

334 dslbook.org

return "program "+prg.getName();
}

String image(CoolingProgram prg) {
return "program.png";

}

String text(Variable v) {
return v.getName()+": "+v.getType();

}

String image(Variable v) {
return "variable.png";

}
}

� Labels and Icons in MPS Labels are defined by overriding
the getPresentation behavior method on the respective con-
cept. This allows the label to also be adjusted dynamically. The
icon can be selected in the inspector (see Fig. 13.10) if we select
a language concept. The icon is fixed and cannot be changed
dynamically. Figure 13.10: Assigning an icon to a

language concept.

13.8 Outline

The outline provides an overview over the contents of some
part of the overall model, typically a file. By default, it usually
shows more or less the AST, down to a specific level (the imple-
mentations of functions or methods are typically not shown).
The contents of the outline view must be user-definable; at the
very least, we have to define where to stop the tree. Also,
the tree structure may be completely different from the nest-
ing structure of the AST: the elements may have to be grouped
based on their concept (first show all variables, then all func-
tions) or they may have to be sorted alphabetically.

� Customizing the Structure in Xtext Xtext provides an Out-

lineTreeProvider for your language that can be used to cus-
tomize the outline view structure (labels and icons are taken
from the LabelProvider discussed above). As an example, let
us customize the outline view for cooling programs to look the
one shown in Fig. 13.11.

Figure 13.11: A customized outline
view for cooling programs in Xtext

The tree view organizes the contents of a file by first show-
ing all programs and then all tests. To do this, we provide a
suitable implementation of _createChildren:

protected void _createChildren(DocumentRootNode parentNode, Model m) {
for (EObject prg : m.getCoolingPrograms()) {

createNode(parentNode, prg);
}
for (EObject t : m.getTests()) {

dsl engineering 335

createNode(parentNode, t);
}

}

Inside the method, we first grab all the CoolingPrograms from
the root element Model and create a node for them using the
createNote API, which takes the parent (in terms of the out-
line view) and the program element for which should be rep-
resented by the new outline node40. We then do the same for 40 The text and icon for the outline

node is taken from the label provider
discussed in the previous section.

tests.
Inside a program, we want to show variables and states in

separate sections, i.e. under separate intermediate nodes (see
Fig. 13.11). Here is how this works:

protected void _createChildren(IOutlineNode parentNode, CoolingProgram p) {
TextOnlyOutlineNode vNode = new TextOnlyOutlineNode(parentNode,

imageHelper.getImage("variable.png"),
"variables");

for (EObject v: p.getVariables()) {
createNode(vNode, v);

}
TextOnlyOutlineNode sNode = new TextOnlyOutlineNode(parentNode,

imageHelper.getImage("state.png"), "states");
for (EObject s: p.getStates()) {

createNode(sNode, s);
}

}

We introduce intermediate nodes that do not represent a pro-
gram element; they are used purely for structuring the tree.
The TextOnlyOutlineNode is a class we created; it simply ex-
tends the class AbstractOutlineNode provided by Xtext.

public class TextOnlyOutlineNode extends AbstractOutlineNode {

protected TextOnlyOutlineNode(IOutlineNode parent,
Image image, Object text) {

super(parent, image, text, false);
}

}

Xtext provides alphabetical sorting for outlines by default. There
is also support for styling the outline (i.e. using styled labels as
opposed to simple text) as well as for filtering the tree.

� The Outline in Spoofax With Spoofax, outlines can be spec-
ified declaratively in the editor specification. Abstract syntax
tree nodes, which should appear in the outline, are selected
based on their syntactic sort and constructor names. For exam-
ple, the following outline specification will include all entity
declarations41:

41 As in the specification of other editor
services, we can use _ as a wildcard
for sorts and constructors. For ex-
ample, Decl._ will include imports
and entities in the outline. Similarly,
_.Property will include all nodes with
a constructor Property, independent of
their syntactic sort.

module MoblLang-Outliner

imports MoblLang-Outliner.generated

outliner Entity Outliner

336 dslbook.org

Decl.Entity

Spoofax analyses the syntax definition and tries to come up
with a reasonable default outline specification. We can then
either extend the generated specification with our own rules,
or create a new one from scratch.

� The Outline in MPS MPS does not have a customizable
outline view. It shows the AST of the complete program as
part of the project explorer, but the structure cannot be cus-
tomized. However, it is of course possible to add arbitrary ad-
ditional views (called tools in MPS) to MPS. The MPS tutorial
at bit.ly/xU78ys shows how to implement your own outline
view.

13.9 Code Folding

Code folding refers to the small minuses in the gutter of an
editor that let you collapse code regions (see Fig. 13.12). The
editor shows an ellipsis (...) for the folded parts of the code.
Clicking on the + or on the ellipsis restores the full code.

Figure 13.12: Code folding in Xtext.
If you hover over the folded code, a
pop-up shows the hidden code.

� Folding in Xtext Xtext automatically provides folding for
all language concepts that stretch over more than one line42. To

42 Xtext also automatically provides
hovers for the folded contents that
show the text that is "folded away".

turn off this default behavior, you have to implement your own
subclass of DefaultFoldingRegionProvider and overwrite the
method isHandled in a suitable way. For example, to not pro-
vide folding for CustomStates, you could do the following:
public class CLFoldingRegionProvider extends DefaultFoldingRegionProvider {

@Override
protected boolean isHandled(EObject eObject) {

if (eObject instanceof CustomState) {
return false;

}
return super.isHandled(eObject);

}
}

� Folding in Spoofax Spoofax allows to specify folding declar-
atively in the editor specification. Very similar to the specifica-
tion of outlines, folding is specified in terms of syntactic sort
and constructor names:
module Mobl-Folding

folding
Module._

Decl.Entity
_.Function

dsl engineering 337

As for outlines, Spoofax analyses the syntax definition and tries
to come up with a reasonable default specification. We can
then either extend the generated specification with our own
rules, disable particular specifications by adding a (disabled)

annotation, or discard it completely. A (folded) annotation
tells Spoofax to fold a node by default in a newly opened editor,
which is typically seen for import sections.

� Folding in MPS In MPS, folding can be activated for any
collection. For example, in a state machine, each state contains
a vertical list of transitions. To enable folding for this collection,
we set the uses folding property for the collection to true43.

43 It can also be set to query, in which
case code can be written that deter-
mines at runtime whether folding
should be enabled or not. For example,
folding could be enabled if there are
more than three transitions in the state.

Once we’ve set the property to true, we have to provide a cell
that is rendered if the user requests the code to be folded. This
allows the text shown as an ellipses to be customized beyond
just showing three dots. As Fig. 13.13 shows, we use a read

only model access cell, which allows us to access the under-
lying model and return an arbitrary string. In the example, we
output the number of "hidden" transitions.

Figure 13.13: After uses folding has
been set to true for the transitions
collection of a State, we have to specify
a folded cell which is shown in case
the collection is folded. In this case we
use an R/O model access as the folded
cell which can return a (read-only)
string that is projected if the collection
is folded.

MPS provides a second mechanism that can be used to the
same effect. Since MPS is a projectional editor, some parts of
the editor may be projected conditionally. Fig. 13.14 shows a
list/tree of requirements. After pressing Ctrl-Shift-D on a re-
quirement, the editor shows the requirements details (Fig. 13.15).
This effect of "expanding editors" is implemented by making
the detail part optional in the sense that the projection rule only
shows it conditionally. Fig. 13.16 shows the editor definition.

Figure 13.14: A list/tree of require-
ments in mbeddr.

Figure 13.15: Optionally, the require-
ment details can be shown inline.

13.10 Tooltips/Hover

A tooltip, or hover, is a small, typically yellow window that is
shown if the user hovers the mouse over a program element. A
hover may show the documentation of the target element, or,
when hovering over a reference, some information about the
referenced element.

338 dslbook.org

Figure 13.16: The part of the editor
that includes the details pane is only
projected if the open property is
true. This property is toggled using
Ctrl-Shift-D.

� Xtext In Xtext, hovers/tooltips can be customized to var-
ious extents. The simplest customization retains the default
hover structure (a one-line summary plus a more extensive
documentation) and just changes the respective texts.

To change the one-line summary, you override the getFirst-
Line method in DefaultEObjectHoverProvider and return a
custom string. The program element for which the hover should
be created is represented by the EObject passed into the method.
To customize the documentation, you override getDocumen-

tation in IEObjectDocumentationProvider44. 44 Just as in any other case of Xtext
framework configuration, you have
to register the two classes in the UI
module.� Spoofax Spoofax supports tooltips directly. Tooltips are

provided by rewrite rules, which need to be defined as hovers
in the editor specification:

hover _: editor-hovering

This line tells Spoofax to use a rewrite rule editor-hovering

to retrieve tooltips for all kinds of abstract syntax tree nodes45. 45 Note the use of the wildcard to
express "all kinds of AST nodes".When we want to define different rewrite rules for particular

constructors, we need to provide a hover specification for each
constructor, replacing _ by _.<Constructor>.

The specified rewrite rules have to follow the typical editor
interface on their left-hand side and need to yield strings on

dsl engineering 339

Figure 13.17: If a user selects a reference
to a requirement in a requirements trace
(Arg2 in the example), the inspector
shows information about the referenced
requirement.

their right-hand sides. The strings are then used as tooltips.
For example, the following rewrite rule will provide type in-
formation for any typeable node:

editor-hovering:
(target, position, ast, path, project-path) ->

<type-of; pp-MoblLang-string> target

� MPS MPS does not support tooltips at this time. However,
there is an acceptable workaround: any additional information
for a program element can be shown in the inspector. For ex-
ample, if users click on a reference to a requirement in program
code, the inspector shows information about the referenced re-
quirement (see Fig. 13.17).

Looking at the editor definition for a RequirementRef, you
can see that the actual editor (top in Fig. 13.18) shows only
the name of the referenced element. The bottom part, the
inspected cell layout, projects the details about the refer-
enced element.

13.11 Visualizations

To provide an overview over the structure of programs, read-
only graphical representations are useful. Note that these are

340 dslbook.org

Figure 13.18: The editor definition for
the RequirementRef projects details
about the referenced element in the
inspector. Notice the use of the $swing
component$ as a means to embed the
Swing JTextArea that shows the prose
description of the requirement. The
code behind the $swing component$
also populates the text area and writes
back the changed text to the AST.

not necessarily a workaround for not having graphical editors:
visualizations can provide real added value.

� MPS In MPS we have integrated ZGRViewer46, a Java- 46 zvtm.sourceforge.net/
zgrviewer.htmlbased renderer for GraphViz47 dot files. Fig. 13.19 shows an
47 www.graphviz.org/

example.

Figure 13.19: Clicking on a node in
the Graph Viewer opens the respective
program element in the MPS editor.

As part of the transformations, we map the model to another
model expressed in a graph description language. This model
is then generated into a dot file. The graph viewer scans the
output directory for dot files and shows them in the tree view
at the top. Double-clicking on a graph node in the tree opens a
rendered dot file in the graph view.

dsl engineering 341

� Xtext In Xtext, Jan Koehnlein’s Generic Graph View48 can 48 github.com/JanKoehnlein/
Generic-Graph-Viewbe used to render diagrams of Xtext models in real-time – the

Generic Graph View is an interpreter, so changes in the model
lead to updates in the graph immediately.

Figure 13.20: A model-to-graph map-
ping and a style definition expressed
with the Generic Graph Viewer DSLs by
Jan Koehnlein.

The mapping from the model to the graph is expressed with
an Xtext-based mapping DSL that extends Xbase (Xtext’s reusable
expression language), which means you can use Xbase expres-
sions to traverse and query the model you want to visualize
(in Fig. 13.20 an example would be the this.eSuperTypes()

expression). In addition, a separate styling DSL supports the
definition of shapes, colors and line styles. Double-clicking a
node in the graph opens the corresponding program element
in the Xtext editor.

13.12 Diff and Merge

Highlighting the differences between versions of a program
and allowing the resolution of conflicts is important in the
context of version control integration. For tools like Xtext or
Spoofax that store models as plain text this is a non-issue: ex-
isting diff/merge tools can be used, be they in the IDE or on
the command line.

For projectional editors such as MPS, the story is more com-
plicated. Since they store the programs based on the abstract
syntax (e.g., using XML), diff and merge have to be performed
on the concrete projected syntax. MPS provides this feature
(see Fig. 7.7 for an example). MPS also annotates the editor
with gutter annotations that highlight whether a part of the
program has changed relative to the last checkout.

14
Testing DSLs

All the aspects of DSL implementation we have discussed so
far need to be tested to keep them stable. In this chapter we
address testing of the language syntax, the constraints and
the semantics, as well as some of the editor services, based
on examples with Xtext, MPS and Spoofax. We conclude
the chapter with a brief look at "testing" a language for
appropriateness relative to the domain.

DSL testing is a multi-faceted problem, since it needs to ad-
dress all the aspects of the DSL implementation we have dis-
cussed so far. In particular, this includes the syntax, the con-
straints and type system, as well as the execution semantics
(i.e. transformations or interpreters). Here are some examples:

• Can the syntax cover all required sentences? Is the concrete
syntax "correct"?

• Do the scopes work correctly?

• Do the constraints work? Are all "wrong" programs actually
detected, and is the right error message attached to the right
program element?

• are the semantics correct? Do transformations, generators
and interpreters work correctly?

• Can all programs relevant to the users actually be expressed?
Does the language cover the complete domain?

An important ingredient to testing is
that test execution can be automated
via scripts, so they can be run as part of
automatic builds. All the test strategies
shown below can be executed from ant
scripts. However, we don’t describe in
detail how this works for each of the
tools.

344 dslbook.org

14.1 Syntax Testing

Testing the syntax is simple in principle. Developers simply try
to write a large set of relevant programs and see if they can be
expressed with the language. If not, the concrete syntax is in-
complete. We may also want to try to write "wrong" programs
and check that the errors are detected, and that meaningful
error messages are reported.

� An Example with Xtext The following piece of code is the
fundamental code that needs to be written in Xtext to test a
DSL program using the Xtext testing utilities1. It is a JUnit 4

1 code.google.com/a/eclipselabs
.org/p/xtext-utils/wiki/
Unit_Testing; more testing util-
ities for Xtext can be found in the
org.eclipse.xtext.junit4 package.

test case (with special support for the Xtext infrastructure2), so

2 It is tested with Xtext 2.x.

it can be run as part of Eclipse’s JUnit integration.

@RunWith(XtextRunner.class)
@InjectWith(CoolingLanguageInjectorProvider.class)
public class InterpreterTests extends XtextTest {

@Test
public void testET0() throws Exception {

testFileNoSerializer("interpreter/engine0.cool", "
tests.appl", "stdparams.cool");

}

}

The single test method loads the interpreter/engine0.cool

program, as well as two more files which contain elements
referenced from engine0.cool. The testFileNoSerializer

method loads the file, parses it and checks constraints. If either
parsing or constraint checking fails, the test fails3. 3 There is also a testFile method

which, after loading and parsing the
file, reserializes the AST to the text file,
writes it back, and loads it again, thus
comparing the two ASTs. This way,
the (potentially adapted) formatter
is tested. Note that for testing the
formatting, a text comparison is the
only way to go, even though we argue
against text comparison in general.

On a more fine-grained level it is often useful to test par-
tial sentences instead of complete sentences or programs. The
following piece of Xtext example code tests the CustomState

parser rule:

@Test
public void testStateParserRule() throws Exception {

testParserRule("state s:",
"CustomState");

testParserRule("state s: entry { do fach1->anOperation }",
"CustomState");

testParserRule("state s: entry { do fach1->anOperation }",
"State");

}

The first line asserts that the string state s: can be parsed
with the CustomState parser rule. The second line passes in a
more complex state, one with a command in an entry action.
Line three tries the same text with the State rule, which itself
calls the CustomState4.

4 These tests really just test the parser.
No linking or constraints checks are
performed. This is why we can "call"
anOperation on the fach1 object,
although anOperation is not defined as
a callable operation anywhere.

dsl engineering 345

� An Example with Spoofax Spoofax supports writing tests
for language definitions using a testing language. Consider
the following test suite:

module example
language MoblEntities

test empty module [[module foo]] parse succeeds
test missing layout (module name) [[modulefoo]] parse fails

The first two lines specify the name of the test suite and the
language under test. The remaining lines specify positive and
negative test cases concerning the language’s syntax. Each test
case consists of a name, the to-be-tested code fragment in dou-
ble square brackets, and a specification that determines what
kind of test should be performed (parsing) and what the ex-
pected outcome is (succeeds or fails). We can also specify the
expected abstract syntax based on the ATerm textual notation:

test empty module (AST) [[module foo]] parse to Module("foo", [])

Instead of specifying a complete abstract syntax tree, we can
only specify the interesting parts in a pattern. For example,
if we only want to verify that the definition list of an empty
module is indeed empty, we can use _ as a wildcard for the
module name:

test empty module (AST) [[module foo]] parse to Module(_, [])

Abstract syntax patterns are particularly useful for testing op-
erator precedence and associativity:

test multiply and add [[1 + 2 * 3]] parse to Add(_, Mul(_, _))
test add and multiply [[1 * 2 + 3]] parse to Add(Mul(_, _), _)
test add and add [[1 + 2 + 3]] parse to Add(Add(_, _), _)

Alternatively, we can specify an equivalent concrete syntax frag-
ment instead of an abstract syntax pattern:

test multiply and add [[1 + 2 * 3]] parse to [[1 + (2 * 3)]]
test add and multiply [[1 * 2 + 3]] parse to [[(1 * 2) + 3]]
test add and add [[1 + 2 + 3]] parse to [[(1 + 2) + 3]]

A test suite can be run from the Transform menu. This will open
the Spoofax Test Runner View, which provides information about
failing and succeeding test cases in a test suite. Fig. 14.1 shows
an example. Additionally, we can also get instant feedback
while editing a test suite. Tests can also be evaluated outside
the IDE, for example as part of a continuous integration setup.

� Syntax Testing with MPS Syntax testing in the strict sense
is not useful or necessary with MPS, since it is not possible to
“write text that does not parse”. Invalid programs cannot even

346 dslbook.org

Figure 14.1: Spoofax Test Runner View
showing success and failure of test
cases in a test suite.

be entered. However, it is useful to write a set of programs
which the language developer considers relevant. While it is
not possible to write syntactically invalid programs, the fol-
lowing scenario is possible (and useful to test): a user writes a
program with the language in version 1. The language evolves
to version 2, making that program invalid. In this case, the pro-
gram contains unbound language concepts or “holes”. By run-
ning the model checker (interactively or via ant), such prob-
lems can be detected. Fig. 14.2 shows an example.

Figure 14.2: Top: an interface expressed
in the mbeddr C components extension.
Bottom: The same interface after we
have removed the parameters collec-
tion in an Operation. The error reports
that the model contains child nodes in a
child collection that does not exist.

14.2 Constraints Testing

Testing of constraints is essential, especially for languages with
complex constraints, such as those implied by type systems.
The goal of constraints testing is to ensure that the correct er-
ror messages are annotated to the correct program elements, if
those program elements have a constraint or type error.

� An Example with Xtext A special API is necessary to be able
to verify that a program which makes a particular constraint
fail actually annotates the corresponding error message to the
respective program element. This way, tests can then be written
which assert that a given program has a specific set of error
annotations.

The unit testing utilities mentioned above also support test-
ing constraints. The utilities come with an internal Java DSL
that supports checking for the presence of error annotations
after parsing and constraint-checking a model file.

@Test
public void testTypesOfParams() throws Exception {

testFileNoSerializer("typesystem/tst1.cool", "tests.appl", "stdparams.
cool");

assertConstraints(issues.sizeIs(3)); // 1
assertConstraints(issues.forElement(Variable.class, "v1"). // 2

theOneAndOnlyContains("incompatible type")); // 2
assertConstraints(issues.under(Variable.class, "w1"). // 3

errorsOnly().sizeIs(2).oneOfThemContains("incompatible type")); // 3
}

dsl engineering 347

We first load the model file that contains constraint errors (in
this case, type system errors). Then we assert the total number
of errors in the file to be three (line 1)5. Next, in line 2, we 5 This makes sure that the file does not

contain additional errors beyond those
asserted in the rest of the test case.

check that the instance of Variable named v1 has exactly one
error annotation, and that it has the text "incompatible type"
in the error message. Finally, in line 3 we assert that there are
exactly two errors anywhere under (i.e. in the subtree below) a
Variable named w1, and one of these contains "incompatible
type" in the error message. Using the fluent API style shown by
these examples, it is easy to express errors and their locations
in the program. If a test fails, a meaningful error message is
output that supports localizing (potential) problems in the test.
The following is the error reported if no error message is found
that contains the substring incompatible type:

junit.framework.AssertionFailedError: <no id> failed
- failed oneOfThemContains: none of the issues

contains substring ’incompatible type’
at junit.framework.Assert.fail(Assert.java:47)
at junit.framework.Assert.assertTrue(Assert.java:20)
...

A test may also fail earlier in the chain of filter expressions if,
for example, there is no Variable named v1 in the program.
More output is provided in this case:

junit.framework.AssertionFailedError: <no id> failed
- no elements of type

com.bsh.pk.cooling.coolingLanguage.Variable named ’v1’ found
- failed oneOfThemContains: none of the issues

contains substring ’incompatible type’
at junit.framework.Assert.fail(Assert.java:47)
...

Scopes can be tested in the same way: we can write example
programs where references point to valid targets (i.e. those in
scope) and invalid targets (i.e. not in scope). Valid references
may not have errors, invalid references must have errors6. 6 The absence or presence of these

errors can be tested in the same way as
the constraint checking tests discussed
above.� An Example with MPS MPS comes with the NodesTestCase

for testing constraints and type system rules (Fig. 14.3). It sup-
ports special annotations to express assertions on types and er-
rors, directly in the program. For example, the third line of the
nodes section in Fig. 14.3 reads var double d3 = d without
annotations. This is a valid variable declaration in mbeddr C.
After this has been written down, annotations can be added.
They are rendered in green (gray in the hardcopy version of
the book). Line three asserts that the type of the variable d is
double, i.e. it tests that variable references assume the type of
the referenced variable. In line four we assign a double to an

348 dslbook.org

int, which is illegal according to the typing rules. The error is
detected, hence the red underline. We use another annotation
to assert the presence of the error.

Figure 14.3: Using MPS
NodesTestCase, assertions about
types and the presence of errors can be
directly annotated on programs written
in any language.

In addition to using these annotations to check types and typ-
ing errors, developers can also write more detailed test cases
about the structure or the types of programs. In the example
we assert that the var reference of the node referred to as dref
points to the node labeled as dnode. Note how labels (green,
underlined) are used to add names to program elements so
they can be referred to from test expressions. This approach
can be used to test scopes. If two variables with the same
name are defined (e.g., because one of them is defined in an
outer block, and we assume that the inner variable shadows the
outer variable of the same name), we can use this mechanism
to check that a reference actually points to the inner variable.
Fig. 14.4 shows an example.

Figure 14.4: Labels and test methods
can be used to check that scoping
works. In this example, we check
shadowing of variables.

� An Example with Spoofax In Spoofax’ testing language, we
can write test cases which specify the number of errors and
warnings in a code fragment:

test duplicate entities [[
module foo
entity X {}
entity X {}

]] 1 error

test lower case entity name [[
module foo
entity x {}

]] 1 warning

Additionally, we can specify parts of the error or warning mes-
sages using regular expressions:

test duplicate entities [[
module foo

dsl engineering 349

entity X {}
entity X {}

]] 1 error /duplicate/

Here, /duplicate/ is a regular expression that matches error
messages like "Duplicate definition of X". As in Xtext and MPS,
we can test scopes by means of correct and incorrect references.
Alternatively, we can specify the source and target of a link in
a test case:

test property reference [[
module foo
entity X {

[[p]]: int
function f(q: int) {

r: int = 0;
return [[p]];

}
}

]] resolve #2 to #1

test parameter reference [[
module foo
entity X {

p: int
function f([[p]]: int) {

r: int = 0;
return [[p]];

}
}

]] resolve #2 to #1

test variable reference [[
module foo
entity X {

p: int
function f(q: int) {

[[p]]: int = 0;
return [[p]];

}
}

]] resolve #2 to #1

These cases use double square brackets to select parts of the
program and specify the expected reference resolving in terms
of these selections.

14.3 Semantics Testing

Fundamentally, testing the execution semantics of a program
involves writing assertions against the execution of a program7. 7 While this sounds fancy, this is close

to what we do in unit testing "normal"
programs. We write a system in a pro-
gramming language X, and then write
more code in X that states assertions
about what the system does.

In the simplest case this can be done the following way:

• Write a DSL program, based on an understanding what the
program is expected to do.

• Generate the program into its executable representation.

350 dslbook.org

• Manually write unit tests (in the target language) that assert
the generated program’s behavior based on the understand-
ing of what the DSL program should do.

Notice how we do not test the structure or syntax of the gen-
erated artifact. Instead we test its meaning, which is exactly
what we want to test. An important variation of this approach
is the following: instead of writing the unit tests manually in
the target language, we can also write the tests in the DSL, as-
suming the DSL has syntax to express such tests8. Writing the 8 Many DSLs are explicitly extended to

support writing tests.test cases on DSL level results in more concise and readable
tests.9 9 Testing DSL programs by running

tests expressed in the same language
runs the risk of doubly-negating errors.
If the generators for the tests and the
core program are wrong in a "consis-
tent" way, errors in either one may not
be found. However, this problem can
be alleviated by running a large enough
number of tests and/or by having the
generators for the core system and
for the test cases written by different
(groups of) people.

The same approach can be used to test execution semantics
based on an interpreter, although it may be a little more diffi-
cult to manually write the test cases in the target language; the
interpreter must provide a means to "inspect" its execution so
that we can check whether it is correct. If the tests are written
in the DSL and the interpreter executes them along with the
core program, the approach works well.

Strictly speaking, the approach discussed here tests the se-
mantics of a specific program. As always in testing, we have
to write many of these tests to make sure we have covered
all10 of the possible executions paths through a generator or 10 There may actually be an infinite

number of possible execution paths,
so we have to limit ourselves to a
reasonable set of tests.

interpreter. If we do that, the set of tests implicitly tests the
generator or interpreter – which is the goal we want to achieve
in semantics testing.

If we have several execution backends, such as an interpreter
and a compiler, it must be ensured that both have the same
semantics. This can be achieved by writing the tests in the
DSL and then executing them in both backends. By executing
enough tests, we can get a high degree of confidence that the
semantics of the backends are aligned.

� Testing an Interpreter with Xtext The cooling language pro-
vides a way of expressing test cases for the cooling programs
within the cooling language itself11. These tests are executed

11 Strictly speaking, tests are a separate
viewpoint to keep them out of the
actual programs.

with an interpreter inside the IDE, and they can also be exe-
cuted on the level of the C program, by generating the program
and the test cases to C12. The following code shows one of the

12 Note that this approach is not re-
stricted to testing interpreters or
generators – it can also be used to
test whether a program written in the
DSL works correctly. This is in fact
why the interpreter and the test sub-
language have been built in the first
place: DSL users should be able to test
the programs written in the DSL.

simplest possible cooling programs, as well as a test case for
that program:

cooling program EngineProgram0 for Einzonengeraet uses stdlib {
var v: int
event e1

dsl engineering 351

init { set v = 1 }

start:
entry { set v = v * 2 }
on e1 { state s2 }

state s2:
entry { set v = 0 }

}

test EngineTest0 for EngineProgram0 {
assert-currentstate-is ^start // 1
assert-value v is 2 // 2
step // 3
event e1 // 4
step // 5
assert-currentstate-is s2 // 6
assert-value v is 0 // 7

}

The test first asserts that, when the program starts, it is in the
start state (line 1 in the comments in the test script). We then
assert that v is 2. The only reasonable way in which v can be-
come 2 is that the code in the init block, as well as the code in
the entry action of the start start, have been executed13. We 13 Note that this arrangement even

checks that the init block is executed
before the entry action of the start state,
since otherwise v would be 0!

then perform one step in the execution of the program in line
3. At this point nothing should happen, since no event was
triggered. Then we trigger the event e1 (line 4) and perform
another step (line 5). After this step, the program must tran-
sition to the state s2, whose entry action sets v back to 0. We
assert both of these in lines 6 and 7.

These tests can be run interactively from the IDE, in which
case assertion failures are annotated as error marks on the pro-
gram, or from within JUnit. The following piece of code shows
how to run the tests from JUnit.
@RunWith(XtextRunner.class)
@InjectWith(CoolingLanguageInjectorProvider.class)
public class InterpreterTests extends PKInterpreterTestCase {

@Test
public void testET0() throws Exception {

testFileNoSerializer("interpreter/engine0.cool",
"tests.appl", "stdparams.cool");

runAllTestsInFile((Model) getModelRoot());
}

}

The code above is basically a JUnit test that inherits from a
base class that helps with loading models and running the in-
terpreter. We call the runAllTestsInFile method, passing in
the model’s root element. runAllTestsInFile is defined by
the PKInterpreterTestCase base class, which in turn inherits
from XtextTest, which we have seen before. The method iter-
ates over all tests in the model and executes them by creating
and running a TestExecutionEngine14.

14 The TestExecutionEngine is a wrap-
per around the interpreter for cooling
programs that we have discussed
before.

352 dslbook.org

protected void runAllTestsInFile(Model m) {
CLTypesystem ts = new CLTypesystem();
EList<CoolingTest> tests = m.getTests();
for (CoolingTest test : tests) {

TestExecutionEngine e = new TestExecutionEngine(test, ts);
final LogEntry logger = LogEntry.root("test execution");
LogEntry.setMostRecentRoot(logger);
e.runTest(logger);

}
}

The cooling programs are generated to C for execution in the
refrigerator. To make sure the generated C code has the same
semantics as the interpreter, we simply generate C code from
the test cases as well. In this way the same tests are executed
against the generated C code. By ensuring that all of them
work in the interpreter and the generator, we ensure that both
behave in the same way.

� Testing a Generator with MPS The following is a test case ex-
pressed using the testing extension of mbeddr C. It contributes
test cases to modules15. testMultiply is the actual test case. 15 Instead of using a separate viewpoint

for expressing test cases, these are
inlined into the same program in
this case. However, the language for
expressing test cases is a modular
extension to C, to keep the core C clean.

It calls the to-be-tested function times2 several times with dif-
ferent arguments and then uses an assert statement to check
for the expected value.
module UnitTestDemo {

int32 main(int32 argc, int8*[] argv) {
return test testMultiply;

}

test case testMultiply {
assert (0) times2(21) == 42;
assert (1) times2(0) == 0;
assert (2) times2(-10) == -20;

}

int8 times2(int8 a) {
return 2 * a;

}
}

Note that, while this unit testing extension can be used to test
any C program, we use it a lot to test the generator. Consider
the following example:
assert (0) 4 * 3 + 2 == 14;

One problem we had initially in mbeddr C was to make sure
that the expression tree that was created while manually en-
tering expressions like 4 * 3 + 2 is built correctly in terms of
operator precedence. If the tree was built incorrectly, the gen-
erated code could end up as 4 * (3 + 2), resulting in 20. So
we’ve used tests like these to implicitly test quite intricate as-
pects of our language implementation16.

16 This is also the reason why the unit
test extension was the first extension we
built for C: we needed it to test many
other aspects of the language.

dsl engineering 353

We have built much more elaborate support for testing var-
ious other extensions. It is illustrative to take a look at two of
them. The next piece of code shows a test for a state machine:

exported test case test1 {
initsm(c1);
assert (0) isInState<c1, initialState>;
test statemachine c1 {

start -> countState
step(1) -> countState
step(2) -> countState
step(7) -> countState
step(1) -> initialState

}
}

c1 is an instance of a state machine. After initializing it, we
assert that it is in the initialState. We then use a special
test statemachine statement, which consists of event/state
pairs: after triggering the event (on the left side of the ->) we
expect the state machine to go into the state specified on the
right side of the ->. We could have achieved the same goal
by using sequences of trigger and assert statements, but the
syntax used here is much more concise.

The second example concerns mocking. A mock is a part of
a program that can be used in place of the real one. It simulates
some kind of environment of the unit under test, and it can also
verify that some other part of the system under test behaves
as expected17. We use this with the components extension. 17 See Wikipedia for a more elab-

orate explanation of mocks:
en.wikipedia.org/wiki/
Mock_object

The following is a test case that checks if the client uses the
PersistenceProvider interface correctly. Let’s start by taking
a look at the interface:

interface PersistenceProvider {
boolean isReady()
void store(DataPacket* data)
void flush()

}

The interface is expected to be used in the following way: clients
first have to call isReady, and only if that method returns true
are they supposed to call store, and then after any number of
calls to store, they have to call flush. Let us assume now we
want to check if a certain client component uses the interface
correctly18. Assuming the component provides an operation 18 Our components language actually

also supports protocol state machines
which support the declarative specifica-
tion of valid call sequences.

run that uses the persistence provider, we could write the fol-
lowing test:

exported test case runTest {
client.run();
// somehow check is behaved correctly

}

354 dslbook.org

To check whether the client behaves correctly, we can use a
mock. Our mock specifies the incoming method calls it expects
to see during the test. We have provided a mocking extension
to components to support the declarative specification of such
expectations. Here is the mock:

exported mock component PersistenceMock {
ports:

provides PersistenceProvider pp
expectations:

total no. of calls: 4
sequence {

0: pp.isReady return false;
1: pp.isReady return true;
2: pp.store {

0: parameter data: data != null
}

3: pp.flush
}

}

The mock provides the PersistenceProvider interface, so any
other component that requires this interface can use this com-
ponent as the implementation. But instead of actually imple-
menting the operations prescribed by PersistenceProvider,
we specify the sequence of invocations we expect to see. We
expect a total number of 4 invocations. The first one is ex-
pected to be to isReady. We return false, expecting the client
to try again later. If it does, we return true and expect the
client to continue with persisting data. We can now validate
the mock as part of the test case:

exported test case runTest {
client.run();
validate mock persistenceMock

}

If the persistenceMock saw behavior different from the one
specified above, the validate mock statement will fail, and
with it the whole test19. 19 The generator for mock components

translates the expectations into imple-
mentations of the interface methods
that track and record invocations.
The validate mock statement works
with this recorded data to determine
whether the expectations were met.

One particular challenge with this approach to semantics
testing is that, if an assertion fails, you get some kind of assert-
ion XYZ failed at ABC output from the running test case. To
understand and fix the problem, you will have to navigate back
to the assert statement in the DSL program. If you have many
failed assertions, or just generally a lot of test program output,
this can be tedious and error-prone. For example, the follow-
ing piece of code shows the output from executing an mbeddr
test case on the command line:

./TestHelperTest
$$runningTest: running test () @TestHelperTest:test_testCase1

:0#767515563077315487

dsl engineering 355

$$FAILED: ***FAILED*** (testID=0) @TestHelperTest:f:0#9125142491355884683
$$FAILED: ***FAILED*** (testID=1) @TestHelperTest:f:1#9125142491355901742

We have built a tool in mbeddr that simplifies finding the mes-
sage source. You can paste arbitrary text that contains error
messages into a text area (such as the example above) on the
left in Fig. 14.5. Pressing the Analyze button will find the nodes
that created a particular message20. You can then click on the

20 This process is based on the unique
node ID; this is the long number that
follows the # in the message text.

node to select it in the editor.

Figure 14.5: The mbeddr error output
analyzer parses test output and sup-
ports navigating to the source of error
messages in the MPS program.

� Testing Interpreters and Generators with Spoofax Spoofax’ test-
ing language also supports testing transformations. We use
it to test interpreters, assuming that the interpreter is imple-
mented as a transformation from programs to program re-
sults. For example, the following tests address a transforma-
tion eval-all, which interprets expressions:

test evaluate addition [[1+2]] run eval-all to [[3]]
test evaluate multiplication [[3*4]] run eval-all to [[12]]
test complex evaluation [[1+2*(3+4)]] run eval-all to [[15]]

To test generators, we can rely on Spoofax’ testing support
for builders. For example, the following tests use a builder
generate-and-execute, which generates code from expres-
sions, runs the code, and returns the result of the run as a
string:

test generate addition [[1+2]] build generate-and-execute to "3"
test generate multiplication [[3*4]] run generate-and-execute to "12"
test generate evaluation 1 [[1+2*(3+4)]] run generate-and-execute to "15"

� Structural Testing What we suggested in the previous sub-
section tests the execution semantics of programs written in
DSLs, and, if we have enough of these tests, the correctness
of the transformation, generator or interpreter. However, there
is a significant limitation to this approach: it only works if the
DSL actually specifies behavior! If the DSL only specifies struc-

356 dslbook.org

tures and cannot be executed, the approach does not work. In
this case you have to perform a structural test. In principle,
this is simple: you write an example model, you generate it21, 21 I have never seen an interpreter to

process languages that only specify
structures

and then you inspect the resulting model or test for the ex-
pected structures. Depending on the target formalism, you can
use regular expressions, XPath expressions or OCL-like expres-
sions to automate the inspection22. 22 Note that you really should only use

this if you cannot use semantics testing
based on execution. Inspecting the gen-
erated C code for syntactic correctness,
based on the input program, would
be much more work. And if we evolve
the generator to generate better (faster,
smaller, more robust) code, tests based
on the execution semantics will still
work, while those that test the struc-
ture may fail because line numbers or
variable names change.

Structural testing can also be useful to test model-to-model
transformations23. Consider the example in Section 11.2.2. There,

23 If a program is transformed to an
executable representation in several
steps, then the approach discussed
above tests all transformations in total,
so it is more like an integration test,
and not a unit test. Depending on the
complexity and the reuse potential of
the transformation steps, it may make
sense to test each transformation in
isolation.

we inserted additional states and transitions into whatever in-
put state machine our transformation processed. Testing this
via execution invariably tests the model-to-model transforma-
tion as well as the generator (or interpreter). If we wanted to
test the model-to-model transformation in isolation, we have to
use structural testing, because the result of that transformation
itself is not yet executable. The following piece of Xtend code
could be used to check that, for a specific input program, the
transformation works correctly:

// run transformation
val tp = p.transform

// test result structurally
val states = tp.states.filter(typeof(CustomState))
assert(states.filter(s|s.name.equals("EMERGENCY_STOP")).size == 1)

val emergencyState = states.findFirst(s|s.name.equals("EMERGENCY_STOP"))
states.findFirst(s|s.name.equals("noCooling")).eAllContents.

filter(typeof(ChangeStateStatement)).
exists(css|css.targetState == emergencyState)

This program first runs the transformation, and then finds all
CustomStates (those that are not start or stop states). We then
assert that in those states there is exactly one with the name
EMERGENCY_STOP, because we assume that the transformation
has added this state. We then check that in the (one and only)
noCooling state there’s at least one ChangeStateState- ment

whose target state is the emergencyState we had retrieved
above24.

24 Notice that we don’t write an algo-
rithmic check that closely resembles
the transformation itself. Rather, we
test a specific model for the presence
of specific structures. For example,
we explicitly look for a state called
noCooling and check that this one has
the correct ChangeStateStatement.

14.4 Formal Verification

Formal verification can be used in addition to semantics testing
in some cases. The fundamental difference between testing and
verification is this: in testing, each test case specifies one par-
ticular execution scenario. To get reasonable coverage of the
whole model or transformation, you have to write and execute
a lot of tests. This can be a lot of work, and, more importantly,

dsl engineering 357

you may not think about certain (exceptional) scenarios, and
hence you may not test them. Bugs may go unnoticed.

Verification checks the whole program at once. Various non-
trivial algorithms are used to do that25, and understanding 25 These include model checking,

SAT solving, SMT solving or abstract
execution.

these algorithms in detail is beyond the scope of this book.
Also, formal verification has inherent limitations (e.g., the halt-
ing problem) that can only be solved by testing. So testing and
verification each have sweet spots: neither can fully replace the
other. However, it is very useful to know that verification ap-
proaches exist, especially since, over the last couple of years,
they have become scalable enough to address real-world prob-
lems. In this section we look at two examples from mbeddr:
model checking and SMT solving.

� Model Checking State Machines Model Checking is a verifi-
cation technique for state machines. Here is how it works in
principle26: 26 In this section we can only scratch

the surface; to learn more about model
checking, we recommend

Berard, B., Bidoit, M., Finkel, A.,
Laroussinie, F., Petit, A., Petrucci,
L., Schnoebelen, and P. Systems and
Software Verification. Springer, 2001

• Some functionality is expressed as a state machine.

• You then specify properties about the behavior of the state
machine. Properties are expressions that have to be true for
every execution of the state machine27.

27 For example, such a property could
state that whenever you go to state X,
you will have been in state Y directly
beforehand.

• You then run the model checker with the state machine and
the properties as input.

• The output of the model checker either confirms that your
properties hold, or it shows a counter example28. 28 It may also run out of memory, in

which case you have to reformulate
or modularize your program and try
again.Conceptually, the model checker performs an exhaustive search

during the verification process. Obviously, the more complex
your state machine is, the more possibilities the checker has to
address – a problem known as state space explosion. With finite
memory, this limits scalability, because at some point you will
out of memory, or the verification will run for an unacceptably
long time. In reality the model checker does not perform an ex-
haustive search; clever algorithms have been devised that are
semantically equivalent to an exhaustive search, but don’t ac-
tually perform one29. This makes model checking scalable and

29 For example, bounded model checking
searches for counterexamples only for
a bounded set of execution steps. If no
counterexample is found within the
bounds, the model checker assumes
(rightly on not) that the property holds.

fast enough for real-world problems, although there is still a
limit in terms of input model complexity30.

30 Sometimes input models have to be
reformulated in a way that makes them
better suited for model checking. All
in all, model checking is not a trivial
technique. However, if and when it is
better integrated with the development
tools (as we show here), it could be
used in many places where today it
isn’t even considered.

The interesting aspect of model checking is that the proper-
ties you specify are not just simple Boolean expressions such
as each state must have at least one outgoing transition, unless it is

358 dslbook.org

a stop state. Such a check can be performed statically, as part
of the constraint checks. The properties addressed by model
checkers are more elaborate and are often typically expressed
in (various flavors of) temporal logic31. Here are some exam-

31 There are various formalisms for
temporal logic, including LTL, CTL and
CTL+. Each of those have particular
characteristics and limitations, but they
are beyond the scope of this book.

ples, expressed in plain English:

• It is always true that after we have been in state X we will even-
tually be reaching state Y. This is a Fairness property. It en-
sures that the state machine does not get stuck in some state
forever. For example, state Y may be the green light for
pedestrians, and state X could be the green light for cars.

• Wherever we are in the state machine, it is always possible to get
into state X. This is a Liveliness property. An example could
be a system that you must always be able to turn off.

• It is not ever possible to get into state X without having gone
through state Y before. This is a Safety property. Imagine a
state machine where entering state X turns the pedestrian
lights green and entering state X turns the car lights red.

The important property of these temporal logic specifications
is that quantifiers such as always, whenever and there exists are
available. Using these, one can specify global truths about the
execution of a system – rather than about its structure32.

32 If a state machine has no guard con-
ditions, some of these properties can be
reduced to problems that can be solved
by "just looking", i.e. by inspecting
the structure of the state machine. For
example, if the only transition entering
some state X originates from some state
Y, then it is clear that we always come
through X before entering Y. However,
in the presence of several transitions
and guard conditions (which may take
into account all kinds of other things,
such as the values of variables or event
arguments), these verifications become
much more complex and cannot be
solved by "just looking".

Model checking does come with its challenges. The input
language for specifying state machines as well as specifying the
properties is not necessarily easy to work with. Interpreting the
results of the model checker can be a challenge. And for some
of the tools, the usability is really bad33.

33 The SPIN/Promela model checker
comes to mind here!

To make model checking more user friendly, the mbeddr C
language provides a nice syntax for state machines, then gener-
ates the corresponding representation in the input language of
the model checker34. The results of running the model checker

34 We use the NuSMV model checker:
nusmv.fbk.eu/.

are also reinterpreted in the context of the higher-level state
machine. Tool integration is provided as well: users can select
the context menu on a state machine and invoke the model
checker. The model checker input is generated, the model
checker is executed, and the replies are rendered in a nice ta-
ble in MPS. Finally, we have abstracted the property specifi-
cation language by providing support for the most important
idioms35; these can be specified relatively easily (for example 35 Taken from the well-known

properties patterns collection at
patterns.projects.cis.ksu.edu/

never <expr> or always eventually reachable <state>).
Also, a number of properties are automatically checked for
each state machine.

dsl engineering 359

Let’s look at an example. The following code shows a state
machine that represents a counter. We can send the step event
into the state machine, and as a consequence, it increments
the currentVal counter by the size parameter passed with
the event. If the currentVal becomes greater than LIMIT, the
counter wraps around. We can also use the start event to reset
the counter to 0.

verifiable statemachine Counter {
in events

start()
step(int[0..10] size)

local variables
int[0..100] currentVal = 0
int[0..100] LIMIT = 10

states (initial = initialState)
state initialState {

on start [] -> countState { }
}
state countState {

on step [currentVal + size > LIMIT] -> initialState { }
on step [currentVal + size <= LIMIT] -> countState {

currentVal = currentVal + size;
}
on start [] -> initialState { }

}
}

Since this state machine is marked as verifiable, we can run
the model checker from the context menu36. Fig. 14.6 shows 36 Marking a state machine as

verifiable also enforces a few re-
strictions on the state machine (for
example, each state machine local vari-
able may only be assigned once during
a transition). State machines restricted
in this way are easier to model check.

the result of running the model checker.
Here is a subset of the properties it has checked successfully (it
performs these checks for all states/transitions by default):

State ’initialState’ can be reached SUCCESS
Variable ’currentVal’ is always between its defined bounds SUCCESS
State ’countState’ has deterministic transitions SUCCESS
Transition 0 of state ’initialState’ is not dead SUCCESS

The first one reports that NuSMV has successfully proven that
the initialState can be reached somehow. The second one
reports that the variable currentVal stays within its bounds
(notice how currentVal is a bounded integer). Line three re-
ports that in countState it never happens that more than one
transition is ready to fire at any time. Finally, it reports that no
transitions are dead, i.e. each of them is actually used at some
point.

Let’s provoke an error. We change the two transitions in
countState to the following:

on step [currentVal + size >= LIMIT] -> initialState { }
on step [currentVal + size <= LIMIT] -> countState {

currentVal = currentVal + size;
}

360 dslbook.org

Figure 14.6: The result of running
the model checker on a verifiable
state machine is directly shown in the
IDE, listing each property in a table.
If a property fails, the lower part of
the result view shows an example
execution of the state machine (states
and local variable values) that leads to
the property being violated.

We have changed the > to a >= in the first transition37. Running

37 You perhaps don’t even recognize the
difference – which is exactly why you
would want to use a formal verification!

the model checker again, we get, among others, the following
messages:

State ’countState’ contains nondeterministic transitions FAIL 4

This means that there is a case in which the two transitions are
non-deterministic, i.e. both are possible based on the guard,
and it is not clear which one should be fired. The 4 at the
end means that the execution trace to this problem contains
four steps. Clicking on the failed property check reveals the
problematic execution trace:

State initialState
LIMIT 10
currentVal 0

State initialState
in_event: start start()
LIMIT 10
currentVal 0

State countState
in_event: step step(10)
LIMIT 10
currentVal 0

State initialState
LIMIT 10
currentVal 10

dsl engineering 361

This is one (of potentially many) execution traces of this state
machine that leads to the non-determinism: currentVal is 10,
and because of the >=, both transitions could fire.

In addition to these default properties, it is also possible to
specify custom properties. Here are two examples, expressed
using the property patterns mentioned earlier:

verification conditions
never LIMIT != 10
always eventually reachable initialState

The first one expresses that we want the model checker to prove
that a specific Boolean condition will never be true. In our ex-
ample, we check that the LIMIT really is a constant and is never
(accidentally) changed. The second one specifies that wherever
we are in the execution of the state machine, it is still possible
(after an arbitrary number of steps) to reach the initialState.
Both properties hold for the example state machine.

� SAT/SMT Solving SAT solving, which is short for satis-
fiability solving, concerns the satisfiability of sets of Boolean
equations. Users specify a set of Boolean equations and the
solver tries to assign truth values to the free variables so as to
satisfy all specified equations. SAT solving is an NP-complete
problem, so there is no analytic approach: exhaustive search
(implemented, of course, in much cleverer ways) is the way
to address these problems. SMT solving (Satisfiability Modulo
Theories) is an extension of SAT solving that allows other con-
structs in addition to logical operators – the most frequently
used being linear arithmetic, arrays or bit-vectors.

As an example, SMT solving can be used to verify mbeddr’s
decision tables. A decision table has a set of Boolean condi-
tions as row headers, a set of Boolean conditions in the col-
umn headers, as well as arbitrary values in the content cells.
A decision table essentially represents nested if statements:
the result value of the table is that content cell whose row and
column header are true. Fig. 14.7 shows an example.
SMT solving can be used to check whether all cases are han-
dled. It can detect whether combinations of the relevant vari-
ables exist for which no combination of row header and col-
umn header expressions match; in this case, the decision table
would not return any value.

SAT and SMT solvers have some of the same challenges as
model checkers regarding scalability: a low-level and limited
input language and the challenge of interpreting and under-

362 dslbook.org

Figure 14.7: An example decision
table in mbeddr C. SMT solving is
used to check it for consistency and
completeness.

standing the output of a solver. Hence we use the same ap-
proach to solve the problem: from higher-level models (such
as the decision table) we generate the input to the solver, run
it, and then report the result in the context of the high-level
language.

� Model Checking and Transformations A problem with model
verification approaches in general is that they verify only the
model. They can detect inconsistencies or property violations
as a consequence of flaws in the program expressed with a
DSL. However, even if we find no flaws in the model on the
DSL level, the generator or interpreter used to execute the pro-
gram may still introduce problems. In other words, the be-
havior of the actual running system may be different from the
(proven correct) behavior expressed in the model. There are
three ways to address this:

• You can test your generator manually using the strategies
suggested in this chapter. Once you trust the generator
based on a sufficiently large set of tests, you then only have
to verify the models, since you know they will be translated
correctly.

• Some tools, for example the UPAAL model checker38, can 38 www.uppaal.com/

also generate test cases39. These are stimuli to the model, 39 One can generate test cases by using
the model checking technology: just
specify that some property is false,
and the model checker will provide
a counterexample that illustrates the
execution of the state machine up to the
point where the property is true.

together with the expected reactions. You can generate those
into your target language and then run them in your target
language. This is essentially an automated version of the
first approach.

• Finally, you can verify the generated code. For example,
there are model checkers for C. You can then verify that the
properties that hold on the DSL level also hold on the level

dsl engineering 363

of the generated code. This approach runs into scalability
issues relatively quickly, since the state space of a C program
is much larger than the state space of a well-crafted state
machine40. However, you can use this approach to verify the 40 Remember that we use formalisms

such as state machines instead of low-
level code specifically to allow more
meaningful validation.

generated code based on a sufficient set of relatively small
test cases, making sure that these cover all aspects of the
generator. Once you’ve built trust in the generator in this
way, you can resort to verifying just the DSL models (which
scales better).

14.5 Testing Editor Services

Testing IDE services such as code completion (beyond scopes),
quick fixes, refactorings or outline structure has some of the
challenges of UI testing in general. There are three ways of
approaching this:

• The language workbench may provide specific APIs to hook
into UI aspects to facilitate writing tests for those.

• You can use generic UI testing tools41 to simulate typing and 41 Such as Eclipse Jubula:
www.eclipse.org/jubula/clicking in the editor, and checking the resulting behavior.

• Finally, you can isolate the algorithmic aspects of the IDE
behavior (e.g., in refactorings or quick fixes) into separate
modules (classes) and then unit test those with the tech-
niques discussed in the rest of this chapter, independent of
the actual UI.

In practice, I try to use the third alternative as much as possible:
for non-trivial IDE functionality in quick fixes and refactorings,
I isolate the behavior and write unit tests. For simple things I
don’t do any automated tests. For the actual UI, I typically
don’t do any automated tests at all, for three reasons: (1) it is
simply too cumbersome and not worth the trouble; (2) as we
use the editor to try things out, we implicitly test the UI; and
(3), language workbenches are frameworks which, if you get
the functionality right (via unit tests), provide generic UIs that
can be expected to work.

In the remainder of this subsection we show examples of the
case in which the language workbench provides specific APIs
to test the IDE aspects of languages.

� An Example with MPS In a parser-based system, you can
always type anything. So even if the IDE functionality (partic-

364 dslbook.org

ularly regarding code completion) is broken, you can still type
the desired code. Also, the editing experience of typing code
is always the same, fundamentally: you type linear sequences
of characters. In a projectional editor, this is not the case: you
can only enter things that are available in the code completion
menu, and the editing experience itself relies on the editor im-
plementation42. Hence it is important to be able to test editor 42 For example, you can only type 1 +

2 linearly (e.g. first the 1, then the +) if
the respective right transformation for
number literals is implemented.

behavior.
MPS supports this with a special DSL for editor testing (see

Fig. 14.8). Note how MPS’ language composition facilities al-
low embedding the subject DSL into the DSL for describing the
editor test case.

Figure 14.8: This test tests whether code
completion works correctly. We start
with an "empty" variable declaration in
the before slot. It is marked with cell,
a special annotation used in UI tests to
mark the editor cell that has the focus
for the subsequent scripted behavior. In
the result slot, we describe the state
of the editor after the script code has
been executed. The script code then
simulates typing the word myVariable,
pressing TAB, pressing CTRL-SPACE,
typing boo (as a prefix of boolean) and
pressing ENTER.

� An Example with Xtext/Xpect Xpect is a framework for inte-
gration testing of Xtext DSLs developed by Moritz Eysholdt43. 43 https://github.com/

meysholdt/XpectIt can be used for testing various language aspects, among
them, for example, code completion44. It does so by embed- 44 Xtext itself comes with a set of

helpers for IDE service testing such
as content assist or builder tests. They
run with, and often even without, an
SWT display (e.g., headless).

ding test expectations as comments inside the program to be
tested. Here is an example based on a Hello World grammar
(literally):

Model:
greetings+=Greeting*;

Greeting:
’Hello’ name=ID ’!’;

The following piece of code shows an example program that
includes Xpect statements that test whether code completion
works as expected:

dsl engineering 365

// XPECT_TEST org.example.MyJUnitContentAssistTest END_TEST

// XPECT contentAssist at |Hel --> Hello
Hello Peter!

// XPECT contentAssist at |! --> !
Hello Heiko!

The Xpect processor processes all comments that start with
XPECT. In this case, we test the content assist (e.g., code com-
pletion) functionality. Let us look at the details:

• The contentAssist refers to the kind of test to be executed
(details on this below).

• at is a keyword for improved readability and has no seman-
tic impact.

• |Hel and |! instruct the test to search for occurrences of
Hel and ! somewhere in the code after the XPECT statement.
The pipe | marks the assumed cursor position relative to
Hel and ! where the content assist should be triggered.

• The part after -> marks the expectation of the test. In the
first test, content assist is expected to suggest the keyword
Hello, and in the second test the exclamation point is ex-
pected.

Xpext is in fact a generic infrastructure for integration tests.
As you can see from the example above, the test references a
JUnit test class45: org.example.MyJUnitContentAssistTest. 45 Xpect implements a custom JUnit

runner which allows you to execute
Xpect tests as JUnit test; integration into
IDEs such as Eclipse and CI environ-
ments is ensured.

The term contentAssist is actually the name of a test method
inside that class. Everything from an Xpect comment after the
XPECT keyword is passed as parameters into the test method.
The test method can do whatever it wants as long as it pro-
duces a string as the output. This string is then compared with
the expectation, the text behind the ->. While contentAssist

is predefined in Xpect-provided unit test base classes, you can
define your own methods. Since the actual testing is based on
string comparison, the system is easily extensible. The follow-
ing language aspects can be tested with Xpect46:

46 The general idea behind Xpect is the
separation of test data, test expectations
and test setup from implementation
details. The test data consists of DSL
documents written in the language that
you want to test. The test expectations
are anything you might want the test to
verify and which can be expressed as
a string. The setup may declare other
DSL documents that the test depends
on, including Eclipse project setups.
Since all these details are hidden, the
DSL user can potentially understand or
even write the test cases, not just the
DSL developer.

• The AST created from a DSL document.

• Messages and locations of error and warning markers.

• Names returned by scopes.

• Proposal items suggest by content assist features (as the ex-
ample above shows).

366 dslbook.org

• Textual diffs that were created by applying refactorings or
quick fixes.

• Textual output of a code generator (but use with caution,
since generated text may be too fragile).

Results from interpreters or execution of generated code.
By embedding test expectations into the subject programs, Xpect
implicitly solves the navigation problem47 by allowing you to 47 If you want to test language proper-

ties such as content assist or scoping,
you will have to navigate/point/refer
to to a model element after you have
created the test data. This leads to
boilerplate code in Java-based tests.

use the | to select offsets inside a DSL document. Xpect also
makes it easy to locate the offending expectation if case a test
fails: since all expectations are represented as strings, if a test
fails, the Eclipse JUnit view provides a comparison dialog that
shows all differences between the actual test result and the test
expectation. Xpect also makes it easy to specify even large test
data scenarios, possibly consisting of multiple languages and
multiple Eclipse projects. Finally, since Xpect code is embed-
ded into the DSL code to be tested, you can use your DLS’s
Xtext editor to edit your test data. In plain JUnit tests you
would have to embed snippets of your DSL documents into
Java string literals, which won’t provide any tool support for
your language at all48. 48 Notice, however, that when edit-

ing the program to be tested, there is
no tool support for the Xpect syntax
and the expectations. The reason is
that Xtext does not support language
embedding: there is no way to easily
define a composed language from the
subject DSL and Xpect. While this
limitation is not a problem for Xpect
itself (after all, its syntax is extremely
simple), it may be a problem for expec-
tations with a more complex syntactic
structure. Of course, a specialized
editor could be developed (based on
the default Xtext editor) that provides
code completion for the Xpect code in
the DSL program comments. But that
would require hand-coding and would
be quite a bit of work.

� An Example with Spoofax Spoofax’ testing language sup-
ports testing editor services such as reference resolution and
content completion. For reference resolution, we mark a defi-
nition and a use site in a test case with [[...]]. We can refer to
these markers by numbers #1 and #2, specifying which marked
element should refer to the other marked element. For exam-
ple, the following test cases mark the name of an entity A in its
declaration and in the type of a property:

test entity type reference (1) [[
module foo

entity [[A]] {}

entity B {
a: [[A]]

}

]] resolve #2 to #1

test entity type reference (2) [[
module foo

entity B {
a: [[A]]

}

entity [[A]] {}

]] resolve #1 to #2

dsl engineering 367

The first test case addresses a backward reference, where the
second marked name should resolve to the first marked name.
The second test case addresses forward reference, where the
first marked name should resolve to the second marked name.

For content completion, we mark only one occurrence, and
specify one of the expected completions:
test entity type reference (1) [[

module foo

entity SomeEntity {}

entity A {
a: [[S]]

}
]] complete to "String"

test entity type reference (2) [[
module foo

entity SomeEntity {}

entity A {
a: [[S]]

}
]] complete to "SomeEntity"

Refactorings are tested in a similar fashion. The selected part
of the code is indicated with square brackets, and the name of
the refactoring is specified in the test:
test Rename refactoring [[

entity [[Customer]] {

}
entity Contract {

client : Customer
}

]] refactor rename("Client") to [[
entity Client {

}
entity Contract {

client : Client
}

]]

14.6 Testing for Language Appropriateness

A DSL is only useful if it can express what it is supposed to
express. A bit more formally, one can say that the coverage
of the DSL relative to the target domain should be 100%. In
practice, this questions is much more faceted, though:

• Do we actually understand completely the domain the DSL
is intended to cover?

• Can the DSL cover this domain completely? What does
"completely" even mean? Is it ok to have parts of the sys-

368 dslbook.org

tem written in LD−1, or do we have to express everything
with the DSL?

• Even if the DSL covers the domain completely: are the ab-
stractions chosen appropriate for the model purpose?

• Do the users of the DSL like the notation? Can the users
work efficiently with the notation?

It is not possible to answer these questions with automated
tess. Manual reviews and validation relative to the (explicit or
tacit) requirements for the DSL have to be performed. Getting
these aspects right is the main reason why DSLs should be
developed incrementally and iteratively.

15
Debugging DSLs

Debugging is relevant in two ways in the context of DSLs
and language workbenches. First, the DSL developer may
want to debug the definition of a DSL, including constraints,
scopes or transformations and interpreters. Second, pro-
grams written in the DSL may have to be debuggable by
the end user. We address both aspects in this chapter.

15.1 Debugging the DSL Definition

Debugging the definition of the DSL boils down to a language
workbench providing a debugger for the languages used for
language definition. In the section we look at understanding
and debugging the structure and concrete syntax, the definition
of scopes, constraints and type systems, as well as debugging
interpreters and transformations.

15.1.1 Understanding and Debugging the Language Struc-
ture

In parser-based systems, the transformation from text to the
AST performed by the parser is itself a non-trivial process and
has a potential for errors. Debugging the parsing process can
be important.

� Xtext Xtext uses ANTLR1 under the hood. In other words, 1 antlr.org

an ANTLR grammar is generated from the Xtext grammar which
performs the actual parsing2. So understanding and debug- 2 It contains actions that construct the

AST based on the mapping expressed
in the Xtext grammar.

ging the Xtext parsing process means understanding and de-
bugging the ANTLR parsing process.

370 dslbook.org

There are two ways to do this. First, since ANTLR generates
a Java-based parser, you can debug the execution of ANTLR
(as part of Xtext) itself3. Second, you can have Xtext generate a 3 For obvious reasons, this is tedious

and really just a last resort.debug grammar, which contains no action code (so it does not
populate the AST). However, it can be used to debug the pars-
ing process with ANTLRWorks4. ANTLRWorks comes with an 4 www.antlr.org/works

interactive debugger for ANTLR grammars.

� MPS In MPS there is no transformation from text to the
AST since it is a projectional editor. However, there are still
means of helping to better understand the structure of an ex-
isting program. For example, any program element can be in-
spected in the Explorer. Fig. 15.1 shows the explorer contents
for a trivial C function:

int8 add(int8 x, int8 y) {
return x + y;

}

Figure 15.1: The MPS explorer shows
the structure of a program as a tree.
The explorer also shows the concept for
each program element as well as the
type, if an element has one.

MPS provides similar support for understanding the projection
rules. For any program node MPS can show the cell structure
as a tree. The tree contains detailed information about the cell
hierarchy, the program element associated with each cell, and
the properties of the cell (height, width, etc.).

15.1.2 Debugging Scopes, Constraints and Type Systems

Depending on the level of sophistication of a particular lan-
guage, a lot of non-trivial behavior can be contained in the
code that determines scopes, checks constraints or computes

dsl engineering 371

types. In fact, in many languages, these are the most sophisti-
cated aspects of language definition. Consequently, there is a
need for debugging those.

� Xtext In Xtext all aspects of a language except the gram-
mar and the abstract syntax are defined via Java5 programs

5 You may also use other JVM languages
such as Xtend. If such a language has a
debugger, then you can obviously also
use that debugger for debugging Xtext
DSL implementations.

using Xtext APIs. This includes scopes, constraints, type sys-
tem rules and all IDE aspects. Consequently, all these aspects
can be debugged by using a Java debugger. To do this, you can
simply launch the Eclipse Application that contains the lan-
guage and editor in debug mode and set breakpoints at the
relevant locations6.

6 It is easy to criticize Xtext for the fact
that it does not use DSLs for defining
DSLs. However, in the context of
debugging this is good, because no
special debuggers are necessary.

Figure 15.2: The debugger that can de-
bug MPS while it "executes" a language
is aware of all the relevant extensions
to BaseLanguage. For example, in this
screenshot we debug a scope constraint.
Notice how in the Variables view
program nodes (such as the Statement
s) are shown on the abstraction level of
the node, not in terms of its underlying
Java data structure representation.

� MPS MPS comes with a similar facility, in the sense that
a second instance of MPS can be run "inside" the current one.
This inner instance can be debugged from the outer one. This
approach can be used for all those aspects of MPS-defined lan-
guages that are defined in terms of the BaseLanguage, MPS’
version of Java. For example, scopes can be debugged this way:
in Fig. 15.2 we debug the scope for a LocalVariableRef.

372 dslbook.org

A related feature of MPS is the ability to analyze exception
stack traces. To implement a language, MPS generates Java
code from language definitions and then executes this Java
code. If an exception occurs in language implementation code
it produces a Java stack trace. This stack trace can be pasted
into a dialog in MPS. MPS then produces a version of the stack
trace in which the code locations in the stack trace (which are
relative to the generated Java) have been translated to locations
in the DSL definition (expressed in Base Language). The lo-
cations can be clicked directly, opening the MPS editor at the
respective location.

Figure 15.3: This example shows the
solver state for the Argument x. It
first applies the rule typeof_ITyped
(Argument implements ITyped), which
expresses that the type of the element
(type variable c is the same as the
element’s type property (type variable
d). It then applies the typeofype rule
to the argument’s type itself. This rule
expresses the fact that the type of a
Type is a clone of itself. Consequently,
the type variable d can be set to int8.
In consequence this means that the type
variable c (which represents the type of
the Argument) is also int8. Note that
this is a trivial example. Type system
traces can become quite involved and
are not always easy to understand.

Relative to the type system, MPS comes with two dedicated de-
bug facilities (beyond debugging a new instance of MPS inside
MPS mentioned above). First, pressing Ctrl-Shift-T on any
program element will open a dialog that shows the type of the
element. If the element has a type system error, the dialog also
lets the user navigate to the rule that reported the error. The
second facility is much more sophisticated. For any program
node, MPS can show the type system trace (Fig. 15.3 shows a
simple example). Remember how the MPS type system relies
on a solver to solve the type system equations associated with
program elements (specified by the language developer for the
respective concepts). This means that each program has an as-
sociated set of type system equations, which contain explicitly
specified types as well as type variables. The solver tries to
find type values for these variables such that all type system
equations become true. The type system trace essentially visu-
alizes the state of the solver, including the values it assigns to
type variables, as well as which type system rules are applied
to which program element7.

7 In the design part we discussed how
declarative languages may come with a
debugger that fits the particular declar-
ative paradigm used by a particular
declarative language (Section 5). The
type system trace is an example of this
idea.

dsl engineering 373

15.1.3 Debugging Interpreters and Transformations

Debugging an interpreter is simple: since an interpreter is just
a program written in some programming language that pro-
cesses and acts on the DSL program, debugging the interpreter
simply uses the debugger for the language in which the inter-
preter is written (assuming there is one)8. 8 While it is technically simple to debug

an interpreter, it is not necessarily sim-
ple to follow what’s going on, because
the interpreter is a meta program. We
discuss this in Section 4.3.

Debugging transformations and generators is typically not
quite as trivial, for two reasons. First, transformations and gen-
erators are typically written in DSLs optimized for this task. So
a specialized debugger is required. Second, if multi-step trans-
formations are used, the intermediate models may have to be
accessible, and it should be possible to trace a particular ele-
ment through the multi-step transformation.

� Xtext Xtext can be used together with any EMF-compatible
code generator or transformation engine. However, since Xtext
ships with Xtend, we look at debugging Xtend transformations.
Model-to-model transformations and code generators in Xtend
look very similar: both use Xtend to navigate over and query
the model, based on the AST. The difference is that, as a side
effect, model-to-model transformations create new model ele-
ments and code generators create strings, typically using rich
strings (aka template expressions).

Any Xtend program can be debugged using Eclipse "out of
the box". In fact, you can debug an Xtend program either on the
Xtend level or on the level of the generated Java source9. Since 9 Xtend generates Java source code that

is subsequently compiled.interpreters and generators are just regular Xtend programs,
they can be debugged in this way as well. Fig. 15.4 shows an
example of debugging a template expressions.

Xtend is a fundamentally an object-oriented language, so the
step-through metaphor for debuggers works. If Xtend is used
for code generation or transformation, debugging boils down
to stepping through the code that builds the target model10. 10 I emphasize this because the next

example uses a different approach.

� MPS In MPS, working with several chained transforma-
tions is normal, so MPS provides support for debugging the
transformation process. This support includes two ingredients.
The first one is showing the mapping partitioning. For any
given model, MPS automatically computes the order in which
transformations are executed, based on the relative priorities
specified for the generators involved. The mapping partition-
ing reports the overall transformation schedule to the user.

374 dslbook.org

Figure 15.4: Debugging a code gener-
ator written in Xtend. The debugger
can even step through the template
expressions. The Variables view shows
the EMF representation (i.e. the imple-
mentation) of program elements.

This is useful in understanding which transformations are ex-
ecuted in which order, and in particular, to debug transforma-
tion priorities. Let us investigate a simple example C program
that contains a message definition and a report statement. The
report statement is transformed to printf statements:
module Simple imports nothing {

message list messages {
INFO aMessage() active: something happened

}

exported int32 main(int32 argc, int8*[] argv) {
report (0) messages.aMessage();
return 0;

}
}

Below is the mapping configuration for this program:
[1]
com.mbeddr.core.modules.gen.generator.template.main.removeCommentedCode
[2]
com.mbeddr.core.util.generator.template.main.reportingPrintf
[3]
com.mbeddr.core.buildconfig.generator.template.main.desktop
com.mbeddr.core.modules.gen.generator.template.main.main

dsl engineering 375

This particular model is generated in three phases. The first
one removes commented code to make sure it does not show
up in the resulting C text file. The second phase runs the gen-
erator that transforms report statements into printfs. Finally,
the desktop generator generates a make file from the build con-
figuration, and the last step generates the C text from the C
tree11.

11 It is called desktop because it gener-
ates the code for a desktop computer.
It can be exchanged to generate code
or make files for arbitrary embedded
devices and compilers.

By default, MPS runs all generators until everything is either
discarded or transformed into text. While intermediate models
exist, they are not shown to the user. For debugging purposes
though, these intermediate, transient models can be retained
for inspection. Each of the phases is represented by one or
more transient models. As an example, here is the program
after the report statement has been transformed:

module Simple imports nothing {

exported int32 main(int32 argc, int8*[] argv) {
printf("$$ aMessage: something happened ");
printf("@ Simple:main:0#240337946125104144 \n ");
return 0;

}
}

MPS also supports tracing an element through the interme-
diate models. Fig. 15.5 shows an example. Users can select a
program element in the source, target or an intermediate model
and trace it to the respective other ends of the transformation.

Figure 15.5: The generation trace
functionality in MPS allows users to
trace how a particular program element
is transformed through a chain of
transformations. The generation tracer
also shows the transformation rules
involved in the transformation.

Note how this approach to debugging transformations is very
different from the Xtend example above: instead of stepping
through the transformation code12, MPS provides a static rep-

12 As part of the general Debug-MPS-in-
MPS functionality, MPS transformations
can also be debugged in a more impera-
tive fashion. This is useful, for example,
to debug more complex logic used
inside transformation templates.

resentation of the transformation in terms of the intermediate
models and the element traces through them.

376 dslbook.org

15.2 Debugging DSL Programs

To find errors in DSL programs, we can either debug them
on the level of the DSL program or in its LD−1 representation
(i.e. in the generated code or the interpreter). Debugging on
LD−1 is useful if you want to find problems in the execution
engine, or, to some extent, if the language users are program-
mers and they have an intimate understanding of the LD−1

representation of the program. However, for many DSLs it is
necessary to debug on the level of the DSL program, either be-
cause the users are not familiar with the LD−1 representation13, 13 This is true particularly for DSLs

targeted at domain experts.or because the LD−1 is so low-level and complex that is bears
no obvious resemblance to the DSL program.

The way to build debuggers for DSLs of course depends on
the DSL itself. For example, for DSLs that only describe struc-
tures, debugging does not make much sense in the first place.
For DSLs that describe behavior, the debugging approach de-
pends on the behavioral paradigm used in the DSL. We have
discussed this in Section 5. In this section we focus mostly on
the imperative paradigm14. 14 An example for the functional

paradigm was provided in Section 5.3,
and the type system tracer described
above is an example of a debugger for a
declarative language.

Building a debugger poses two challenges. The first one is
the debugger UI: creating all the buttons and views for control-
ling the debugger and for showing variables and treads. The
second challenge concerns the control of and data exchange
with the program to be debugged. The first challenge is rela-
tively simple to solve, since many IDE frameworks (including
Eclipse and MPS) already come with debugger frameworks.

The second challenge can be a bit more tricky. If the DSL
is executed by an interpreter, the situation is simple: the inter-
preter can be run and controlled directly from the debugger.
It is easy to implement single-stepping and variable watches,
for example, since the interpreter can directly provide the re-
spective interfaces15. On the other hand, if the DSL program 15 This is especially true if the inter-

preter is written in the same language
as the IDE: no language integration
issues have to be addressed in this case.

is transformed into code that is executed in some other envi-
ronment outside of our control, it may even be impossible to
build a debugger, because there is no way to influence and in-
spect the running program. Alternatively, it may be necessary
to build a variant of the code generator which generates a debug
version of the program that contains specialized code to inter-
act with the debugger. For example, values of variables may be
stored in a special data structure inspectable by the debugger,
and at each program location where the program may have to
stop (in single-step mode or as a consequence of a breakpoint)

dsl engineering 377

code is inserted that explicitly suspends the execution of the
program, for example by sleeping the current thread. How-
ever, such an approach is often limited and ugly – in the end,
an execution infrastructure must provide debug support to en-
able robust debugging.

15.2.1 Print Statements – a Poor Man’s Debugger

As the above discussion suggests, building full-blown debug-
gers may be a lot of work. It is worth exploring whether a
simpler approach is good enough. The simplest such approach
is to extend the DSL with language concepts that simply print
interesting aspects of the executing program to the console or
a log file. For example, the values of variables may be output
this way.

The mbeddr report statement is an example of this ap-
proach. A report statement takes a message text plus a set of
variables. It then outputs the message and the values of these
variables. The target of the report statement can be changed.
By default, it reports to the console. However, since certain tar-
get devices may not have any console16, alternative transforma- 16 mbeddr addresses embedded soft-

ware development, and small micro-
controllers may not have a console.

tions can be defined for report statements, that, for example,
could output the data to an error memory or a serial line. A
particularly interesting feature of report statements is that the
transformation that handles them knows where in the program
the report statement is located and can add this information
to the output17. 17 The go-to-error-location functionality

discussed in Fig. 14.5 is based on this
approach.

An approach based on print statements is sometimes clumsy,
because it requires factoring out the expression to be printed18,

18 It also requires changing the actual
program. In fact, any debug approach
that requires any kind of change to
the program to be debugged (or the
compiled machine code), requires that
it is known in advance if a particular
program is supposed to be debugged.
While this is a significant limitation,
it is true for almost all compiled lan-
guages ("compile with debug options"),
and hence accepted.

and it only works for an imperative language in the first place.
For languages that make use of sophisticated expressions, a
different approach is recommended. Consider the following
example:

Collection[Type] argTypes = aClass.operations.arguments.type;

If you wanted to print the list of operations and arguments,
you would have to change the program to something like this:

print("operations: " + aClass.operations);
print("arguments: " + aClass.operations.arguments);
Collection[Type] argTypes = aClass.operations.arguments.type;

A much simpler alternative uses inlined reporting expressions:

Collection[Type] argTypes = aClass.operations.print("operations:")
.arguments.print("arguments:").type;

378 dslbook.org

To make this convenient to use, the print function has to re-
turn the object it is called on (the one before the dot), and it
must be typed accordingly if a language with static type check-
ing is used19.

19 The original openArchitectureWare
Xtend did it this way.

15.2.2 Automatic Program Tracing

As languages and programs become more complex, an auto-
mated tracing of program execution may be useful. In this
approach, all execution steps in a program are automatically
traced and logged into a tree-like data structure. The refriger-
ator cooling language uses this approach. Here is an example
program:

cooling program HelloWorld {
var temp: int
start:

entry { state s1 }
state s1:

check temp < 10 { state s2 }
state s2:

}

Upon startup, it enters the start state and immediately tran-
sitions to state s1. It remains in s1 until the variable temp

becomes less than 10. It then transitions to s2. Below is a test
for this program that verifies this behavior:

test HelloWorldTest for HelloWorld {
prolog {

set temp = 30
}
step
assert-currentstate-is s1
step
mock: set temp = 5
step
assert-currentstate-is s2

}

Fig. 15.6 shows the execution trace. It shows the execution of
each statement and the evaluation of each expression. The log
viewer is a tree table, so the various execution steps can be
selectively expanded and collapsed. Users can double-click on
an entry to select the respective program element in the source
node. By adding special comments to the source, the log can
be structured further20.

20 Obviously, the approach does not
scale for big programs. However, by
isolating problems into smaller, repre-
sentative programs, it does provide a
degree of usefulness.

The execution engine for the programs is an interpreter,
which makes it particularly simple to collect the trace data21.

21 If, instead of an interpreter, a code
generator were used, the same ap-
proach could essentially be used.
Instead of embedding the tracing code
in the interpreter, the code generator
would generate code that would build
the respective trace data structure in the
executing program. Upon termination,
the data structure could be dumped to
an XML file and subsequently loaded
by the IDE for inspection.

All interpreter methods that execute statements or evaluate ex-
pressions take a LogEntry object as an additional argument.
The methods then add children to the current LogEntry that
describe whatever the method did, and then pass the child to

dsl engineering 379

any other interpreter methods it calls. As an example, here is
the implementation of the AssignmentStatement:
protected void executeAssignmentStatement(AssignmentStatement s,

LogEntry log) {
LogEntry c = log.child(Kind.info, context,

"executing AssignmentStatement");
Object l = s.getLeft();
Object r = eval(s.getRight(), c);
eec().environment.put(symbol, r);
c.child(Kind.debug, context,

"setting " + symbol.getName() + " to " + r);
}

15.2.3 Simulation as an Approximation for Debugging

The interpreter for the cooling programs mentioned above is of
course not the final execution engine – C code is generated that
is executed on the actual target refrigerator hardware. How-
ever, as we discussed in Section 4.3.7, we can make sure the
generated code and the interpreter are semantically identical
by running a sufficient (large) number of tests. If we do this,
we can use the interpreter to test the programs for logical er-
rors.

Figure 15.6: The log viewer represents
a program’s execution as a tree. The
first column contains a timestamp and
the tree nesting structure. The second
column contains the kind (severity) of
the log message. A filter can be used
to show only messages above a certain
severity. The third column shows the
language concept with which the trace
step is associated (double-clicking on a
row selects this element in the editor).
Finally, the last column contains the
information about the semantic action
that was performed in the respective
step.

380 dslbook.org

The interpreter can also be used interactively, in which case
it acts as a simulator for the executing program. It shows all
variables in the program, the events in the queue, the running
tasks, as well as the values of properties of hardware elements
and the current state. It also provides a button to single-step
the program, to run it continuously, or to run it until it hits a
breakpoint. In other words, although the simulator does not
use the familiar22 UI of a debugger, it actually is a debugger23!

22 ... familiar to programmers, but not to
the target audience!

23 As we have said above, the fact that
it runs in the interpreter instead of
the generated code is not a problem
if we ensure the two are semantically
identical. Of course we cannot find
bugs in the implementation (i.e. in
the generator) in this way. But to
detect those, debugging on the level
of the generated C code is more useful
anyway.

If you already have the interpreter24, expanding it into a

24 We discuss how to build one in
Section 12.

simulator/debugger is relatively simple. Essentially only three
things have to be done:

• First, the execution of the program must be controllable
from the outside. This involves setting breakpoints, single-
stepping through the program and stopping execution if a
breakpoint is hit. In our example case, we do not single-step
through statements, but only through steps25. Breakpoints

25 Remember that the language is
time-triggered anyway, so execution is
basically a sequence of steps triggered
by a timer. In the simulator/debugger,
the timer is replaced with the user
pressing the Next Step button for
single stepping.

are essentially Boolean flags associated with program ele-
ments: if the execution processes a statement that has the
breakpoint flat set to true, execution stops.

• Second, we have implemented an Observer infrastructure
for all parts of the program state that should be represented
in the simulator UI. Whenever one of them changes (as a
side effect of executing a statement in the program), an event
is fired. The UI registers as an observer and updates the UI
in accordance with the event.

• Third, values from the program state must be changeable
from the outside. As a value in the UI (such as the temper-
ature of a cooling compartment) is changed by the user, the
value is updated in the state of the interpreter as well.

15.2.4 Automatic Debugging for Xbase-based DSLs

DSLs that use Xbase, Xtext’s reusable expression language, get
debugging mostly26 for free. This is because of the tight inte-

26 "Mostly" because in a few cases you
have to add trace information manually
in transformations.

gration of Xbase with the JVM. We describe this integration in
more detail in Section 16.3; here is the essence.

A DSL that uses Xbase typically defines its own structural
and high-level behavioral aspects, but uses Xbase for the fine-
grained, expression-level and statement-level27 behavior. For

27 Technically, Xtend doesn’t have
statements, and things like if or
switch are expressions.

example, in a state machine DSL, states, events and transitions
would be concepts defined by the DSL, but the guard con-
ditions and the action code would reuse Xbase expressions.

dsl engineering 381

When mapping this DSL to Java28, the following approach 28 Xbase-based DSLs must be mapped
to Java to benefit from Xbase in the
way discussed in this section. If you
generate code other than Java, Xbase
cannot be used sensibly.

is used: the structural and high-level behavioral aspects are
mapped to Java, but not by generating Java text, but by map-
ping the DSL AST to a Java AST29. For the reused Xbase as-

29 The Java AST serves as a hub for
all Xbase languages including Xtend,
your own DSL or Xcore. All those work
nicely together. The JVM level serves as
an interoperability layer.

pects (the finer-grained behavior) a Java generator (called the
Xbase compiler) already exists, which we simply call from our
generator.

Essentially, we do not create a code generator, but a model-
to-model transformation from the DSL AST to the Java AST.
As part of this transformation (performed by the JVMModel in-
ferrer), trace links between the DSL code and the Java code are
established. In other words, the relationship between the Java
code and the DSL code is well known. This relationship is ex-
ploited in the debugging process. Xbase-based DSLs use the
Java debugger for debugging. In addition to showing the gen-
erated Java code, the debugger can also show the DSL code,
based on the trace information collected by the JVMModel in-
ferrer. In the same way, if a user sets a breakpoint in the DSL
code, the trace information is used to determine where to set
the breakpoint in the generated Java code.

15.2.5 Debuggers for an Extensible Language

This section describes in some detail the architecture of an ex-
tensible debugger for an extensible language30. We illustrate

30 Extensible languages were defined
and discussed in Section 4.6. We show
in detail in Section 16.2 how this works
with MPS.

the approach with an implementation based on mbeddr, an ex-
tensible version of C implemented with the MPS. We also show
the debuggers for non-trivial extensions of C.

� Requirements for the Debugger Debuggers for imperative
languages support at least the following features: breakpoints
suspend execution on arbitrary statements; single-step execution
steps over statements, and into and out of functions or other
callables; and watches show values of variables, arguments or
other aspects of the program state. Stack frames visualize the
call hierarchy of functions or other callables.

Figure 15.7: An extension-aware de-
bugger maps the debug behavior from
the base-level to the extension-level (an
extension may also be mapped onto
other extensions; we ignore this aspect
in this section).

When debugging a program that contains extensions, break-
points, stepping, watches and call stacks, these elements at
the extension-level differ from their counterparts at the base-level.
The debugger has to perform the mapping from the base-level
to the extension-level (Fig. 15.7). We distinguish between the
tree representation of a program in MPS and the generated text
that is used by the C compiler and the debugger backend. A
program in the tree representation can be separated into parts

382 dslbook.org

expressed in the base language (C in this case) and parts ex-
pressed using extensions. We refer to the latter the extension-
level or DSL-level (see Fig. 15.7). An extensible tree-level de-
bugger for mbeddr that supports debugging on the base-level
and extension-level, addresses the following requirements:

Modularity Language extensions in mbeddr are modular, so
debugger extensions must be modular as well. No changes
to the base language must be necessary to enable debugging
for a language extension.

Framework Genericity In addition, new language extensions must
not require changes to the core debugger infrastructure (not just
the base language).

Simple Debugger Definition Creating language extensions is an
integral part of using mbeddr. Hence, the development of
a debugger for an extension should be simple and not re-
quire too much knowledge about the inner workings of the
framework, or even the C debugger backend.

Limited Overhead As a consequence of embedded software de-
velopment, we have to limit the additional, debugger-specific
code generated into the binary. This would increase the size
of the binary, potentially making debugging on a small tar-
get device infeasible.

Debugger Backend Independence Embedded software projects use
different C debuggers, depending on the target device. This
prevents modifying the C debugger itself: changes would
have to be re-implemented for every C debugger used.

� An Example Extension We start out by developing a simple
extension to the mbeddr C language31. The foreach statement 31 We assume that you know the basics

of MPS language development, for
example from reading the earlier
implementation chapters in this book.

can be used to conveniently iterate over C arrays. Users have
to specify the array as well as its size. Inside the foreach body,
it acts as a reference to the current iteration’s array element32.

32 Note that for the sake of the example,
we don’t consider nested foreach state-
ments, so we don’t have to deal with
unique names for various (generated)
variables.

int8 s = 0;
int8[] a = {1, 2, 3};
foreach (a sized 3) {

s += it;
}

The code generated from this piece of extended C looks as fol-
lows. The foreach statement is expanded into a regular for

statement and an additional variable __it:

dsl engineering 383

int8 s = 0;
int8[] a = {1, 2, 3};
for (int __c = 0; __c < 3; __c++) {

int8 __it = a[__c];
s += __it;

}

To make the foreach extension modular, it lives in a separate
language module named ForeachLanguage. The new language
extends C, since we will refer to concepts defined in C (see
Fig. 15.8).

Figure 15.8: UML class diagram
showing the structure of the
ForeachLanguage. Concepts from
the C base language are in white boxes,
new concepts are gray.

� Developing the Language Extension In the new language,
we define the ForeachStatement. To make it usable wher-
ever C expects Statements (i.e. in functions), it extends C’s
Statement. As Fig. 15.8 shows, ForeachStatements have three
children: an Expression that represents the array, an Expres-

sion for the array length, and a StatementList for the body.
Expression and StatementList are both defined in C.

The editor is shown in Fig. 15.9. It consists of a horizontal
list of cells: the foreach keyword, the opening parenthesis, the
embedded editor of the array child, the sized keyword, the
embedded editor of the len expression, the closing parenthesis
and the editor of the body.

Figure 15.9: The editor definition of the
foreach statement and its relationship
to an example instance.

As shown in the code snippet below, the array must be of type
ArrayType, and the type of len must be int64 or any of its
shorter subtypes.
rule typeof_ForeachStatement for ForeachStatement as fes do {

typeof(fes.len) :<=: <int64>;
if (!(fes.array.type.isInstanceOf(ArrayType))) {

error "array required" -> fes.array;
}

}

As shown above, the generator translates a ForeachStatement

to a regular for statement that iterates over the elements with a
counter variable __c (Fig. 15.10). Inside the for body, we create
a variable __it that refers to the array element at position __c.
We then copy in the other statements from the body of the
foreach.

The ItExpression extends C’s Expression to make it us-
able where expressions are expected. The editor consists of

384 dslbook.org

a single cell with the keyword it. A constraint enforces the
ItExpression to be used only inside the body of a foreach:

concept constraints ItExpression {
can be child

(context, scope, parentNode, link, childConcept)->boolean {
parentNode.ancestor<ForeachStatement, +>.isNotNull &&
parentNode.ancestor<StatementList, +>.isNotNull;

}
}

The type of it must be the base type of the array (e.g. int in
the case of int[]), as shown in the code below:

node<Type> basetype = typeof(it.ancestor<ForeachStatement>.array)
:ArrayType.baseType;

typeof(it) :==: basetype.copy;

The foreach generator already generated a local variable __it

into the body of the for loop. We can thus translate an ItEx-

pression into a LocalVariableReference that refers to __it.

Figure 15.10: The foreach generator
template. A ForeachStatement is
replaced by the code that is framed
<TF .. TF> when the template is
executed; the dummy function around
it just provides context. The COPY_SRC
and COPY_SRCL macros contain ex-
pressions (not shown) that determine
with what the nodes in square brackets
(e.g., 10, int8 x;) are replaced during a
transformation.

� Developing the Debug Behavior The specification of the de-
bugger extension for foreach resides completely in the For-

eachLanguage; this keeps the debugger definition for the ex-
tension local to the extension language.

To set a breakpoint on a concept, it must implement the
IBreakpointSupport marker interface. Statement already im-
plements this interface, so ForEachStatement implicitly imple-
ments this interface as well.

Stepping behavior is implemented via ISteppable. The For-
eachStatement implements this interface indirectly via State-

ment, but we have to overwrite the methods that define the
step over and step into behavior. Assume the debugger is sus-
pended on a foreach and the user invokes step over. If the
array is empty or we have finished iterating over it, a step over
ends up on the statement that follows after the whole foreach

statement. Otherwise we end up on the first line of the foreach
body (sum += it;)33.

33 This is the first line of the mbeddr
program, not the first line of the gen-
erated base program (which would be
int8 __it = arr[__c];).

dsl engineering 385

The debugger cannot guess which alternative will occur,
since it would need to know the state of the program and
to evaluate the expressions in the (generated) for. Instead
we set breakpoints on each of the possible next statements and
then resume execution until we hit one of them. The imple-
mentations of the ISteppable methods specify strategies for
setting breakpoints on these possible next statements. The
contributeStepOverStrategies method collects strategies for
the step over case:
void contributeStepOverStrategies(list<IDebugStrategy> res) {

ancestor
statement list: this.body

}

The method is implemented using a domain-specific language
for debugger specification, which is part of the mbeddr debug-
ger framework34. It is an extension of MPS’ BaseLanguage, a 34 This simplifies the implementation

of debuggers significantly. It is another
example of where using DSLs for
defining DSLs is a good idea.

Java-based language used for expressing behavior in MPS. The
ancestor statement delegates to the foreach’s ancestor; this
will lead to a breakpoint on the subsequent statement. The
second line leads to a breakpoint on the first statement of the
body statement list.

Since the array and len expressions can be arbitrarily com-
plex and may contain invocations of callables (such as function
calls), we have to specify the step into behavior as well. This
requires the debugger to inspect the expression trees in array

and len and find any expression that can be stepped into. Such
expressions implement IStepIntoable. If so, the debugger has
to step into each of those, in turn. Otherwise the debugger falls
back to step over. An additional method configures the expres-
sion trees which the debugger must inspect:
void contributeStepIntoStrategies(list<IDebugStrategy> res) {

subtree: this.array
subtree: this.len

}

By default, the Watch window contains all C symbols (global
and local variables, arguments) as supplied by the native C
debugger35. To customize watches, a concept has to implement 35 In the case of the foreach, this means

that it is not available, but __it and
__c are. This is exactly the wrong way
around: the watch window should
show it, but not __it and __c.

IWatchProvider. Here is the code for foreach, also expressed
in the debugger definition DSL:
void contributeWatchables(list<UnmappedVariable> unmapped,

list<IWatchable> mapped) {
hide "__c"
map "__it" to "it"

type: this.array.type : ArrayType.baseType
category: WatchableCategories.LOCAL_VARIABLES
context: this

}

386 dslbook.org

The first line hides __c. The rest maps a base-level C variable
to a watchable. It finds a C variable named __it (inserted by
the foreach generator) and creates a watch variable named it.
At the same time, it hides the base-level variable __it. The
type of it is the base type of the array over which we iterate.
We assign the it watchable to the local variables section and
associate the foreach node with it (double-clicking on the it

in the Watch window will highlight the foreach in the code).
Stepping into the foreach body does not affect the call stack,

since the concept represents no callable (for details, see the next
paragraph). So we do not have to implement any stack frame
related functionality.

� Debugger Framework Architecture The central idea of the de-
bugger architecture is this: from the C code in MPS and its
extensions (tree level) we generate C text (text level). This text
is the basis for the debugging process by a native C debugger.
We then use trace data to find out how the generated text maps
back to the tree level in MPS.

At the core of the execution architecture is the Mapper. It
is driven by the Debugger UI (and through it, the user) and
controls the C debugger via the Debug Wrapper. It uses the
Program Structure and the Trace Data. The Mapper also
uses a language’s debug specification, discuss in the next sub-
section. Fig. 20.6 shows the components and their interfaces.

Figure 15.11: The Mapper is the cen-
tral component of the debugger ex-
ecution architecture. It is used by
the Debugger UI and, in turn, uses
the Debug Wrapper, the Program
Structure and the Trace Data.

The IDebugControl interface is used by the Debugger UI to
control the Mapper. For example, it provides a resume opera-
tion. IBreakpoints allows the UI to set breakpoints on pro-

dsl engineering 387

gram nodes. IWatches lets the UI retrieve the data items for
the Watch window. The Debug Wrapper essentially provides
the same interfaces, but on the level of C (prefixed with LL, for
"low level"). In addition, ILLDebugControl lets the Mapper find
out about the program location of the C Debugger when it is
suspended at a breakpoint. IASTAccess lets the Mapper access
program nodes. Finally, ITraceAccess lets the Mapper find out
the program node (tree level) that corresponds to a specific line
in the generated C source text (text level), and vice versa.

To illustrate the interactions of these components, we de-
scribe a step over. After the request has been handed over from
the UI to the Mapper via IDebugControl, the Mapper performs
the following steps:

• Asks the current node’s concept for its step over strategies;
these define all possible locations where the debugger could
end up after the step over.

• Queries TraceData for the corresponding lines in the gener-
ated C text for those program locations.

• Uses the debugger’s ILLBreakpoints to set breakpoints on
those lines in the C text.

• Uses ILLDebugControl to resume program execution. It will
stop at any of the breakpoints just created.

• Uses ILLDebugControl to get the C call stack.

• Queries TraceData to find out, for each C stack frame, the
corresponding nodes in the tree-level program.

• Collects all relevant IStackFrameContributors (see the next
section). The Mapper uses these to construct the tree-level
call stack.

• Gets the currently visible symbols and their values via ILL-

Watchables.

• Queries the nodes for all WatchableProviders and use them
to create a set of watchables.

At this point, execution returns to the Debugger UI, which then
gets the current location and watchables from the Mapper to
highlight the statement on which the debugger is suspended
and populate the Watch window.

In our implementation, the Debugger UI, Program Reposi-

tory and Trace Data are provided by MPS. In particular, MPS
builds a trace from the program nodes (tree level) in MPS to
the generated text-level source. The Debug Wrapper is part of

388 dslbook.org

mbeddr and relies on the Eclipse CDT Debug Bridge36, which 36 www.eclipse.org/cdt

provides a Java API to gdb37 and other C debuggers. 37 www.gnu.org/software/
gdb/documentation/

� Debugger Specification The debugger specification resides
in the respective language module. As we have seen in the
foreach example, the specification relies on a set of interfaces
and a number of predefined strategies, as well as the debugger
specification DSL.

The interface IBreakpointSupport is used to mark language
concepts on which breakpoints can be set. C’s Statement im-
plements this interface. Since all statements inherit from State-

ment we can set breakpoints on all statements by default.
When the user sets a breakpoint on a program node, the

mapper uses ITraceAccess to find the corresponding line in
the generated C text. A statement defined by an extension may
be expanded to several base-level statements, so ITraceAccess

actually returns a range of lines, the breakpoint is set on the
first one.

Stack frames represent the nesting of invoked callables at
runtime38. We create stack frames for a language concept if 38 A callable is a language concept that

contains statements and can be called
from multiple call sites.

it has callable semantics. The only callables in C are func-
tions, but in mbeddr, test cases, state machine transitions and
component methods are callables as well. Callable semantics
on extension level do not necessarily imply a function call on
the base level. There are cases in which an extension-level
callable is not mapped to a function and where a non-callable
is mapped to a function. Consequently, the C call stack may
differ from the extension call stack shown to the user. Con-
cepts with callable semantics on the extension level or base
level implement IStackFrameContributor. The interface pro-
vides operations that determine whether a stack frame has to
be created in the debugger UI and what the name of the stack
frame should be.

Stepping behavior is configured via the IStackFrameCon-

tributor, ISteppable, ISteppableContext, IStepIntoable

and IDebugStrategy interfaces. Fig. 15.12 shows an overview.

Figure 15.12: The structure of language
concepts implementing the stepping-
related interfaces. The boxes represent
language concepts implementing the
interfaces discussed in the text. Those
concepts define the containments, so
this figure represents a typical setup.

The methods defined by these interfaces return strategies that
determine where the debugger may have to stop next if the
user selects a stepping operation (remember that the debug-
ger framework sets breakpoints to implement stepping). New
strategies can be added without changing the generic execution
aspect of the framework.

dsl engineering 389

Stepping relies on ISteppable contributing step over and
step into strategies. Many ISteppables are embedded in an
ISteppableContext (e.g., Statements in StatementLists). Stra-
tegies may delegate to the containing ISteppableContext to
determine where to stop next (the ancestor strategy in the
foreach example).

For step into behavior, an ISteppable specifies those sub-
trees in which instances of IStepIntoable may be located (the
array and len expressions in the foreach case). The debugger
searches these subtrees at debug-time and collects all instances
of IStepIntoable. An IStepIntoable represents a callable
invocation (e.g., a FunctionCall), and the returned strategies
suspend the debugger within the callable.

Step out behavior is provided by implementors of IStack-
FrameContributor (mentioned earlier). Since a callable can be
called from many program locations, the call site for a particu-
lar invocation cannot be determined by inspecting the program
structure; a call stack is needed. We use the ordered list of
IStackFrameContributors, from which the tree-level call stack
is derived, to realize the step out behavior. By "going back" (or
"out") in the stack, the call site for the current invocation is
determined. For step out, the debugger locates the enclosing
IStackFrameContributor and asks it for its step out strategies.

Strategies implement IDebugStrategy and are responsible
for setting breakpoints to implement a particular stepping be-
havior. Language extensions can either implement their own
strategies or use predefined ones. These include setting a break-
point on a particular node, searching for IStepIntoables in
expression subtrees (step into), or delegating to the outer stack
frame (step out).

To support watches, language concepts implement IWatch-
Provider if they directly contribute one or more items into
the Watch window. An IWatchProviderContext contains zero
or more watch providers. Typically these are concepts that
own statement lists, such as Functions or IfStatements. If
the debugger is suspended on any particular statement, we
can find all visible watches by iterating through all ancestor
IWatchProviderContexts and asking them for their IWatch-

Providers. Fig. 15.13 shows the typical structure of the con-
cepts.

Figure 15.13: Typical structure of
language concepts implementing the
watches-related interfaces

An IWatchProvider implements the contributeWatchables
operation. It has access to the C variables available in the native

390 dslbook.org

C debugger. Based on those, it creates a set of watchables. The
method may hide a base-level C variable (because it is irrele-
vant to the extension-level), promote C variable to a watchable
or create additional Watchables based on the values of C vari-
ables. The representation of a watchable often depends on the
variable’s type as expressed in the extension program. This type
may be different from the one in the C program. For example,
we represent values of type Boolean with true and false, even
though they are represented as ints in C. As the watchable is
created, we specify the type that should be used. Types that
should be used in this way must implement IMappableType.
Its method mapVariable is responsible for computing a type-
appropriate representation of a value.

� More Examples To illustrate mbeddr’s approach to exten-
sible debuggers further, we have implemented the debugging
behavior for mbeddr C and all default extensions. We discuss
some interesting cases in this section.

We encounter many cases where we cannot know statically
which piece of code will be executed when stepping into a callable.
Consider polymorphic calls on interfaces.

The mbeddr components extension provides interfaces with
operations, as well as components that provide and use these
interfaces. The component methods that implement interface
operations are generated to base-level C functions. The same
interface can be implemented by different components, each
implementation ending up in a different C function. A client
component only specifies the interface it uses, not the compo-
nent. Hence we cannot know statically which C function will
be called if an operation is invoked on the interface. However,
we do know statically all components that implement the inter-
face, so we know all possible C functions that may be invoked. A
strategy implemented specifically for this case sets breakpoints
on the first line of each of these functions to make sure we stop
in the first line of any of them if the user steps into a method
invocation39. 39 We encounter a similar challenge

in state machines: as an event is fired
into a state machine, we do not know
which transition will be triggered.
Consequently we set breakpoints in all
transitions (translated to case branches
in a switch statement) of the state
machine.

In many cases a single statement on the extension level is
mapped to several statements or whole blocks on the base
level. Stepping over the single extension-level statement must
step over the whole block or list of statements in terms of C.
An example is the assert statement used in test cases. It is
mapped to an if statement. The debugger has to step over

dsl engineering 391

the complete if statement, independent of whether the condi-
tion in the if evaluates to true or false. Note that we get
this behavior free40: the assert statement sets a breakpoint on

40 Remember that we never actually
step over statements, we always set
breakpoints at the next possible code
locations where the debugger may have
to stop next.

the base-level counterpart of the next tree-level statement. It is
irrelevant how many lines of C text further down this is.

Extensions may provide custom data types that are mapped
to one or more data types or structures in the generated C. The
debugger has to reconstruct the representation in terms of the
extension from the base level data. For example, the state of
a component is represented by a struct that has a member
for each of the component fields. Component operations are
mapped to C functions. In addition to the formal arguments
declared for the respective operation, the generated C function
also takes this struct as an argument. However, to support the
polymorphic invocations discussed earlier, the type of this ar-
gument is void*. Inside the operation, the void* is cast down
to allow access to the component-specific members. The de-
bugger performs the same downcast to be able to show watch-
ables for all component fields.

� Discussion To evaluate the suitability of our solution for
our purposes, we revisit the requirements described earlier.

Modularity Our solution requires no changes to the base lan-
guage or its debugger implementation to specify the debug-
ger for an extension. Also, independently developed ex-
tensions retain their independence if they contain debugger
specifications41. 41 In particular, MPS’ capability of

incrementally including language
extensions in a program without defining
a composite language first is preserved in
the face of debugger specifications.

Framework Genericity The extension-dependent aspects of the
debugger behavior are extensible. In particular, stepping
behavior is factored into strategies, and new strategies can
be implemented by a language extension. Also, the repre-
sentation of watch values can be customized by making the
respective type implement IMappableType in a suitable way.

Simple Debugger Definition This challenge is solved by the de-
bugger definition DSL. It supports the definition of stepping
behavior and watches in a declarative way, without concern-
ing the user with implementation details of the framework
or the debugger backend.

Limited Overhead Our solution generates no debugger specific
code at all (except the debug symbols added by compiling
the C code with debug options). Instead we rely on trace

392 dslbook.org

data to map the extension level to base level and ultimately
to text. This is a trade-off: first, the language workbench
must be able to provide trace information. Second, the gen-
erated C text cannot be modified by a text processor before
it is compiled and debugged, since this would invalidate
the trace data42. Our approach has another advantage: we

42 The C preprocessor works, it is
handled correctly by the compiler and
debugger.

do not have to change existing transformations to generate
debugger-specific code. This keeps the transformations in-
dependent of the debugger.

Debugger Backend Independence We use the Eclipse CDT Debug
Bridge to wrap the particular C debugger, so we can use
any compatible debugger without changing our infrastruc-
ture. Our approach requires no changes to the native C de-
bugger itself, but since we use breakpoints for stepping, the
debugger must be able to handle a reasonable number of
breakpoints43. The debugger also has to provide an API for 43 Most C debuggers support this, so

this is not a serious limitation.setting and deleting breakpoints, for querying the currently
visible symbols and their values, as well as for querying the
code location where the debugger suspended.

15.2.6 What’s Missing?

The support from language workbenches for building debug-
gers for the DSLs defined with the language workbench is not
where it should be. In the face of extensible languages or lan-
guage composition especially, the construction of debuggers is
still a lot of work. The example discussed in Section 15.2.5
above is not part of MPS in general, but instead a framework
that has been built specifically for mbeddr – although we be-
lieve that the architecture can be reused more generally.

Also, ideally, programs should be debuggable at any ab-
straction level: if a multi-step transformation is used, then
users should be able to debug the program at any interme-
diate step. Debug support for for Xbase-based DSLs is a good
example of this, but it is only one translation step, and it is a
solution that is specifically constructed for Xbase and Java, and
not a generic framework.

So there is a lot of room for innovation in this space.

16
Modularization, Reuse and Composition

Language modularization, extension and composition is an
important ingredient in the efficient use of DSLs, just as
reuse in general is important to software development. We
discuss the need for modularization, extension and compo-
sition in the context of DSL design in Section 4.6, where we
introduce the four classes of modularization, extension and
composition. In this chapter, we look at the implementation
approaches taken by our example tools.

16.1 Introduction

When modularizing and composing languages, the following
challenges have to be addressed:

• The concrete and the abstract syntaxes of the languages have
to be combined. Depending on the kind of composition, this
requires the embedding of one syntax into another. This, in
turn, requires modular grammars, or more generally, ways
of specifying concrete syntax that avoids ambiguities.

• The static semantics, i.e. the constraints and the type system,
have to be integrated. For example, in the case of language
extension, new types have to be "made valid" for existing
operators.

• The execution semantics have to be combined as well. In
practice, this may mean mixing the code generated from the
composed languages, or composing the generators or inter-
preters.

394 dslbook.org

• Finally, the IDE services that provides code completion, syn-
tax coloring, static checks and other relevant services have
to be extended and composed as well.

In this chapter we show how each of those is addressed with
the respective tools. We don’t discuss the general problems any
further, since those have been discussed in Part II of the book
on DSL design.

16.2 MPS Example

With MPS two of these challenges outlined above – compos-
ability of concrete syntax and modular IDEs – are solved to a
large degree. Modular type systems are reasonably well sup-
ported. Semantic interactions are hard to solve in general, but
can be handled reasonably in many relevant cases, as we show
in this section as well. However, as we will see, in many cases
languages have to be designed explicitly for reuse to make them
reusable. After-the-fact reuse, without consideration during
the design of the reusable language, is possible only in limited
cases. However, this is true for reuse in software generally.

Figure 16.1: entities is the central lan-
guage. uispec defines UI forms for the
entities. uispec_validation adds val-
idation rules, and composes a reusable
expressions language. relmapping
provides a reusable database map-
ping language, relmapping_entities
adapts it to the entities language. rbac
is a reusable language for specifying
permissions; rbac_entities adapts
this language to the entities lan-
guage.We describe language modularization, extension and composi-

tion with MPS based on a set of examples1. At the center of
1 These are new examples that have not
yet been used before in the book. This
is to keep them simple; showcasing
these things, for example, with mbeddr
would add a lot of additional context
and complexity that is not necessary to
illustrate the essential techniques.

this section is a simple entities language – the usual entity-
with-property-and-references "Hello World" example. We then
build additional languages to illustrate extension and compo-
sition. Fig. 16.1 illustrates these additional languages. The
uispec (user interface specification) language illustrates refer-
encing with entities. relmapping (relational database map-
ping) is an example of reuse with separated generated code.
rbac (role-based access control) illustrates reuse with inter-
mixed generated code. uispec_validation demonstrates ex-
tension (of the uispec language) and embedding with regard to
the expressions language.

dsl engineering 395

16.2.1 Implementing the Entities Language

Below is some example code expressed in the entities lan-
guage. Modules are root nodes. They live as top-level elements
in models2. 2 Referring back to the terminology in-

troduced in Section 3.3, root nodes (and
their descendants) are considered frag-
ments, while the models are partitions.
Technically, they are XML files.

module company {
entity Employee {

id : int
name : string
role : string
worksAt : Department
freelancer : boolean

}
entity Department {

id : int
description : string

}
}

� Structure and Syntax Fig. 16.2 shows a class diagram of
the structure of the entities language. Each box represents a
language concept.

Figure 16.2: The abstract syntax of
the entities language. Entities have
attributes, which have types and names.
EntityType extends Type and refer-
ences Entity. This "adapts" entities to
types (cf. the Adapter pattern).

The following code shows the definition of the Entity con-
cept3. Entity implements the INamedConcept interface to in- 3 This is not the complete definition,

concepts can have more characteristics.
This is simplified to show the essentials.

herit a name property. It declares a list of children of type
Attribute in the attributes collection. Fig. 16.3 shows the
definition of the editor for Entity.

concept Entity extends BaseConcept implements INamedConcept
can be root: true
children:

Attribute attributes 0..n

� Type System For the entities language, we specify two
simple typing rules. The first one specifies that the type of the
primitives (int, string) is a clone of themselves:

rule typeof_Type {
applicable for concept = Type as t
overrides false
do {

typeof(type) :==: type.copy;
}

}

396 dslbook.org

Figure 16.3: The editor for Entity. The
outermost cell is a vertical list ([/ ..
/]). In the first line, we use a horizontal
list that contains the "keyword" entity,
the value of the name property and
an opening curly brace. In the second
line we use indentation and a vertical
arrangements of the contents of the
attributes collection. Finally, the third
line contains the closing curly brace.

The only other typing rule is an equation that defines the type
of the attribute as a whole to be the type of the attribute’s type
property, defined as

typeof(attribute) :==: typeof(attribute.type);

� Generator From entities models we generate Java Beans
expressed in MPS’ BaseLanguage. For the entities language,
we need a root mapping rule4 and reduction rules5. The root map- 4 Root mapping rules are used to create

new top-level artifacts from existing
top-level artifacts (mapping a fragment
to another fragment).

5 Reduction rules are in-place transfor-
mations. Whenever the transformation
engine encounters an instance of the
specified source concept somewhere in
a program tree, it replaces that source
node with the result of the associated
template.

ping rule is used to generate a Java class from an Entity. The
reduction rule transforms the various types (int, string, etc.)
to their Java counterparts. Fig. 16.4 shows a part of the map-
ping configuration for the entities language.

Figure 16.4: The mapping configuration
for the entities language. The root
mapping rule for Entity specifies
that instances of Entity should be
transformed with the map_Entity
template. The reduction rules use
inline templates. For example, the
IntType is replaced with the Java int
and the EntityRefType is reduced to
a reference to the class generated from
the target entity. The ->$ is a reference
macro. It contains code (not shown)
that "rewires" the reference to Double to
a reference to the class generated from
the referenced Entity.Fig. 16.5 shows the map_Entity template. It generates a Java

class. Inside the class, we generate a field for each entity at-
tribute. To do this we first create a prototype field in the class
(private int aField;). Then we use macros to "transform"
this prototype into an instance for each Entity attribute. We
first attach a LOOP macro to the whole field. Based on its ex-

dsl engineering 397

pression node.attributes;, we iterate over the attributes in
the current entity. We then use a COPY_SRC macro to transform
the type. COPY_SRC copies the input node (the inspector spec-
ifies the current attribute’s type as the input here) and applies
reduction rules. So instances of the types defined as part of
the entities language are transformed into a Java type us-
ing the reduction rules defined in the mapping configuration
above. Finally we use a property macro (the $ sign) to change
the name property of the field we generate from the dummy
value aField to the name of the attribute we currently trans-
form (once again via an expression in the inspector).

Figure 16.5: The template for creating
a Java class from an Entity. The
running text explains the details. The
«placeholder» is a special concept
used later.

16.2.2 Referencing

We define a language uispec for defining user interface forms
based on the entities. Below is an example model. Note
how the form is another, separate fragment. It is a dependent
fragment, since it references elements from another fragment
(expressed in the entities language). Both fragments are ho-
mogeneous, since they consist of sentences expressed in a single
language.

form CompanyStructure
uses Department
uses Employee
field Name: textfield(30) -> Employee.name
field Role: combobox(Boss, TeamMember) -> Employee.role
field Freelancer: checkbox -> Employee.freelancer
field Office: textfield(20) -> Department.description

398 dslbook.org

� Structure and Syntax The uispec language extends6 the 6 MPS uses the term "extension" when-
ever the definition of one language uses
or refers to concepts defined in another
language. This is not necessarily an ex-
ample of language extension as defined
in this book.

entities language. This means that concepts from the entities
language can be used in the definition of language concepts in
the uispec language. Fig. 16.6 shows the abstract syntax as a
UML diagram.

Figure 16.6: The abstract syntax of
the uispec language. Dotted lines
represent classes from another language
(here: the entities language). A
Form contains EntityReferences that
connect to an entities model. A form
also contains Fields, each referencing
an Attribute from an Entity and
containing a Widget.

A Form owns a number of EntityReferences, which in turn
reference the Entity concept. Also, Fields refer to the at-
tribute that is intended to be edited via the field. Below is the
definition of the Field concept. It owns a Widget and refers to
an Attribute.

concept Field extends BaseConcept implements <none>
properties:

label : string
children:

Widget widget 1
references:

Attribute attribute 1

� Type System The language enforces limitations over which
widget can be used with which attribute type7. The necessary 7 A checkbox widget requires a Boolean

type, a ComboWidget requires a string
type.

typing rule is defined in the uispec language and references
types from the entities language8. The following is the code

8 This is valid, since in referencing, the
referencing language has a dependency
on the referenced language.

for the type check.

checking rule checkTypes {
applicable for concept = Field as field
overrides false
do {

if (field.widget.isInstanceOf(CheckBoxWidget)
&& !(field.attribute.type.isInstanceOf(BooleanType))) {

error "only use checkbox with booleans" -> field.widget;
}
if (field.widget.isInstanceOf(ComboWidget)

&& !(field.attribute.type.isInstanceOf(StringType))) {
error "cannot use combobox with strings" -> field.widget;

}
}

}

� Generation The defining characteristic of language refer-
encing is that the two languages only reference each other, and
the instance fragments are dependent, but homogeneous. No

dsl engineering 399

syntactic integration is necessary in this case. In this exam-
ple, the generated code exhibits the same separation. From the
Form definition, we generate a Java class that uses Java Swing
to build the UI form. It uses the beans generated from the en-
tities: the classes are instantiated, and the getters and setters
are called9. The generators are separate, but they are dependent 9 To get values from the bean when the

form is populated and to set the values
into the bean if they have been changed
in the form.

because they share information. Specifically, the uispec gener-
ator knows about the names of the generated entity classes, as
well as the names of the setters and getters. This dependency
is implemented by defining a couple of behavior methods on
the Attribute concept that are called from both generators:

concept behavior Attribute {
public string qname() {

this.parent:Entity.name + "." + this.name;
}
public string setterName() {

"set" + this.name.toFirstUpper();
}
public string getterName() {

"get" + this.name.toFirstUpper();
}

}

The original entities fragment is still sufficient for the trans-
formation that generates the Java Bean. The uispec fragment
is not sufficient for generating the UI; it needs the entities

fragment. This is not surprising, since dependent fragments can
never be sufficient for a transformation: the transitive closure
of all dependencies has to be made available.

16.2.3 Extension

We extend the MPS base language with block expressions and
placeholders. These concepts make writing generators that
generate base language code much simpler. Fig. 16.7 shows
an example.

Figure 16.7: Block expressions (in blue,
gray in print) are basically anonymous
inline methods. Upon transformation,
a method is generated that contains the
block content, and the block expression
is replaced with a call to this method.
Block expressions are used mostly
when implementing generators; this
screenshot shows a generator that uses
a block expressions.

� Structure and Syntax A block expression is a block that can
be used where an Expression is expected10. The block can

10 M. Bravenboer, R. Vermaas, J. J. Vinju,
and E. Visser. Generalized type-based
disambiguation of meta programs with
concrete object syntax. In GPCE, pages
157–172, 2005

contain any number of statements; yield can be used to "re-
turn" values from within the block11. An optional name prop-

11 So, in some sense, a block expression
is an "inlined method", or a closure that
is defined and called directly.

erty of a block expression is used as the name of the generated
method. The generator of the block expression in Fig. 16.7
transforms it into this structure:

400 dslbook.org

// the argument to setName is what was the block expression,
// it is replaced by a method call to the generated method
aEmployee.setName(retrieve_name(aEmployee, widget0));

...

// this is the method generated from the block expression
public String retrieve_name(Employee aEmployee, JComponent widget0) {

String newValue = ((JTextField) widget0).getText();
return newValue;

}

The jetbrains.mps.baselanguage.exprblocks language ex-
tends Ba- seLanguage. To make a block expression valid where
BaseLanguage expects an Expression, BlockExpression ex-
tends Expression12. 12 Consequently, fragments that use

the exprblocks language can now
use BlockExpressions in addition to
the concepts provided by the Base-
Language. The fragments become
heterogeneous, because languages are
syntactically mixed.

concept BlockExpression extends Expression implements INamedConcept
children:

StatementList body 1

� Type System The type of the yield statement is the type of
the expression that is yielded, specified by this equation13: 13 The type of yield 1; would be int.

typeof(yield) :==: typeof(yield.result);

Since the BlockExpression is used as an Expression, it has to
have a type as well. However, its type is not explicitly specified,
so it has to be calculated as the common supertype of the types
of all yields. The following typing rule computes this type.
We use the :>=: operator to express that the result type must
be the same or a supertype of the right argument.

typevar resultType ;
for (node<BlockExpressionYield> y :

blockExpr.descendants<BlockExpressionYield>) {
resultType :>=: typeof(y.result);

}
typeof(blockExpr) :==: resultType;

Figure 16.8: We use a weaving rule
to create an additional method
for a BlockExpression. A weav-
ing rule processes an input element
(BlockExpression) by creating another
node in a different place. The context
function defines this other place. In this
case, it simply gets the class in which
we have defined the block expression.

dsl engineering 401

� Generator The generator for BlockExpressions reduces
the new concept to pure BaseLanguage: it performs assimi-
lation. It transforms a heterogeneous fragment (using BaseLan-
guage and exprblocks) to a homogeneous fragment (using only
BaseLanguage). The first step is the creation of the additional
method for the block expression. Fig. 16.8 shows the definition
of the weaving rule; Fig. 16.9 shows the template used in that
weaving rule.

The template shown in Fig. 16.9 shows the creation of the
method. It assigns a mapping label14 to the created method. 14 In earlier MPS examples, we had used

name-based resolution of references.
We use a mapping label here to show
how this works.

The mapping label creates a mapping between the BlockEx-

pression and the created method. We will use this label to
refer to this generated method when we generate the method
call that replaces the BlockExpression (shown in Fig. 16.10).

Figure 16.9: The generator creates a
method from the BlockExpression. It
uses COPY_SRC macros to replace the
string type with the computed return
type of the block expression, inserts a
computed name, adds a parameter for
each referenced variable outside the
block, and inserts all the statements
from the block expression into the body
of the method (using the COPY_SRCL
macro that iterates over all of the
statements in the ExpressionBlock).
The blockExprToMethod mapping label
is used later in the method call.

A second concept introduced by the exprblocks language is
the PlaceholderStatement. This extends Statement so that
it can be used inside method bodies. It also has a name. It is
used to mark locations at which subsequent generators can add
additional code. These subsequent generators will use a reduc-
tion rule to replace the placeholder with whatever they want to
put at this location. It is a means of building extensible genera-
tors. Both BlockExpression and PlaceholderStatement will
be used in subsequent examples of in this chapter.

Figure 16.10: Here we generate the
call to the previously generated
method. We use the mapping label
blockExprToMethod (not shown; hap-
pens inside the ->$ macro) to refer
to the correct method. We pass in
the environment variables as actual
arguments.

A particularly interesting feature of MPS is the ability to use
several extensions of the same base language in a given pro-
gram without defining a combining language. For example, a
user could decide to use the block expression language defined
above together with the dispatch extension discussed in Sec-
tion 12.2. This is a consequence of MPS’ projectional nature15.

15 These same benefits are also exploited
in the case of embedding multiple
independent languages. Note that
there are also potential semantic issues,
that are independent of parsing vs.
projection.Let us consider the potential cases for ambiguity:

402 dslbook.org

Same Concept Name The used languages may define concepts
with the same name as the host language. This will not lead
to ambiguity because concepts have a unique ID as well.
A program element will use this ID to refer to the concept
whose instance it represents.

Same Concrete Syntax The projection of a concept is not rele-
vant to the functioning of the editor. The program would
still be unambiguous to MPS even if all elements had the same
notation. Of course, it would be confusing to the users.

Same Alias If two concepts that are valid at the same location
use the same alias, then, as the user types the alias, it is
not clear which of the two concepts should be instantiated.
This problem is solved by MPS opening the code completion
window and requiring the user to explicitly select which al-
ternative to choose. Once the user has made the decision,
the unique ID is used to create an unambiguous program
tree.

16.2.4 Reuse with Separated Generated Code

Language reuse covers the case in which a language that has
been developed independently of the context in which it should
be reused. The respective fragments remain homogeneous. In
this section, we cover two alternative cases: the first case (in this
subsection) addresses a persistence mapping language. The
generated code is separate from the code generated from the
entities language. The second case (discussed in the next sub-
section) describes a language for role-based access control. The
generated code has to be "woven into" the entities code to
check permissions when setters are called.

� Structure and Syntax relmapping is a reusable language for
mapping arbitrary data to relational tables. The relmapping

language supports the definition of relational table structures,
but leaves the actual mapping to the source data unspecified.
As you adapt the language to a specific reuse context, you have
to specify this mapping. The following code shows the reusable
part: a database is defined that contains tables with columns.
Columns have (database-specific) data types.

database CompanyDB
table Departments

number id
char descr

table People
number id

dsl engineering 403

char name
char role
char isFreelancer

Fig. 16.11 shows the structure of the relmapping language. The
abstract concept ColumnMapper serves as a hook: if we reuse
this language in a different context, we extend this hook in a
context-specific way.

Figure 16.11: A Database contains
Tables which contain Columns. A
column has a name and a type. A
column also has a ColumnMapper. This
is an abstract concept that determines
where the column gets its data from. It
is a hook intended to be specialized in
sublanguages that are context-specific.

The relmapping_entities language extends relmapping and
adapts it for reuse with the entities language16. To this end,

16 Such a language could be called an
Adapter language, in reference to the
Adapter pattern from the GoF book.it provides a subconcept of ColumnMapper, the AttributeCol-

Mapper, which references an Attribute from the entities lan-
guage as a means of expressing the mapping from the attribute
to the column. The column mapper is projected on the right of
the field definition, resulting in the following (heterogeneous)
code fragment17: 17 This "mixed syntax" is fairly trivial,

since the AttributeColMapper just
references an attribute with a qualified
name (Entity.attribute). However,
arbitrary additional syntax could be
added, and we could use arbitrary
concepts from the entities language
mixed into the relmapping fragment.

database CompanyDB
table Departments

number id <- Department.id
char descr <- Department.description

table People
number id <- Employee.id
char name <- Employee.name
char role <- Employee.role
char isFreelancer <- Employee.freelancer

� Type System The type of a column is the type of its type

property. In addition, the type of the column must also con-
form to the type of the column mapper, so the concrete Column-
Mapper subtype must provide a type mapping as well. This
"typing hook" is implemented as an abstract behavior method
typeMappedToDB on the ColumnMapper18. With this in mind, 18 It is acceptable from a dependency

perspective to have this typing hook,
since relmapping is designed to be
reusable.

the typing rules of the relmapping language look as follows:

typeof(column) :==: typeof(column.type);
typeof(column.type) :==: typeof(column.mapper);
typeof(columnMapper) :==: columnMapper.typeMappedToDB();

The AttributeColMapping concept from the relmapping_en-

tities implements this method by mapping ints to numbers
and everything else to chars.

404 dslbook.org

public node<> typeMappedToDB() overrides ColumnMapper.typeMappedToDB {
node<> attrType = this.attribute.type.type;
if (attrType.isInstanceOf(IntType)) { return new node<NumberType>(); }
return new node<CharType>();

}

� Generator The generated code is also separated into a re-
usable part (a class generated by the relmapping language’s
generator) and a context-specific subclass of that class, gener-
ated by the relmapping_entities language. The generic base
class contains code for creating the tables and for storing data
in those tables. It contains abstract methods that are used to
access the data to be stored in the columns19. 19 So the dependency structure of the

generated fragments, as well as the de-
pendencies of the respective generators,
resembles the dependency structure of
the languages: the generated fragments
are dependent, and the generators are
dependent as well (they share the name,
and implicitly, the knowledge about
the structure of the class generated by
the reusable relmapping generator).
A relmapping fragment (without the
concrete column mappers) is sufficient
for generating the generic base class.

public abstract class CompanyDBBaseAdapter {

private void createTableDepartments() {
// SQL to create the Departments table

}

private void createTablePeople() {
// SQL to create the People table

}

public void storeDepartments(Object applicationData) {
Insert i = new Insert("Departments");
i.add("id", getValueForDepartments_id(applicationData));
i.add("descr", getValueForDepartments_descr(applicationData));
i.execute();

}

public void storePeople(Object applicationData) {
// like above

}

public abstract String getValueForDepartments_id(Object applicationData);

public abstract String getValueForDepartments_descr(
Object applicationData);

// abstract getValue methods for the People table
}

The subclass, generated by the generator in the relmapping_en-
tities language, implements the abstract methods defined
by the generic superclass. The interface, represented by the
applicationData object, has to be kept generic so that any
kind of user data can be passed in20.

20 Note how this class references the
Beans generated from the entities:
the generator for entities and the
generator for relmapping_ entities
are dependent, the information shared
between the two generators is the
names of the classes generated from
the entities. The code generated from
the relmapping language is designed to
be extended by code generated from
a sublanguage (the abstract getValue
methods). This is acceptable, since the
relmapping language itself is designed
to be extended to adapt it to a new
reuse context.

public class CompanyDBAdapter extends CompanyDBBaseAdapter {
public String getValueForDepartments_id(Object applicationData) {

Object[] arr = (Object[]) applicationData;
Department o = (Department) arr[0];
String val = o.getId() + "";
return val;

}
public String getValueForDepartments_descr(Object applicationData) {

Object[] arr = (Object[]) applicationData;
Department o = (Department) arr[0];
String val = o.getDescription() + "";
return val;

}
}

dsl engineering 405

16.2.5 Reuse with Interwoven generated code

rbac is a language for specifying role-based access control, to
specify access permissions for entities defined with the entities
language21. Here is some example code:

21 Like the example in the previous
subsection, the models expressed in the
two languages are separate and homo-
geneous. However, the code generated
from the rbac specification has to be
mixed with the code generated from the
entities.

RBAC

users:
user mv : Markus Voelter
user ag : Andreas Graf
user ke : Kurt Ebert

roles:
role admin : ke
role consulting : ag, mv

permissions:
admin, W : Department
consulting, R : Employee.name

� Structure and Syntax The structure of rbac is shown in
Fig. 16.12. Like relmapping, it provides a hook, in this case,
Resource, to adapt it to context languages: the sublanguage
rbac_entities provides two subconcepts of Resource, namely
AttributeResource to reference to an attribute, and Entity-

Resource to refer to an Entity, to define permissions for enti-
ties and their attributes.

Figure 16.12: Language structure of the
rbac language. An RBACSpec contains
Users, Roles and Permissions. Users
can be members in several roles. A per-
mission assigns a right to a Resource.

� Type System No type system rules apply here.

� Generator What distinguishes this case from the relmap-

ping case is that the code generated from the rbac_entities

language is not separated from the code generated from enti-

ties. Instead, inside the setters of the Java beans, a permission
check is required.

public void setName(String newValue) {
// check permissions (from rbac_entities)
if (!new RbacSpecEntities().currentUserHasWritePermission(

"Employee.name")) {
throw new RuntimeException("no permission");

}
this.name = newValue;

}

406 dslbook.org

The generated fragment is homogeneous (all Java code), but it
is multi-sourced, since several generators contribute to the same
fragment. To implement this, several approaches are possible:

• We could use AspectJ22. This would allow us to generate 22 www.eclipse.org/aspectj/

separate Java artifacts (all single-sourced) and then use the
aspect weaver to "mix" them. However, we don’t want to
introduce the complexity of yet another tool, AspectJ, here,
so we will not use this approach.

• An interceptor23 framework could be added to the gener- 23 en.wikipedia.org/wiki/
Interceptor_patternated Java Beans, with the generated code contributing spe-

cific interceptors (effectively building a custom AOP solu-
tion). We will not use this approach either, since it would
require the addition of a whole interceptor framework to
the entities implementation. This seems like overkill.

• We could "inject" additional code generation templates to
the existing entities generator from the rbac_entities

generator. This would make the generators woven, as op-
posed to just dependent. Assuming that this would work in
MPS, it would be the most elegant solution – but it does not.

• We could define a hook in the generated Java Beans code and
then have the rbac_entities generator contribute code to
this hook. This is the approach we will use. The generators
remain dependent, they have to agree on the way the hook
works.

Notice that only the AspectJ solution can work without any
preplanning from the perspective of the entities language,
because it avoids mixing the generated code artifacts (it is han-
dled "magically" by AspectJ). All other solutions require the
original entities generator to "expect" certain extensions.

In our case, we have modified the original generator in the
entities language to contain a PlaceholderStatement (see
Fig. 16.13). In every setter, the placeholder acts as a hook at
which subsequent generators can add statements. So while we
have to pre-plan that we want to extend the generator at this
location, we don’t have to predefine how.

Figure 16.13: This generator fragment
creates a setter method for each at-
tribute of an entity. The LOOP iterates
over all attributes. The $ macro com-
putes the name of the method, and
the COPY_SRC macro on the argument
type computes the type. The place-
holder marks the location where the
permission check will be inserted by a
subsequent generator.

dsl engineering 407

The rbac_entities generator contains a reduction rule for
PlaceholderStatements. So when it encounters a placeholder
(put there by the entities generator) it removes it and inserts
the code that checks for the permission (Fig. 16.14). To make
this work, we have to make sure that this generator runs after
the entities generator (since the entities generator has to
create the placeholder first) but before the BaseLanguage gen-
erator (which transforms BaseLanguage code into Java text for
compilation). We use generator priorities to achieve this24.

24 Generator priorities express a partial
ordering (run before, run after, etc.)
between pairs of generators. Upon
generation, MPS computes an over-
all schedule that determines which
generators run in which order.

Figure 16.14: This reduction rule re-
places PlaceholderStatements with
a permission check. Using the condi-
tion, we only match those placeholders
whose identifier is pre-set (notice
how we have defined this identifier in
Fig. 16.13). The inserted code queries
another generated class that contains
the actual permission check. A runtime
exception is thrown if the check fails.

16.2.6 Embedding

� Structure and Syntax uispec_validation extends uispec:
it is a sublanguage of the uispec language. It supports writing
code such as the following in the UI form specifications:

form CompanyStructure
uses Department
uses Employee

field Name: textfield(30) -> Employee.name validate lengthOf(Employee.
name) < 30

field Role: combobox(Boss, TeamMember) -> Employee.role
field Freelancer: checkbox -> Employee.freelancer

validate if (isSet(Employee.worksAt)) Employee.freelancer == false
else

Employee.freelancer == true
field Office: textfield(20) -> Department.description

Writing the expressions is supported by embedding an expres-

sions language. Fig. 16.15 shows the structure. To be able
to use the expressions, the user has to use a ValidatedField

instead of a Field. ValidatedField is also defined in ui-

spec_validation, and is a subconcept of Field.

408 dslbook.org

Figure 16.15: The icsnuispec_validation
language defines a subtype of
uispec.Field that contains an
Expression from an embeddable
expression language. The lan-
guage also defines a couple of ad-
ditional expressions, specifically the
AttributeRefExpr, which can be used
to refer to attributes of entities.

To support the migration of existing models that use Field in-
stances, we provide an intention: the user can press Alt-Enter
on a Field and select Make Validated Field. This transforms
an existing Field into a ValidatedField, so that validation
expressions can be entered25. The core of the intention is the 25 Alternatively it could be arranged

(with 5 lines of code) that users could
simply type validate on the right
of a field definition to trigger the
transformation code below.

following script, which performs the actual transformation:

execute(editorContext, node)->void {
node<ValidatedField> vf = new node<ValidatedField>();
vf.widget = node.widget;
vf.attribute = node.attribute;
vf.label = node.label;
node.replace with(vf);

}

The uispec_validation language extends the uispec language.
We also extend the existing, embeddable expressions language,
so we can use Expressions in the definition of our language26. 26 Embedding requires that both

composed languages (uispec and
expressions) remain independent.
The uispec_validation language acts
as an adapter. In contrast to the reuse
examples, this adapter also adapts the
concrete syntax.

ValidatedField has a property expr that contains the valida-
tion expression.

As a consequence of polymorphism, we can use any exist-
ing subconcept of Expression in validations. So without doing
anything else, we could write 20 + 40 > 10, since integer lit-
erals and the + and > operators are defined as part of the com-
posed expressions language. However, to write anything use-
ful, we have to be able to reference entity attributes from within
expressions27. To achieve this, we create the AttributeRefExpr, 27 We argued in the design part that, in

order to make an embedded language
useful with its host language, it has
to be extended: the following is an
example of this.

as shown in Fig. 16.15. We also create LengthOf and IsSetEx-

pression as further examples of how to adapt an embedded
language to its new context – i.e. the uispec and entities

languages.
The AttributeRefExpr references an Attribute from the

entities language; however, it may only reference those at-
tributes of those entities that are used in the form in which we
define the validation expression. The following is the code for
the search scope:

dsl engineering 409

(model, scope, referenceNode, linkTarget, enclosingNode)
->join(ISearchScope | sequence<node< >>) {

nlist<Attribute> res = new nlist<Attribute>;
node<Form> form = enclosingNode.ancestor<Form, +>;
if (form != null) {

for (node<EntityReference> er : form.usedEntities) {
res.addAll(er.entity.attributes);

}
}
res;

}

Notice that the actual syntactic embedding of the expressions

language in the uispec_validation language is no problem
at all as a consequence of how projectional editors work. We
simply define Expression to be a child of the ValidatedField.

� Type System The general challenge here is that primitive
types such as int and string are defined in the entities

language and in the embeddable expressions language. Al-
though they have the same names, they are not the same types.
So the two sets of types must be mapped. Here are a couple
of examples. The type of the IsSetExpression is by definition
expressions.BooleanType. The type of the LengthOf, which
takes an AttrRefExpression as its argument, is expressions.
IntType. The type of an attribute reference is the type of the
attribute’s type property:

typeof(attrRef) :==: typeof(attrRef.attr.type);

However, consider the following code:

field Freelancer: checkbox -> Employee.freelancer
validate if (isSet(Employee.worksAt)) Employee.freelancer == false

else Employee.freelancer == true

This code states that if the worksAt attribute of an employee is
set, then its freelancer attribute must be false else it must be
true (freelancers don’t workAt anything). It uses the == oper-
ator from the expressions language. However, that operator
expects two arguments with expressions.BooleanType, but
the type of the Employee. freelancer is entities.Boolean-
Type28. In effect, we have to override the typing rules for the

28 It is probably a good idea to use the
same set of primitive types (and ex-
pressions) for all languages to avoid
mappings like these. This could be
achieved by requiring all languages to
use a common base language (similar to
Xbase). However, if the to-be-composed
languages are developed by indepen-
dent people, then it is hard to enforce a
common base language. So the ability
to have such mappings is useful.

expressions language’s == operator. Here is how we do it.
In the expressions language, we define overloaded operation

rules. We specify the resulting type for an EqualsExpression

depending on its argument types. Here is the code in the
expressions language that defines the resulting type to be
boolean if the two arguments are Equallable29:

29 In addition to this code, we have to
specify that expressions.BooleanType
is a subtype of Equallable, so this
rule applies if we use equals with two
expressions.BooleanType arguments.

operation concepts: EqualsExpression
left operand type: new node<Equallable>()

410 dslbook.org

right operand type: new node<Equallable>()
operation type:

(operation, leftOperandType, rightOperandType)->node< > {
<boolean>;

}

We have to tie this overloaded operation specification into a
regular type inference rule:

rule typeof_BinaryExpression {
applicable for BinaryExpression as binex
do {

node<> opType = operation type(binex , left , right);
if (opType != null) {

typeof(binex) :==: opType;
} else {

error "operator " + binex.concept.name +
" cannot apply to these argument types " +
left.concept.name + "/" + right.concept.name

-> binex; }
}

}

To override these typing rules to work with entities.Boolean-

Type, we simply provider another overloaded operation speci-
fication in the uispec_validation language:

operation concepts: EqualsExpression
one operand type: <boolean> // the entities.BooleanType!

operation type:
(op, leftOperandType, rightOperandType)->node< > {

<boolean>; // the expressions.BooleanType
}

� Generator The generator has to create BaseLanguage code,
which is then subsequently transformed into Java text. To deal
with the transformation of the expressions language, we can
do one of two things:

• Either we can use the expressions language’s existing to-
text generator and wrap the expressions in some kind of
TextHolderStatement30. 30 Remember that we cannot simply

embed text in BaseLanguage, since
that would not work structurally: no
concept in BaseLanguage expects "text"
as children: a wrapper is necessary.

• Alternatively, we can write a (reusable) transformation from
expressions code to BaseLanguage code; these rules would
get used as part of the transformation of uispec and ui-

spec_validation code to BaseLanguage.

Since many DSLs will probably transform code to BaseLan-
guage, it is worth the effort to write a reusable generator from
expressions to BaseLanguage31. So we choose this second al-

31 In fact, it would be useful if a simple
language with types and expression
came with MPS. This language could
either be used as part of BaseLanguage
as well (so no transformation would
be needed) or the transformation to
BaseLanguage could ship with MPS as
well.

ternative. The generated Java code is multi-sourced, since it is
generated by two independent code generators.

Expression constructs from the reusable expressions lan-
guage and those of BaseLanguage are almost identical, so this

dsl engineering 411

generator is trivial. We create a new language project expres-
sions.blgen and add reduction rules32. Fig. 16.16 shows some

32 In MPS all "meta stuff" is called
a language. So even though
expressions.blgen only contains a
generator it is still a language in MPS
terminology.

of these reduction rules.

Figure 16.16: A number of reduc-
tion rules that map the reusable
expressions language to BaseLan-
guage (Java). Since the languages are
very similar, the mapping is trivial. For
example, a PlusExpression is mapped
to a + in Java, the left and right argu-
ments are reduced recursively through
the COPY_SRC macro.

In addition, we also need reduction rules for the new expres-
sions that we have added specifically in the uispec_validation
language (AttrRefExpression, isSetExpression, LengthOf).
These transformations are defined in uispec_validation, since
this language is not reusable – it is specifically designed to inte-
grate the uispec and the expressions languages. As an exam-
ple, Fig. 16.17 shows the rule for handling the AttrRefExpres-

sion. The validation code itself is "injected" into the UI form
via the same placeholder reduction as in the case of the lan-
guage rbac_entities.

Figure 16.17: References to entity
attributes are mapped to a call to
their getter method. The template
fragment (inside the <TF..TF>) uses
two reference macros (->$) to "rewire"
the object reference to the Java bean
instance, and the toString method call
to a call to the getter.Language extension can also be used to prevent the use of spe-

cific base language concepts in the sublanguage, possibly in
certain contexts. As an example, we restrict the use of some
operators provided by the reusable expression language inside
validation rules in uispec_validation. This can be achieved

412 dslbook.org

by implementing a can be ancestor constraint on Validated-

Field.

can be ancestor:
(operationContext, scope, node, childConcept)->boolean {

return !(childConcept == concept/GreaterEqualsExpression/ ||
childConcept == concept/LessEqualsExpression/);

}

16.2.7 Annotations

In a projectional editor, the CS of a program is projected from
the AST. A projectional system always goes from AS to CS,
never from CS to AS (as parsers do). This means that the CS
does not have to contain all the data necessary to build the
AST (which is necessary in the case of parsers). This has two
consequences:

• A projection may be partial, in the sense that the AS con-
tains data that is not shown in the CS. The information may,
for example, only be changeable via intentions (discussed in
Section 7.7), or the projection rule may project some parts of
the program only in some cases, controlled by some kind of
configuration data.

• It is also possible to project additional CS that is not part
of the CS definition of the original language. Since the CS is
never used as the information source, such additional syntax
does not confuse the tool (in a parser-based tool the gram-
mar would have to be changed to take into account this ad-
ditional syntax to avoid derailing the parser).

In this section we discuss the second alternative, since it con-
stitutes a form of language composition: the additional CS is
composed with the original CS defined for the language. The
mechanism MPS uses for this is called annotations. We have
seen annotations when we discussed templates33: an annota- 33 The generator macros $, ->$ or

COPY_SRC are implemented via the
annotation mechanism.

tion is something that can be attached to arbitrary program ele-
ments and can be shown together with the CS of the annotated
element. In this section we use this approach to implement an
alternative approach for the entity-to-database mapping. Using
this approach, we can store the mapping from entity attributes
to database columns directly in the Entity, resulting in the
following code:

module company
entity Employee {

id : int -> People.id
name : string -> People.name

dsl engineering 413

role : string -> People.role
worksAt : Department -> People.departmentID
freelancer : boolean -> People.isFreelancer

}

entity Department {
id : int -> Departments.id
description : string -> Departments.descr

}

This is a heterogeneous fragment, consisting of code from the
entities language, as well as the annotation code (e.g., ->
People.id). From a CS perspective, the column mapping is
"embedded" in the Entity. In the AST the mapping informa-
tion is also actually stored in the entities model. However,
the definition of the entities language does not know that this
additional information is stored and projected "inside" entities.
No modification to the entities language is necessary.

� Structure and Syntax We define an additional language
relmapping_annotations that extends the entities language
as well as the relmapping language. In this language we define
the following concept:

concept AttrToColMapping extends NodeAnnotation
references:

Column column 1
properties:

role = colMapping
concept links:

annotated = Attribute

AttrToColMapping concept extends NodeAnnotation, a con-
cept predefined by MPS34. Concepts that extend the concept

34 In fact, this concept is called
NodeAttribute in MPS. For histori-
cal reasons there a somewhat confused
terminology around "attribute" and
"annotation". We’ll stick with the term
"annotation" in this chapter.

NodeAnnotation have to provide a role property and an anno-

tated concept link. Structurally, an annotation is a child of the
node it annotates. So the Attribute has a new child of type
AttrToColMapping, and the reference that contains the child is
called @colMapping – the value of the role property prefixed
by an @. The annotated concept link points to the concept to
which this annotation can be added. AttrToColMappings can be
annotated to instances of Attribute.

Figure 16.18: The editor for the
AttrToColMapping embeds the ed-
itor of the concept it is annotated to
(using the attributed node cell). It
then projects the reference to the refer-
enced column. This gives the editor of
the annotation control of if and how the
editor annotated element is projected.

While structurally the annotation is a child of the annotated
node, in the CS the relationship is reversed: the editor for
AttrToColMapping wraps the editor for Attribute, as Fig. 16.18

shows.

414 dslbook.org

Since the annotation is not part of the original language,
it cannot just be typed in: it must be attached to nodes via
an intention. The annotation simply adds a new instance of
AttrToCol- Mapping to the @colMapping property of an Attri-

bute, so we don’t show the code here.

� Type System The same typing rules are necessary as in the
relmapping_entities language described previously. They
reside in relmapping_annotations.

� Generator The generator is also broadly similar to the pre-
vious example with relmapping_entities. It takes the enti-

ties model as the input, and then uses the column mappings
in the annotations to create the entity-to-database mapping.

The annotations introduced above were typed to be specific to
certain target concepts (Attribute in this case). A particularly
interesting use of annotations includes those that can be anno-
tated to any language concept (formally targeting BaseConcept).
In this case, there is no dependency between the language that
contains the annotation and the language that is annotated.
This is very useful for "meta data", as well as anything that can
be processed generically.

16.3 Xtext Example

This section of the book has been
written together with Chris-
tian Dietrich. Contact him via
christian.dietrich@itemis.de.

In this section we look at an example roughly similar to the one
for MPS discussed in the previous section. We start out with a
DSL for entities. Here is an example program:

module company {
entity Employee {

id : int
name : string
role : string
worksAt : Department
freelancer : boolean

}
entity Department {

id : int
description : string

}
}

The grammar is straightforward and should be clear if you
have read the implementation part of this book so far.

grammar org.xtext.example.lmrc.entity.EntityDsl
with org.eclipse.xtext.common.Terminals

generate entityDsl "http://www.xtext.org/example/lmrc/entity/EntityDsl"

dsl engineering 415

Module:
"module" name=ID "{"

entities+=Entity*
"}";

Entity:
"entity" name=ID "{"

attributes+=Attribute*
"}";

Attribute:
name=ID ":" type=AbstractType;

Named: Module|Entity|Attribute;

AbstractType:
BooleanType|IntType|StringType|EntityReference;

BooleanType: {BooleanType} "boolean";

IntType: {IntType} "int";

StringType: {StringType} "string";

EntityReference: ref=[Entity|FQN];

FQN: ID ("." ID)*;

16.3.1 Referencing

Referencing describes the case in which programs written in
one DSL reference (by name) program elements written in an-
other DSL35. The example we use is the UI specification lan- 35 Both programs reside in different

fragments and no syntactic composition
is required.

guage, in which a Form defined in the UI model refers to Enti-

ties from the language defined above, and Fields in a form
refers to entity Attribute. Here is some example code:

form CompanyStructure
uses Department // reference to Department Entity
uses Employee // reference to Employee Entity

field Name: textfield(30) -> Employee.worksAt
field Role: combobox(Boss, TeamMember) -> Employee.role
field Freelancer: checkbox -> Employee.freelancer
field Office: textfield(20) -> Department.description

� Structure Referencing concepts defined in another language
relies on importing the target meta model and then defining
references to concepts defined in this meta model36. Here is

36 Note that the references to entities
and fields do not technically reference
into an entity source file. Instead, these
references refer to the EMF objects in
the AST that has been parsed from the
source file. So, a similar approach
can be used to reference to other
EObjects. It does not matter whether
these are created via Xtext or not. This
is reflected by the fact that the grammar
of the uispec language does not refer
to the grammar of the entity language,
but to the derived meta model.

the header of the grammar of the uispec language:

grammar org.xtext.example.lmrc.uispec.UispecDsl
with org.eclipse.xtext.common.Terminals

import "http://www.xtext.org/example/lmrc/entity/EntityDsl" as entity

generate uispecDsl "http://www.xtext.org/example/lmrc/uispec/UispecDsl"

Importing a meta model means that the respective meta classes
can now be used. Note that the meta model import does not
make the grammar rules visible, so the meta classes can only be

416 dslbook.org

used in references and as base types (as we will see later). In
the case of referencing, we use them in references:
EntityReference:

"uses" entity=[entity::Entity|FQN];

Field:
"field" label=ID ":" widget=Widget

"->" attribute=[entity::Attribute|FQN];

To make this work, no change is required in the entities lan-
guage37. However, the workflow generating the uispec lan-

37 This is true as long as the referenced
elements are in the index. The index
is used by Xtext to resolve references
against elements that reside in a differ-
ent model file. By default, all elements
that have a name attribute are in the
index. Entity and Attribute have
names, so this works automatically.

guage has to be changed. The genmodel file for the meta model
has to be registered in the StandaloneSetup38.

38 This is necessary so that the EMF
code generator, when generating the
meta classes for the uispec language,
knows where the generated Java classes
for the entities languages are located.
This is an EMF technicality and we
won’t discuss it in any further detail.

bean = StandaloneSetup {
...
registerGenModelFile = "platform:/resource/org.xtext.example.lmrc.

entity/src-gen/org/xtext/example/lmrc/entity/EntityDsl.genmodel"
}

We have to do one more customization to make the language
work smoothly. The only Attributes that should be visible are
those from the entities referenced in the current Form’s uses

clauses, and they should be referenced with a qualified name
(Employee.role instead of just role). Scoping has to be cus-
tomized to achieve this:
public IScope scope_Field_attribute(Field context, EReference ref) {

Form form = EcoreUtil2.getContainerOfType(context, Form.class);
List<Attribute> visibleAttributes = new ArrayList<Attribute>();
for (EntityReference useClause : form.getUsedEntities()) {

visibleAttributes.addAll(useClause.getEntity().getAttributes());
}
Function<Attribute, QualifiedName> nameComputation =

new Function<Attribute, QualifiedName>() {
@Override
public QualifiedName apply(Attribute a) {

return QualifiedName.create(((Entity)a.eContainer()).
getName(), a.getName());

}
};

return Scopes.scopeFor(visibleAttributes, nameComputation , IScope.
NULLSCOPE);

}

This scoping function performs two tasks: first, it finds all
the Attributes of all used entities. We collect them into a
list visibleAttributes. The second part of the scoping func-
tion defines a Function object39 that represents a function from 39 Note how we have to use the ugly

function object notation, because Java
does not provide support for closures
or lambdas at this point! Alternatively
you could do this with Xtend, which
does support closures.

Attribute to QualifiedName. In the implementation method
apply we create a qualified name made from two parts: the
entity name and the attribute name (the dot between the two is
default behavior for the QualifiedName class). When we create
the scope itself in the last line we pass in the list of attributes,
as well as the function object. Xtext’s scoping framework uses
the function object to determine the name by which each of the
attributes is referenceable from this particular context.

dsl engineering 417

� Type System As we discussed in Section 20.2, dealing with
type systems in the referencing case is not particularly chal-
lenging, since the type system of the referencing language can
be built with knowledge of the type system of the referenced
language.

� Generators The same is true for generators. Typically they
just share knowledge about the naming of generated code ele-
ments.

16.3.2 Reuse

Referencing concerns the case in which the referencing lan-
guage is built with knowledge about the referenced language,
so it can have direct dependencies. In the example above, the
uispec language uses Entity and Attribute from the entities
language. It directly imports the meta model, so it has a direct
dependency. In the case of reuse, such a direct dependency is
not allowed. Our goal is to combine two independent languages.
To illustrate this case, we again use the same example as in the
MPS section.

� Structure We first introduce a db language, a trivial DSL
for defining relational table structures. These can optionally be
mapped to a data source, but the language makes no assump-
tion about how this data source looks (and which language is
used to define it). Consequently, the grammar has no depen-
dency on any other, and imports no other meta model:

grammar org.xtext.example.lmrc.db.DbDsl with org.eclipse.xtext.common.
Terminals

generate dbDsl "http://www.xtext.org/example/lmrc/db/DbDsl"

Root:
Database;

Database:
"database" name=ID
tables+=Table*;

Table:
"table" name=ID
columns+=Column* ;

Column:
type=AbstractDataType name=ID (mapper=AbstractColumnMapper)?;

AbstractColumnMapper:
{AbstractColumnMapper}"not mapped";

AbstractDataType: CharType | NumberType;

CharType: {CharType}"char";

NumberType: {NumberType}"number";

418 dslbook.org

Just as in the MPS example, the Column rule has an optional
mapper property of type AbstractColumnMapper. Since it is
not possible to explicitly mark rules as generating abstract meta
classes, we simply define the syntax to be not mapped40. This

40 Since the mapper property in Column
is optional, you don’t ever have to type
this.language has been designed for reuse, because it has this hook

AbstractColumnMapper, which can be customized later. But
the language is still independent. In the next step, we want to
be able to reference Attributes from the entities language:

database CompanyDB

table Departments
number id <- Department.id
char descr <- Department.description

table People
number id <- Employee.id
char name <- Employee.name
char role <- Employee.role
char isFreelancer <- Employee.freelancer

To make this possible, we create a new language db2entity

that extends the db language and references the entities lan-
guage41. This is reflected by the header of the db2entity lan- 41 Notice that we only extend DbDsl.

The entities meta model is just
referenced. This is because Xtext can
only extend one base grammar. For
this reason we cannot embed language
concepts from the entities language
in a db2entity program, we can
only reference them. However, for this
particular example, this is sufficient.

guage (notice the with clause):

grammar org.xtext.example.lmrc.db2entity.Db2EntityDsl
with org.xtext.example.lmrc.db.DbDsl

import "http://www.xtext.org/example/lmrc/db/DbDsl" as db
import "http://www.xtext.org/example/lmrc/entity/EntityDsl" as entity

generate db2EntityDsl
"http://www.xtext.org/example/lmrc/db2entity/Db2EntityDsl"

We now have to overwrite the AbstractColumnMapper rule de-
fined in the db language:

AbstractColumnMapper returns db::AbstractColumnMapper:
{EntityColumnMapper} "<-" entity=[entity::Attribute|FQN];

We create a rule that has the same name as the rule in the super-
grammar. So when the new grammar calls the AbstractColumn-
Mapper rule, our new definition is used. Inside, we define the
new syntax we would like to use, and as part of it, we ref-
erence an Attribute from the imported entity meta model.
We then use the {EntityColumnMapper} action to force instan-
tiation of an EntityColumnMapper object: this also implicitly
leads to the creation of an EntityColumnMapper class in the
generated db2entity meta model. Since our new rule returns

an db::AbstractColumnMapper, this new meta class extends
AbstractColumnMapper from the db meta model – which is ex-
actly what we need42.

42 There are two more things we have
to do to make it work. First, we have to
register the two genmodel files in the
db2entity’s StandaloneSetup bean in
the workflow file. Second, we have to
address the fact that in Xtext, the first
rule in a grammar file is the entry rule
for the grammar, i.e. the parser starts
consuming a model file using this rule.
In our db2entity grammar, the first
rule is AbstractColumnMapper, so this
won’t work. We simply copy the first
rule (Root) from the db language.

dsl engineering 419

� Type System The primary task of the type system in this
example would be mapping the primitive types used in the
entities language to those used in the db language to make
sure we only map those fields to a particular column that are
type-compatible. Just as the column mapper itself, this code
lives in the adapter language. It is essentially just a constraint
that checks for type compatibility.

� Generator Let us assume there is a generator that generates
Java Beans from the entities. Further, we assume that there is
a generator that generates all the persistence management code
from DbDsl programs, except the part of the code that fetches
the data from whatever the data source is – essentially we leave
the same "hole" as we do with the AbstractColumnMapper in
the grammar. And just in the same way as we define the
EntityColumnMapper in the adapter language, we have to adapt
the executing code. We can use two strategies.

The first one uses the composition techniques of the target
language, i.e. Java. The generated code of the DbDsl could for
example generate an abstract class that has an abstract method
getColumnData for each of the table columns. The generator
for the adapter language would generate a concrete subclass
that implements these methods to grab the data from entities43. 43 This is how we did it in the MPS

example.
This way the modularity (entities, db, db2entity) is propa-
gated into the generated artifacts as well. No generator compo-
sition is required44.

44 In a Java/Enterprise world this would
most likely be the way we’d do it in
practice. The next alternative is a bit
constructed.However, consider a situation in which we have to gener-

ate inlined code, for reasons of efficiency, e.g., in some kind
of embedded system. In this case the DbDsl generator would
have to be built in an extensible way. Assuming we use Xtend
for generation, this can be done easily by using dependency
injection45. Here is how you would do that:

45 Sometimes people complain about
the fact that Xtend is a general purpose
language, and not some dedicated code
generation language. However, the
fact that one can use abstract classes,
abstract methods and dependency
injection is a nice example of how and
why a general purpose language (with
some dedicated support for templating)
is useful for building generators.

• In the generator that generates persistence code from a DbDsl
program, the code that generates the inlined "get data for
column" code delegates to a class that is dependency-injected46.

46 This is a nice illustration of building a
generator that is intended to be extended
in some way.

The Xtend class we delegate to would be an abstract class
that has one abstract method generateGetDataCodeFor(

Column c).
class GetDataGenerator {

def void generateGetDataCodeFor(Column c)
}

class DbDslGenerator implements IGenerator {

420 dslbook.org

@Inject GetDataGenerator gdg

def someGenerationMethod(Column c) {
// ...
String getDataCode = gdg.generateGetDataCodeFor(c)
// then embed getDataCode somewhere in the
// template that generates the DbDsl code

}
}

• The generator for the adapter language would contain a sub-
class of this abstract class that implements the generateGet-
DataCodeFor generator method in a way suitable to the enti-
ties language.

• The adapter language would also set up Google Guice de-
pendency injection in such a way as to use this a singleton
instance of this subclass when instances of the abstract class
are expected.

16.3.3 Extension

We have already seen the mechanics of extension in the pre-
vious example, since, as a way of building the reuse infras-
tructure, we have extended the db language. In this section
we look at extension in more detail. Extension is defined as
syntactic integration with explicit dependencies. However, as
we discussed in Section 4.6.2 there are two use cases that feel
different:

1. In one case we provide (small scale, local, fine grained) ad-
ditional syntax to an otherwise unchanged language47. 47 The db2entity language shown

above is an example of this. The
db2entity programs look essentially
like programs written in the db base
language, but in one (or few) particular
place, something is different. In the
example, the syntax for referencing
attributes is such a small scale change.

2. The other case is where we create a completely new lan-
guage, but reuse some of the syntax provided by the base
language. This use case feels like embedding (we embed
syntax from the base language in our new language), but
with regard to the classification according to syntactic inte-
gration and dependencies, it is still extension. Embedding
would prevent explicit dependencies. In this section we look
at extension with an embedding flavor.

To illustrate an extension-with-embedding flavor, we will show
how to embed Xbase expressions in a custom DSL. Xbase is
a reusable expression language that provides primitive types,
various unary and binary operators, functions and closures.
As we will see, it is very tightly integrated with Java48. As an

48 This is a mixed blessing. As long
as you stay in a JVM world (use Java
types, generate Java code), many things
are very simple. However, as soon as
you go outside of the JVM world, a lot
of things become quite complex, and
it is questionable whether using Xbase
makes sense in this case at all.example, we essentially create another entity language; thanks

to Xbase, we will be able to write:

dsl engineering 421

entity Person {
lastname : String
firstname : String
String fullName(String from) {

return "Hello " + firstname + " " + lastname + " from " + from
}

}

Below is the essential part of the grammar. Note how it extends
the Xbase grammar (the with clause) and how it uses various
elements from Xbase throughout the code (those whose names
start with an X).

grammar org.xtext.example.lmrc.entityexpr.EntityWithExprDsl
with org.eclipse.xtext.xbase.Xbase

generate entityWithExprDsl
"http://www.xtext.org/example/lmrc/entityexpr/EntityWithExprDsl"

Module:
"module" name=ID "{"

entities+=Entity*
"}";

Entity:
"entity" name=ID "{"

attributes+=Attribute* operations+=Operation*
"}";

Attribute:
name=ID ":" type=JvmTypeReference;

Operation:
type=JvmTypeReference name=ID "(" (parameters+=FullJvmFormalParameter

(’,’ parameters+=FullJvmFormalParameter)*)? ")"
body=XBlockExpression;

Let’s look at some of the details. First, the type properties of
the Attribute and the Operation are not defined by our gram-
mar; instead we use a JvmTypeReference. This makes all Java
types legal at this location49. We use an XBlockExpression as 49 Limiting this to the primitive types

(or some other subset of the JVM types)
requires a scoping rule.

the body of Operation, which essentially allows us to use the
full Xbase language inside the body of the Operation. To make
the parameters visible, we use the FullJvmFormalParameter

rule50. 50 Above we wrote that Xbase is tightly
integrated with the JVM and Java. The
use of FullJvmFormalParameter and
JvmTypeReference is a sign of this.
However, the next piece of code makes
this even clearer.

In addition to using Xbase language concepts in the defini-
tion of our grammar, we also tie the semantics of our language
to Java and the JVM. To do this, the JvmModelInferrer, shown
below, maps a model expressed with this language to a struc-
turally equivalent Java "model". By doing this, we get a num-
ber of benefits "for free", including scoping, typing and a code
generator. Let us look at this crucial step in some detail.

class EntityWithExprDslJvmModelInferrer extends AbstractModelInferrer {

@Inject extension IQualifiedNameProvider
@Inject extension JvmTypesBuilder

def dispatch void infer(Entity entity,

422 dslbook.org

IAcceptor<JvmDeclaredType> acceptor,
boolean isPrelinkingPhase) {

...
}

}

This Xtend class extends AbstractModelInferrer and imple-
ments its infer method to create structurally equivalent Java
code as an EMF tree, and registers it with the acceptor. The
method is marked as dispatch, so it can be polymorphically
overwritten for various language concepts. We override it for
the Entity concept. We have also injected the IQualifiedName-
Provider and JvmTypesBuilder. The latter provides a builder
API for creating all kinds of JVM objects, such as fields, setters,
classes or operations. The next piece of code makes use of such
a builder:

acceptor.accept(
entity.toClass(entity.fullyQualifiedName) [

documentation = entity.documentation ...
]

)

At the top level, we map the Entity to a Class. toClass is one
of the builder methods defined in the JvmTypesBuilder. The
class we create should have the same name as the entity; the
name of the class is passed into the constructor. The second
argument, written conveniently behind the parentheses, is a
closure. Inside the closure, we set the documentation of the
created class to be the documentation of the entity51. Next 51 Inside a closure, there is a variable

it that refers to the target element
(the class in this case). It is possible
to omit the it, so when we write
documentation = ... this actually
means it.documentation =

we create a field, a getter and a setter for each of the attributes
of the Entity and add them to the Class’ members collection:

attr : entity.attributes) {
members += attr.toField(attr.name, attr.type) members +=
attr.toGetter(attr.name, attr.type) members += attr.toSetter(attr.name,
attr.type)

}

toField, toGetter and toSetter are all builders contributed
by the JvmTypesBuilder. To better understand what they do,
here is the implementation of toSetter52. 52 Note that the first argument supplied

by the object in front of the dot, i.e. the
Attribute, is passed in as the first
argument, sourceElement.

public JvmOperation toSetter(EObject sourceElement, final String name,
JvmTypeReference typeRef) {

JvmOperation res = TypesFactory.eINSTANCE.createJvmOperation();
res.setVisibility(JvmVisibility.PUBLIC);
res.setSimpleName("set" + nullSaveName(Strings.toFirstUpper(name)));
res.getParameters().add(toParameter(sourceElement, nullSaveName(name),

cloneWithProxies(typeRef)));
if (name != null) {

setBody(res, new Functions.Function1<ImportManager, CharSequence>() {
public CharSequence apply(ImportManager p) {

return "this." + name + " = " + name + ";";
}

});
}

dsl engineering 423

return associate(sourceElement, res);
}

The method first creates a JvmOperation and sets the visibility
and the name. It then creates a parameter that uses the typeRef
passed in as the third argument as its type. As you can see, all
of this happens via model-to-model transformation. This is
important, because these created objects are used implicitly in
scoping and typing. The body, however, is created textually;
it is not needed for scoping or typing: it is used only in code
generation53. The last line is important: it associates the source 53 Since that is a to-text transformation

anyway, it is good enough to represent
the body of the setter as text already at
this level.

element (the Attribute in our case) with the created element
(the setter Operation we just created). As a consequence of
this association, the Xbase scoping and typing framework can
work its magic of providing support for our DSL without any
further customization!

Let’s now continue our look at the implementation of the
Jvm- ModelInferrer for the Entity. The last step before our
detour was that we created fields, setters and getters for all
attributes of our Entity. We have to deal with the operations
of our Entity next.

for (op : entity.operations) {
members += op.toMethod(op.name, op.type) [

for (p : op.parameters) {
parameters += p.toParameter(p.name, p.parameterType)

}
body = op.body

]
}

This code should be easy to understand. We create a method
for each Operation using the respective builder method, pass
in the name and type, create a parameter for each of the pa-
rameters of our source operation and then assign the body of
the created method to be the body of the operation in our DSL
program. The last step is particularly important. Notice that
we don’t clone the body, we assign the object directly. Looking
into the setBody method (the assignment is actually mapped
to a setter in Xtend), we see the following:

void setBody(JvmExecutable logicalContainer, XExpression expr) {
if (expr == null) return; associator.associateLogicalContainer(expr,
logicalContainer);

}

The associateLogicalContainer method is what makes the
automatic support for scoping and typing happen54:

54 This approach of mapping a DSL to
Java "code" via this model transforma-
tion works nicely as long as it maps
to Java code in a simple way. In the
above case of entities, the mapping is
trivial and obvious. If the semantic gap
becomes bigger, the JvmTypeInferrer
becomes more complicated. However,
what is really nice is this: within the
type inferrer, you can of course use
Xtend’s template syntax to create im-
plementation code. So it is easy to mix
model transformation (for those parts of
a mapping that are relevant to scoping
and type calculation) and then use
traditional to-text transformation using
Xtend’s powerful template syntax for
the detailed implementation aspects.

424 dslbook.org

• Because the operation is the container of the expression, the
expression’s type and the operation’s type must be compat-
ible

• Because the expression(s) live inside the operation, the pa-
rameters of the operation, as well as the current class’s fields,
setters and getters are in scope automatically.

� Generator The JVM mapping shown above already consti-
tutes the full semantic mapping to Java. We map entities to
Java classes and fields to members and getters/setters. We do
not have to do anything else to get a generator: we can reuse
the existing Xbase-to-Java code generator.

If we build a language that cannot easily be mapped to a
JVM model, we can still reuse the Xbase expression compiler,
by injecting the JvmModelGenerator and then delegating to it
at the respective granularity. You can also change or extend the
behavior of the default JvmModelGenerator by overriding its
_internalDoGenerate(EObject, IFileSystemAccess) method
for your particular language concept55. 55 Notice that you also have to

make sure via Guice that your sub-
class is used, and not the default
JvmModelGenerator.� Extending Xbase In the above example we embedded the

(otherwise unchanged) Xbase language into a simple DSL. Let’s
now look at how to extend Xbase itself by adding new literals
and new operators. We start by defining a literal for dates:

XDateLiteral:
’date’ ’:’ year=INT ’-’ month=INT ’-’ day=INT;

These new literals should be literals in terms of Xbase, so we
have to make them subtypes of XLiteral. Notice how we over-
ride the XLiteral rule defined in Xbase. We have to repeat its
original contents; there is no way to "add" to the literals56. 56 Similarly, if you want to remove

concepts, you have to overwrite the rule
with the concept to be removed missing
from the enumeration.

XLiteral returns xbase::XExpression:
XClosure |
XBooleanLiteral |
XIntLiteral |
XNullLiteral |
XStringLiteral |
XTypeLiteral |
XDateLiteral;

We use the same approach to add an additional operator that
uses the === symbol57: 57 The triple equals represents identity.

OpEquality:
’==’ | ’!=’ | ’===’;

dsl engineering 425

The === operator does not yet exist in Xtend, so we have to
specify the name of the method that should be called if the op-
erator is used in a program58. The second line of the method 58 Xtend supports operator overloading

by mapping operators to methods that
can be overridden.

initializeMapping maps the new operator to a method named
operator_identity:

public class DomainModelOperatorMapping extends OperatorMapping {

public static final QualifiedName IDENTITY = create("===");

@Override
protected void initializeMapping() {

super.initializeMapping();
map.put(IDENTITY, create("operator_identity"));

}
}

We implement this method in a new class that we call Object-
Extensions259: 59 The existing class ObjectExtensions

contains the implementations for the
existing == and != operators, hence the
name.

public class ObjectExtensions2 {
public static boolean operator_identity(Object a, Object b) {

return a == b;
}

}

Through the operator_identity operation, we have expressed
all the semantics: the Xbase generator will generate a call to
that operation in the generated Java code60. We have also im- 60 Alternatively, as a performance im-

provement, you could use the @Inline
annotation to inline the function in the
generated code.

plicitly specified the typing rules: through the mapping to the
operator_identity operation, the type system uses the types
specified in this operation. The type of === is boolean, and
there are no restrictions on the two arguments; they are typed
as java.lang.Object61. 61 If customizations are required,

these could be done by overrid-
ing the _expectedType operation in
XbaseTypeProvider.

We also want to override the existing minus operator for the
new date literals to calculate the time between two dates. We
don’t have to specify the mapping to a method name, since
the mapping for minus is already defined in Xbase. How-
ever, we have to provide an overloaded implementation of the
operator_minus method for dates:

public class DateExtensions {
public static long operator_minus(Date a, Date b) {

long resInMilliSeconds = a.getTime() - b.getTime();
return millisecondsToDays(resInMilliSeconds);

}
}

To make Xtend aware of these new classes, we have to register
them. To do so, we extend the ExtensionClassNameProvider.
It associates the classes that contain the operator implementa-
tion methods with the types to which these methods apply:

public class DomainModelExtensionClassNameProvider extends
ExtensionClassNameProvider {

426 dslbook.org

@Override
protected Multimap<Class<?>, Class<?>> simpleComputeExtensionClasses()
{

Multimap<Class<?>, Class<?>> result =
super.simpleComputeExtensionClasses();

result.put(Object.class, ObjectExtensions2.class);
result.put(Date.class, DateExtensions.class);
return result;

}
}

We now have to extend the type system: it has to be able to
derive the types for date literals. We create a type provider
that extends the default XbaseTypeProvider62:

62 Don’t forget to register this class
with Guice, just like all the other
DSL-specific subclasses of framework
classes.

@Singleton
public class DomainModelTypeProvider extends XbaseTypeProvider {

@Override
protected JvmTypeReference type(XExpression expression,

JvmTypeReference rawExpectation, boolean rawType) {
if (expression instanceof XDateLiteral) {

return _type((XDateLiteral) expression, rawExpectation, rawType);
}
return super.type(expression, rawExpectation, rawType);

}

protected JvmTypeReference _type(XDateLiteral literal,
JvmTypeReference rawExpectation, boolean rawType) {

return getTypeReferences().getTypeForName(Date.class, literal);
}

}

Finally we have to extend the Xbase compiler so that it can
handle date literals:
public class DomainModelCompiler extends XbaseCompiler {

protected void _toJavaExpression(XDateLiteral expr, IAppendable b) {
b.append("new java.text.SimpleDateFormat(\"yyyy-MM-dd\").parse(\"" +

expr.getYear() + "-" + expr.getMonth() + "-" +
expr.getDay() + "\")");

}
}

� Active Annotations Xtext’s Xtend language comes with Ac-
tive Annotations. They use the same syntax as regular Java
annotations63. However, they can influence the translation pro-

63 Java annotations are markers you can
attach to various program elements
such as classes, fields, methods or ar-
guments. For example, the @Override
annotation declares that a method
overrides a similar method in the su-
perclass. Another example is @NotNull
on an argument, which expresses the
fact that that argument may not be
null. Annotations may also capture
metadata: the @Author(name = ..,
date = ..) annotation expresses who
wrote a class. Annotations may be stan-
dardized (e.g. @Override) or may be
implemented by users. In the standard
case the annotations are typically pro-
cessed by the compiler (e.g., checking
that there actually is a method with
the same signature in the superclass or
modifying the generated bytecode to
report an error if a NotNull argument is
null at runtime). Custom annotations
are processed in some way by some
external tool (e.g. by checking certain
properties of the code, or by modifying
the class bytecode via some bytecode
processor).cess from Xtend to Java64. Each annotation is essentially asso-
64 This feature is actually introduced in
version 2.4; at the time of this writing,
only prototypes are available, so some
details about what I describe here may
be different in the final release. This is
also why we don’t show source code
here.

ciated with a model-to-model transformation that creates the
necessary Java code. This allows the execution semantics of
the respective Xtend class to be influenced.

At the time of this writing, the most impressive active anno-
tation (prototype) I have seen involves GWT programming65.

65 This has been built by Sven Efftinge
and Oliver Zeigermann. The slides
that describe the system are here:
slidesha.re/Shb3SO. The code is at
github: github.com/DJCordhose/
todomvc-xtend-gwt.

They implement the following two annotations:

Services From a simple Xtend class that contains the server-
side implementation methods, the annotation generates the
necessary remote interface and the other boilerplate that en-
ables the remote communication infrastructure.

dsl engineering 427

UI Forms In GWT, a UI form is defined by an XML file that de-
fines the structure, as well as by a Java class that implements
the behavior. The behavior includes the event handlers for
the UI elements defined in the XML file. To this end, the
class has to have fields that correspond (in name and type)
to the UI elements defined in the XML. By using an annota-
tion, this duplication can be avoided: the annotation imple-
mentation inspects the associated XML and automatically
introduces the necessary fields.

Active annotations will provide a number of additional fea-
tures. First, they can implement custom validations and quick
fixes for the IDE. Second, they can change the scope and the
type system, with the IDE being aware of that66. Third, you

66 The transformation defined by the
active annotation that maps the anno-
tated Xtend construct to Java code is
run not just during code generation,
but also during editing (like any other
JVM model inferrer). Since scoping and
the type system of Xtend is based on
the inferred JVM model, the annotation
transformation can affect these as well.

can pass JVM types or expressions into annotations:

@Pre(b != 0) def divide(int a, int b) {
return a / b

}

It is possible to define whether the expression is passed in as
an AST (b != 0), or whether the result of the evaluation of the
expression is passed in (true or false).

While the syntactic limitations of annotations limit the kinds
of language extensions that can be built in this way, the current
prototypes show that nonetheless some quite interesting lan-
guage extensions are possible67. 67 This is due in particular to the fact

that the IDE is aware of the transfor-
mation (influencing typing and and
code completion) as a consequence of
the real-time transformation with a
JVMModelInferrer.

16.3.4 Embedding

Embedding is not supported by Xtext. The reason is that, as we
can see from Section 4.6.4, the adapter language would have to
inherit from two base languages. However, Xtext only supports
extending one base grammar.

We have shown above how to embed Xbase expressions into
a custom DSL. However, as we have discussed, this is an ex-
ample of extension with embedding flavor: we create a new
DSL into which we embed the existing Xbase expressions. So
we only have to extend from one base language – Xbase. An
example of embedding would be to take an existing, indepen-
dent SQL language and embed it into the entity DSL created
above. This is not possible.

The same is true for the combination (in the same program)
of several independently developed extensions to the same base
language. In that case, too, the composite grammar would have
to inherit from several base languages68.

68 While this sounds like a rather
academic problem to have, the mbeddr
case study referred to throughout
this book shows where and how the
combination of independent language
extensions is useful in practice. mbeddr
could not have been built with Xtext for
this reason.

428 dslbook.org

16.4 Spoofax Example

In this section we look at an example roughly similar to that
for MPS and Xtext discussed in the previous sections. We start
with Mobl’s data modeling language, which we have already
seen in previous chapters.

To understand some of the discussions later, we first have to
understand how Spoofax organizes languages. In Spoofax, lan-
guage definitions are typically modularized (they declare their
module at the top of a file). For example, Mobl’s syntax defini-
tion comes with a module for entities, which imports modules
for statements and expressions:

module MoblEntities

imports
MoblStatements
MoblExpressions

All syntax definition modules reside in the syntax directory
of a Spoofax project. Typically, subdirectories are used to or-
ganize the modules of different sublanguages. For example,
we can have subdirectories entity for Mobl’s entity definition
language, screen for Mobl’s screen definition language, and
common for definitions shared by both languages:

module entity/MoblEntities

imports
entities/MoblStatements
entities/MoblExpressions

module screen/MoblScreens

imports
common/Lexical

module common/MoblExpressions

imports
common/Lexical

As the example shows, the directory structure is reflected in
module names. You can read them as relative paths from the
syntax directory to the module.

Similarly to syntax definitions, rewrite rules for program
analysis, editor services, program transformation, and code
generation are organized in modules, which are imported from
Mobl’s main module. The various modules for program analy-
sis, editor services and program transformation are organized
in subdirectories:

dsl engineering 429

module mobl

imports
analysis/names
analysis/types
analysis/checks
editor/complete
editor/hover
editor/refactor
trans/desugar
trans/normalize
generate

16.4.1 Referencing

We will illustrate references to elements written in another DSL
with Mobl’s screen definition language. The following code
uses Mobl sublanguage for data definition. It defines an entity
Task with some properties69. 69 The example should look familiar

- we have discussed the language in
several examples throughout the book
already.

entity Task {
name : String
description : String
done : Bool
date : DateTime

}

The next piece of code shows a screen definition written in
Mobl’s screen definition language. It defines a root screen for
a list of tasks, using the name of a Task as a label for list

elements.

screen root() {
header("Tasks")
group {

list(t in Task.all()) {
item { label(t.name) }

}
}

}

There are two references to the data model: Task refers to
an Entity, and name refers to a property of that Entity. In
general, a Screen defined in the UI model refers to Entities

from Mobl’s entity language, and Fields in a screen refer to
Properties in an entity.

� Structure When referencing elements of another language,
both languages typically share a definition of identifiers. For
example, the screen definition language imports the same lex-
ical module as does the data modeling language, via the ex-
pression module:

module entity/MoblEntities
imports

...
entity/MoblExpressions

430 dslbook.org

module entity/MoblExpressions
imports

...
common/Lexical

module screen/MoblScreens

imports common/Lexical

exports context-free syntax

"list" ID "in" Collection "{" Item* "}" -> List {"ScreenList"}
ID "." "all" "(" ")" -> Collection {"Collection"}
"item" "{" ItemPart* "}" -> Item {"Item"}
"label" "(" ID "." ID ")" -> ItemPart {"LabelPart"}

However, Spoofax also supports the use of different, typically
overlapping identifier definitions70. In this case, the referenc- 70 This requires scannerless parsing,

since a scanner cannot handle overlap-
ping lexical definitions.

ing language needs to import the identifier definition of the
referenced language.

� Name Binding Independent of the identifiers used in both
languages, the reference has to be resolved. Definition sites are
already defined by the referenced language. The correspond-
ing references must be defined in the referencing language by
using the namespaces from the referenced language. The pre-
vious syntax definition fragment of the screen definition lan-
guage specifies lists and items in these lists. The following frag-
ment shows the corresponding name binding specifications:

module screen/names

imports entity/names

namespaces Item

rules

ScreenList(i, coll, i*):
defines Item i of type t
where coll has type t

Collection(e):
refers to Entity e

LabelPart(i, p):
refers to Item i
refers to Property p in Entity e

where i has type e

Here, the screen definition language declares its own names-
pace Item for items, which are declared in the list head, in-
troducing a variable for the current item of a collection. For
example, the screen definition we have seen earlier defines an
item t71. When we describe the collection, we can refer to en-

71 It is the t in the list element that
references a Task.

tities. The corresponding namespace Entity is defined in the
data modeling language. The screen definition language uses

dsl engineering 431

the same namespace, to resolve the references into the referred
language72. 72 Similarly, the screen definition lan-

guage uses the namespace Property
from the data modeling language, to
refer to properties of entities.� Type System Similar to the name resolution, the type sys-

tem of the referencing language needs to be defined with the
knowledge of the type system of the referenced language.

constraint-error:
LabelPart(item, property) -> (property, "Label has to be a string.")
where

type := <index-type-of> property
not (!type => !StringType())

To be able to check whether a label is a string, this constraint
has to determine the type of the property used as a label.

� Generators Generators of the referencing language also need
to be defined with the knowledge of the generators of the ref-
erenced language. Typically, they just share knowledge about
the naming and typing of generated code elements.

to-java:
LabelPart(item, property) ->
|[new Label([java-item].[java-prop]);
]| where

label := <fresh-java-var-name> "label";
java-item := <to-java-var> item;
java-prop := <to-java-getter> property

This rule generates Java code for a LabelPart. The generated
code should create a new label with a text which should be
determined from a property of an item. To generate the prop-
erty access, the rule relies on the same scheme as rules from
the generator of the entity definition part, by making calls to
rules from this generator73. 73 It first generates the Java variable

name from item. Second, it generates
a getter call from property. Finally, it
composes these fragments with its own
Java code.

16.4.2 Reuse

As discussed in the previous sections, referencing concerns the
case in which the referencing language is built with knowledge
about the referenced language, so that it can have direct depen-
dencies74. In the case of reuse, such direct dependency is not 74 In the example above, the screen def-

inition language uses the namespaces
and types from the entity language
directly.

allowed: our goal is to combine two independent languages.

� Structure To illustrate this case, we again use the same ex-
ample as in the MPS section. We first introduce a trivial DSL
for defining relational table structures. These can optionally
be mapped to a data source, but the language makes no as-
sumption about what this data source looks like (and which
language is used to define it). Consequently, the grammar has
no dependency on any other one:

432 dslbook.org

module DBTables

"database" ID Table* -> Database {"DB"}
"table" ID Column* -> Table {"DBTable"}
DataType ID ColumnMapper -> Column {"DBColumn"}

-> ColumnMapper {"DBMissingMapper"}

"char" -> DataType {"DBCharType"}
"number" -> DataType {"DBNumberType"}

Again, the Column rule has an optional ColumnMapper which
works as the hook for reuse. The reusable language only pro-
vides a rule for a missing column mapper75. In the next step,

75 Rules for a concrete mapper can be
added later in a sublanguage.

we want to be able to reference properties from Mobl’s data
modeling language from a table definition:

database TaskDB

table Tasks

char name <- Task.name
char description <- Task.description

To do this, we define an adapter module, which imports the
reusable table module and the data modeling language. So
far, ColumnMapper is only an abstract concept, without a use-
ful definition. The adapter module now defines a rule for
ColumnMapper, which defines the concrete syntax of an actual
mapper that can reference properties from the data modeling
language:

module MoblDBAdapter

imports
DBTables
MoblEntities

context-free syntax
"<-" ID "." ID -> ColumnMapper {"PropertyMapper"}

There is only one rule in this module, which defines a concrete
mapper. On the right-hand side, it uses the same sort as the
rule in the table module (ColumnMapper). On the left-hand side,
it refers to a property (second ID) in an entity (first ID).

� NameBinding The actual reference to entity and property
names from the imported data modeling language needs to be
specified in the name binding module of the adapter:

module adapter/names

imports entity/names

rules

PropertyMapper(e, p):
refers to Entity e
refers to Property p in Entity e

dsl engineering 433

� Type System In our example, the types of the database lan-
guage needs to be connected to the primitive types used in
Mobl76. Constraints ensure we only map those fields to a par- 76 More generally, the type system needs

to connect types from the abstract but
reusable language to types from the
language which actually reuses it.

ticular column that are type-compatible:
module reuse/dbtables/analysis/types

rules
constraint-error:

DBColumn(type, _, mapper) -> (mapper, "Incompatible type")
where

type’ := <type-of> mapper ;
<not(compatible-types)> (type, type’)

compatible-types: _ -> <fail>

The code above is defined in the generic implementation of
the database language. It assumes that a mapper has a type
and checks if this type is compatible with the declared column
type. It defines a default rule for type compatibility, which
always fails. The connection to the type system of the entity
language can now be made in an adapter module:
module analysis/types/adapter

imports
module analysis/types
module reuse/dbtables/analysis/types

rules
type-of: PropertyMapper(e, p) -> <index-type-of> p

compatible-types: (DBCharType(), StringType()) -> <id>
compatible-types: (DBNumberType(), NumType()) -> <id>

The first rule defines the type of a PropertyMapper to be the
type of the property. Then, two rules define type compati-
bility for Mobl’s String type with the char type in the table
language, and Mobl’s Num type with table language’s number

type.

� Generator As in the Xtext example, we can use two strate-
gies to reuse a generator for the database language. The first
strategy relies on composition techniques of the target lan-
guage, if that language provides such composition facilities77.

77 As in the MPS example, the code
generator of the database language
generates an abstract Java class for
fetching data, while Mobl’s original
code generator generates Java classes
from entities. We can then define an
additional generator, which generates a
concrete subclass that fetches data from
entities.

The second strategy we discussed in the Xtext example ad-
dressed the generation of inlined code, which requires an ex-
tendable generator of the reusable language. With rewrite rules,
this can be easily achieved in Spoofax. The reusable generator
calls a dedicated rule for generating the inlined code, but de-
fines only a failing implementation of this rule:
rules

db-to-java: Column(t, n, mapper) ->
[Field([PRIVATE], t’, n),
Method([PROTECTED], BoolType, n’, params, stmts)]

434 dslbook.org

where
n’ := <to-fetch-method-name> n ;
param := <to-fetch-method-parameters> mapper ;
stmts := <to-fetch-statements(|n)> mapper

to-fetch-method-parameters: _ -> <fail>
to-fetch-statements(|n) : _ -> <fail>

This rule generates code for columns. It generates a private
field and a protected method to fetch the content. This method
needs a name, parameters and an implementation. We assume
that the method name is provided by the generic generator. For
the other parts (in particular, the implementation of the meth-
ods), the generic generator only provides failing placeholder
rules. These have to be implemented in a concrete reuse set-
ting by the adapter language generator:

module generate/java/adapter

imports
generate/java
reuse/table/generate

rules
to-fetch-method-parameters:

PropertyMapper(entity, property) -> [Param(type, "entity")]
where

type := <entity-to-java-type> entity

to-fetch-statements(|field-name):
PropertyMapper(entity, property) ->

[Assign(VarRef(field-name), MethodCall(VarRef("entity"), m, []),
Return(True())]

where
m := <property-to-getter-name> property

This adapter code generates a single parameter for the fetch
method. It is named entity and its type is provided by a
rule from the entity language generator. The rule maps entity
names to Java types. For the implementation body, the second
rule generates an assignment and a return statement. The as-
signment calls the getter method for the property. Again, the
name of this getter method is provided by the entity language
generator.

16.4.3 Extension Since, in the case of extension, the
extending language has a dependency
on, and is developed with, knowledge
of the base language, it can be designed
in a way that will not lead to parsing
ambiguities. However, the composition
of different, independent extensions
of the same base language might lead
to ambiguities. These ambiguities will
only occur between the extensions. The
base language will stay unambiguous,
since each module is only imported
once.

Because of Spoofax’ module system and rule-based nature, lan-
guage extension feels like ordinary language development. When
we want to add a new feature for a language, we simply create
new modules for syntax, name binding, type system and code
generation rules. These modules import the existing modules
as needed. In the syntax definition, we can extend a syntac-
tic sort with new definition rules. In the type system, we add
additional type-of rules for the new language constructs and

dsl engineering 435

define constraints for well-typedness. Finally, we add new gen-
erator rules, which can handle the new language constructs.

16.4.4 Restriction

In the easiest case, restriction can be handled on the level of
syntax rules. SDF’s import directives allow not only for re-
naming of sorts, but also for replacing complete syntax rules.
To remove a rule completely, we can replace it with a dummy
rule for a sort, which is not used anywhere. The following
example restricts Mobl to a version without property access
expressions78: 78 In more complex cases, only parts

of a syntax rule need to be restricted.
For example, we might restrict Mobl’s
screen definition language to support
only unparameterized screen defini-
tions.

module MoblWithoutPropertyAccess

imports Mobl[Exp "." ID -> Exp => -> UnusedDummySort]

16.4.5 Embedding

Embedding can be easily achieved in Spoofax. In general, the
procedure is very similar to reuse. We will discuss the embed-
ding of HQL79 into Mobl as an example here80. 79 HQL is a declarative query lan-

guage for entities stored in a relational
database. It resembles SQL in syntax.

80 We have discussed embedding al-
ready in Section 11.4, where we em-
bedded the target language into the
Stratego transformation language.

� Structure Embedding requires an additional syntax defini-
tion module which imports the main modules of the host and
guest language and defines additional syntax rules that realize
the embedding. In target language embedding into Stratego,
this was achieved with quotations and antiquotations. The fol-
lowing module is an initial attempt to embed HQL into Mobl:

module Mobl-HQL

imports
Mobl
Hql

context-free syntax

QueryRule -> Exp {cons("HqlQuery")}
DeleteStatement ";" -> Statement {cons("HqlStatement")}

"~" Exp -> Expression {cons("DslExp")}

The module imports syntax definitions of host and guest lan-
guages. It embeds HQL queries as Mobl expressions and HQL’s
delete statement as a Mobl statement without any quotations.
Furthermore, it allows us to use quoted Mobl expressions in-
side HQL queries, using the tilde as a quotation symbol.

There are two issues in this module. First, we might acciden-
tally merge sorts with the same name in host and guest lan-
guage81. Since both languages are developed independently,

81 Sort names like Expression, Exp or
Statement are quite likely to be used in
several languageswe cannot assume mutually exclusive names in their syntax

436 dslbook.org

definitions. One way to avoid name clashes is to rename sorts
manually during import:

module Mobl-HQL

imports
Mobl
Hql [QueryRule => HqlQueryRule

DeleteStatement => HqlDeleteStatement
Expression => HqlExpression
...

]

This can be quite cumbersome, since we have to rename all
sorts, not only the embedded ones. Alternatively, we can rely
on Spoofax to generate a renamed version of a language def-
inition. This Mix is a parameterized syntax definition, where
Spoofax replaces each sort by a parameterized sort82: 82 This is a bit like generics in program-

ming languages such as Java.
module HqLMix[Context]

imports
Hql [QueryRule => QueryRule[[Context]]

DeleteStatement => DeleteStatement[[Context]]
Expression => Expression[[Context]]
...

]

The parameter allows us to distinguish sorts from the host and
the target language. We can then import this module with
an actual parameter and use the parameterized sorts in the
embedding:

module Mobl-HQL

imports Mobl HqlMix[HQL]

context-free syntax

QueryRule[[HQL]] -> Exp {cons("HqlQuery")}
DeleteStatement[[HQL]] ";" -> Statement {cons("HqlStatement")}

"~" Exp -> Expression[[HQL]] {cons("MoblExp")}

The second issue is ambiguity: we have to integrate HQL queries
into the precedence rules for Mobl expressions. To do this, we
do not have to repeat all rules: preceding and succeeding rules
are sufficient83: 83 This is necessary because precedence

is specified relative to other rules using
the > operator introduced earlier.context-free priorities

Assignment -> Exp
> QueryRule[[HQL]] -> Exp
> "if" "(" Exp ")" Exp "else" Exp -> Exp

� Name Binding The name bindings of host and embedded
language are never connected. For example, only Mobl expres-
sions can refer to Mobl variables. If an HQL query relies on a
Mobl variable, it accesses it as an embedded Mobl expression.

dsl engineering 437

� Type System The type system needs to connect the types
from the host and guest languages. This can be achieved by
adding typing rules for embedded and antiquoted constructs.
For example, we need to connect the HQL type of a query to a
Mobl type of the embedding expression:

module mobl-hql/types

imports
mobl/types
hql/types

type-of:
HqlQuery(query) -> mobl-type
where

hql-type := <type-of> query
mobl-type := <hql-to-mobl-type> hql-type

type-of:
MoblExp(exp) -> hql-type
where

mobl-type := <type-of> exp
hql-type := <mobl-to-hql-type> mobl-type

hql-to-mobl-type: JDBC_Integer() -> NumType()
hql-to-mobl-type: JDBC_Float() -> NumType()
hql-to-mobl-type: JDBC_Bit() -> BoolType()

mobl-to-hql-type: NumType() -> JDBC_Float()
mobl-to-hql-type: BoolType() -> JDBC_Bit()

The first rule determines the type of an embedded HQL query
and maps it to a corresponding Mobl type. The second rule de-
termines the type of an antiquoted Mobl expression and maps
it to an corresponding HQL type. The remaining rules exem-
plify actual mappings between HQL and Mobl types84. 84 Additional constraints could check

for incompatible types which cannot
be mapped into the host or guest
language.� Generator There are two strategies for code generation for

embedded languages. If the guest language provides a suitable
code generator, we can combine it with the code generator of
the host language. First, we need rules which generate code
for embedded constructs. These rules have to extend the host
generator by delegating to the guest generator. Next, we need
rules which generate code for antiquoted constructs. These
rules have to extend the guest generator by delegating to the
host generator.

Another strategy is to define a model-to-model transforma-
tion which desugars (or "assimilates") embedded constructs to
constructs of the host language. This transformation is then
applied first, before the host generator is applied to generate
code. The embedding of a target language into Stratego is
an example of this approach. The embedded target language
will be represented by abstract syntax trees for code genera-
tion fragments. These trees need to be desugared into Strat-

438 dslbook.org

ego pattern matching constructs. For example, the embedded
|[return |[x]|;]| will yield the following abstract syntax
tree:

ToJava(
Return(

FromJava(
Var("x")

)
)

)

In ordinary Stratego without an embedded target language,
we would have written the pattern Return(x) instead. The
corresponding abstract syntax tree looks like this:

NoAnnoList(
App(

Op("Result"),
[Var("x")]

)
)

The desugar transformation now needs to transform the first
abstract syntax tree into the second one:

desugar-all: x -> <bottomup(try(desugar-embedded))> x

desugar-embedded: ToJava(e) -> <ast-to-pattern> e

ast-to-pattern:
ast -> pattern
where

if !ast => FromJava(e) then
pattern := e

else
c := <constructor> ast ;
args := <arguments> ast ;
ps := <map(ast-to-pattern)> args ;
pattern := NoAnnoList(App(Op(c), ps))

The first rule drives the desugaring of the overall tree. It tries
to apply desugar-embedded in a bottom-up traversal. The only
rule for desugaring embedded target language code matches
the embedded code and applies ast-to-pattern to it. If this
is applied to an antiquote, the contained subnode is already
a regular Stratego pattern. Otherwise, the node has to be an
abstract syntax tree of the target language. It is deconstructed
into its constructor and subtrees, which are desugared into pat-
terns as well. The resulting patterns and the constructor are
then used to construct the overall pattern.

Part IV

DSLs in Software
Engineering

dsl engineering 441

This part of the book looks at how DSLs can be used in var-
ious aspects of software engineering. In particular, we look
at requirements engineering, software architecture, developer
utilities, implementation, product line engineering and busi-
ness DSLs. Some of the chapters also serve as case studies for
interesting, non-trivial DSLs.

Note that this part has many contributory authors, so there
may be slight variations in style.

17
DSLs and Requirements

This chapter looks at the role of DSLs in requirements en-
gineering. In particular it explores the use of DSLs to spec-
ify requirements formally, at ways of representing require-
ments as models and at traceability between implementa-
tion artifacts and requirements.

17.1 What are Requirements?

Wikipedia defines a requirements as follows:

A requirement is a singular documented need of what a partic-
ular product or service should be or perform.

Wiktionary says:

[A requirement] specifies a verifiable constraint on an imple-
mentation that it shall undeniably meet or (a) be deemed unac-
ceptable, or (b) result in implementation failure, or (c) result in
system failure.

In my own words I would probably define a requirement as

. . . a statement about what a system should do, and with what
quality attributes, without presupposing a specific implementa-
tion.

Requirements are supposed to tell the programmers what the
system they are about to implement should do1. Require- 1 However, a requirement typically does

not prescribe how a developer has to
implement some functionality: archi-
tecture, design, the use of patterns and
idioms and the choice of a suitable im-
plementation technology and language
are up to the developer.

ments are a means of communicating from humans (people
who know what the system should do) to other humans (those
that have to implement it). Of course, as well all know, there
are a number of challenges with this:

444 dslbook.org

• Those who implement the requirements may have a differ-
ent background than those who write them, making misun-
derstandings between the two groups likely.

• Those who write the requirements may not actually really
know what they want the system to do, at least initially. Re-
quirements change over the course of a project, particularly
as people start to "play" with early versions of the system2. 2 As we all know, only when we actu-

ally play or experiment with something
do we really understand all the details,
uncover corner cases and appreciate the
complexity in the system.

• Usually requirements are written in plain English (or what-
ever language you prefer). Writing things down precisely
and completely in a non-formal language is next to impos-
sible3. 3 Writing any large prose document

consistently and free from bugs is hard.
I am sure you will find problems in this
book :-)

Traditional requirements documents are a means to communi-
cate from people to people. However, in the end this is not
really true. In an ideal world, the requirements (in the brain of
the person who writes them down) should be communicated
directly to the computer, without the intermediate program-
mer, to avoid the misunderstandings mentioned above. If we
look at the problem in this way, requirements now become for-
mal, computer-understandable.

Wikipedia has a nice list of characteristics that requirements
should posses. Here is a slightly adapted version of this list:

Complete The requirement is fully stated in one place with no
missing information. This makes the requirement easy to
consume, because readers do not have to build the complete
picture from scattered information.

Consistent The requirement does not contradict any other re-
quirement and is fully consistent with all authoritative ex-
ternal documentation4.

4 This is extremely hard to achieve with
prose, because there is no "compiler"
that finds inconsistencies.

Cohesive & Atomic The requirement is atomic, i.e., it does not
contain conjunctions5. This ensures that traceability from

5 For example "The postal code field
must validate American and Canadian
postal codes" should be written as two
separate requirements: (1) "The postal
code field must validate American
postal codes" and (2) "The postal code
field must validate Canadian postal
codes".

implementation artifacts back to the requirements is rela-
tively simple.

Current The requirement has not been made obsolete by the
passage of time. Outdated requirements should be removed
or marked as outdated.

Feasible The requirement can be implemented within the con-
straints of the project6.

6 Of course, as the person who writes
the requirements, you may not be able
to judge, since you may not know
the project constraints, the effort to
implement the requirement, or whether
the implementation technology is able
to address the requirement. This is
one reason why interaction with the
implementers is critical.

Unambiguous The requirement is concisely stated without re-
course to technical jargon, acronyms (unless defined else-

dsl engineering 445

where in the requirements document), or other esoteric ver-
biage. It expresses objective facts, not subjective opinions.
It is subject to one and only one interpretation. Vague sub-
jects, adjectives, prepositions, verbs and subjective phrases
are avoided. Negative statements and compound statements
are prohibited7. 7 All of these things are intended to

make the prose as precise as possible
to avoid misunderstandings. However,
we all know how hard this is to achieve
with prose.

Mandatory The requirement represents a stakeholder-defined
characteristic the absence of which will result in a deficiency
that cannot be ameliorated. An optional requirement is a
contradiction in terms8. 8 Although requirements may have

priorities that define how important
a requirement is relative to others.
The implementation process should
implement high-priority requirements
first, if possible.

Verifiable The implementation of the requirement can be de-
termined through one of four possible methods: inspection,
demonstration, test or analysis. Otherwise it is hard to tell
if a system actually fulfills a requirement or not9.

9 Ideally, all requirements can be tested
in an automatic way, in the sense that
acceptance tests can be specified, and
these can be re-executed over and over
again.

If requirements are written as pure prose, then making sure
all these characteristics are met boils down mostly to a manual
review process. Of course, this is tedious and error-prone, and
requirements end up in the sorry state we all know.

To get one step better, you can use controlled natural lan-
guage10 in which words like must, may or should have a well 10 en.wikipedia.org/wiki/Con-

trolled_natural_languagedefined meaning and are used consciously. Using tables and
– to some extent – state machines, is also a good way to make
some of the data less ambiguous; these formalisms also help
to verify requirements for consistency and completeness. To
manage large sets of requirements, tools should be used to sup-
port unique identification and naming of requirements, as well
as the expression of relationships and hierarchies among re-
quirements11 However, the requirements themselves are still 11 Example tools include DOORS,

Requisite Pro, the Eclipse Requirements
Framework (RMF), and itemis’ Yakindu.

expressed as plain text, so the fundamental problems men-
tioned above are not improved significantly.

In this chapter we will give you some ideas and examples
on how this situation can be improved with DSLs12. 12 Note that I don’t suggest in this

chapter that all requirements should be
captured with DSLs. Instead, DSLs can
be one important ingredient for a well
thought out requirements management
approach.

17.2 Requirements versus Design versus Implemen-
tation

Traditionally, we try to establish a clear line between require-
ments, architecture and design, and implementation. For ex-
ample, a requirement may state that the system be 99.99% reli-
able. The design may use hot-standby and fail-over to continue
service if a component breaks. The implementation would then

446 dslbook.org

select a specific standby/fail-over technology to realize the de-
sign. We make this distinction because we want to establish
different roles in the software engineering process. For exam-
ple, product management writes the requirements, a systems
architect comes up with the architecture and design, and then
a programmer writes the actual code and chooses the tech-
nologies13. Different organizations may even be involved, lead- 13 A different approach may have the

architect selecting the implementation
technology and the programmer doing
the design work as well.

ing to a separation between requirements and architecture that
is driven by organizational constraints14: the OEM writes the

14 In effect, everything the OEM does
is called requirements (by definition!),
what the integrator does is called
architecture, and what the outsourcer
does is called implementation.

requirements, a systems integrator does the architecture, and
some outsourcing company does the coding. In such a sce-
nario it is important to draw precise boundaries between the
activities. However, in some sense the boundaries are arbi-
trary. Consequently, the distinction between requirements and
architecture are arbitrary as well: we could just as well state
the following:

Requirement The system shall be 99.99% reliable by using hot-
standby and fail-over to continue service if something breaks.

Architecture/Design We use two application servers running on
two machines, using the XYZ messaging middleware as a
replication engine for the hot-standby. We use a watchdog
for detecting if the primary machine breaks, so we can fail
over to the second one.

Implementation . . . all the code that is necessary to implement
the design above.

From software development we know that it is very hard to get
requirements right. In the real world, you have to elaborate
on the requirements incrementally15. In systems engineering 15 You write some requirements, then

you write a prototype and check if the
requirements make sense, then you
refine the requirements, write a (maybe
more detailed) prototype, and so on.

this approach is also very well established. For example, when
satellites are built, the scientists come up with initial scientific
requirements, for example, regarding the resolution a satellite-
based radar antenna looking at the earth should have. Let’s
look at some of the consequences:

• A given resolution requires a specific size of the antenna,
and a specific amount of energy being sent out. (Actually,
the two influence each other as well).

• A bigger antenna results in a heavier satellite, and more
radar energy requires more solar panel area – increasing the
size and weight even further.

dsl engineering 447

• At some point, the size and weight of the satellite cannot be
further increased, because a given launch vehicle reaches its
limits – a different launch vehicle might be required.

• A bigger launch vehicle will be much more expensive, or
you might have to change the launch provider. For example,
you might have to use a Soyuz instead of an Ariane.

• A Soyus launched at Baikonur cannot reach the same orbits
as an Ariane launched from Courou, because of the higher
latitude. As a consequence, the satellite might be "further
away" from the area you want to inspect with your radar,
neglecting the advantages gained by the bigger antenna16. 16 Actually, they now launch Soyuz

vehicles from Courou as well, for just
that reason.. . . and this has just looked at size and weight! Similar prob-

lems exist with heat management, pointing accuracy or propul-
sion. As you can see, a change in any particular requirement
can lead to non-trivial consequences you will only detect if you
think about the implementation of the requirement. A strictly se-
quential approach (first write all the requirements, then think
about the implementation) will not work. So what do the sys-
tems engineers do? They come up with a model of the satellite.
Using mathematical formulas, they describe how the different
properties discussed above relate. These might be approxima-
tions or based on past experience – after all, the real physics
can be quite complex. They then run a trade-off analysis. In
other words, they change the input values until a workable
compromise is reached. Usually this is a manual process, but
sometimes parts of it can be automated.

This example illustrates three things. First, requirements
elicitation is incremental. Second, models can be a big help
to precisely specify requirements and then "play" with them.
And third, the boundary between requirements and design
is blurred, and the two influence each other. Fig. 17.1 shows
a multi-step approach to requirements definition, intertwined
with incrementally more refined designs.

17.3 Using DSLs for Requirements Engineering

So here is the approach for using DSLs we suggest: identify a
couple of core areas of the system to be built that lend them-
selves to specification with a formal language17. Then develop 17 The trade-off between antenna resolu-

tion and size/weight mentioned above
is such an area.

one or more DSLs to express these areas and use them to de-
scribe the system. The rest of the system – i.e., the areas for

448 dslbook.org

Figure 17.1: Requirements and Design
influence each other and are thus best
done iteratively, and in parallel.

which a DSL-based description makes no sense – is described
textually, with the usual tools18. 18 We will discuss the integration

between the textual requirements and
the DSL-based requirements below.

Once a suitable DSL has been found and implemented, those
people who have the requirements in mind can directly express
them – the lossy human-to-human communication is no longer
a problem. Various constraint checks, tests and simulations
can be used to allow the requirements owners to "play" with
the requirements models to see if they really express what they
had in mind.

Of course there is one significant caveat: we first have to
build this DSL. So how do we go about that? We could have
somebody write prose requirements and hand them over to the
DSL developer . . . back to square one!

There is a much better approach, though. Since today’s
language workbenches support extremely rapid prototyping,
you can actually build the DSLs interactively with the require-
ments owner. Since you are not capturing the specific require-
ments, but rather try to define how specific requirements are
described, you essentially perform a domain analysis: you try
to understand the degrees of freedom in the domain to be able
to represent the domain with the DSL19. Here is the process I

19 This is similar to what has been done
with "analysis models" (back in the
day . . .). However, instead of drawing
UML analysis diagrams, you capture
the domain into a language definition,
which makes it executable, in the sense
that you can always turn around and
have the requirements owner try to
express specific requirements with
the DSL you’re building, verifying the
suitability of the DSL.

have use successfully many times:

1. Have the requirements owner explain some particular as-
pect of the domain.

dsl engineering 449

2. Try to understand that aspect and change your DSL so it
can express that aspect.

3. Make the requirements owner try to express a couple of
specific, but representative, requirements with the DSL.

4. Most likely you will run into problems, some things cannot
be expressed with the DSL. If so, go back to 1 and reiterate.
A complete iteration should take no more than 60 minutes.

5. After half a day, stop working with the requirements owner
and clean up/refactor the DSL.

6. Start another of the language design sessions with the re-
quirements owner and iterate – over time, you should get
closer to the DSL for the domain.

Once the DSL is finished, the requirements owners will be able
to express domain requirements without involvement of the
software developers.

This approach to requirements engineering is very close to
regular DSL usage. We identify an aspect of the domain that
lends itself to formalization, iteratively build a language, and
then let the domain experts – who are the requirements owners
for many of the business requirements – express the system
directly. The classical requirements document is gone20. 20 In many ways the refrigerator and

pension plan examples from Part
II of this book are examples of this
approach, and so is the Health domain
example discussed in Chapter 22.

Using DSLs to specify (some parts of the) requirements for-
mally helps achieve some of the desirable characteristics for
requirements discussed above. The following lists only those
characteristics for which DSLs make a difference.

Consistent Consistency is enforced by the language. If the DSL
is crafted correctly, no inconsistent requirements can be ex-
pressed.

Feasible Specific requirements are checked for feasibility by be-
ing expressible with the DSL: they are within the scope of
what the DSL – hence, the domain for which we write the
requirements – is intended.

Unambiguous A description of requirements – or application
functionality in general – with a DSL always unambiguous,
provided the DSL has well-defined semantics.

Verifiable Constraints, tests, verification or simulation can be
used to verify the requirements regarding various proper-
ties. Inspection and review is simplified, because DSL pro-
grams are less verbose than implementation code, and clearer
than prose.

450 dslbook.org

17.4 Integration with Plain Text Requirements

You will probably not be able to describe all the requirements
of a system using the approach described above. There will
always be aspects that cannot be formalized, or that are so spe-
cific that the effort for building a DSL does not pay off. You
therefore have to find some way of integrating plain text re-
quirements with DSL code. Here are some approaches to how
this can be done.

17.4.1 Embedding DSL Code in a Requirements Tool

One approach is to mix prose requirements with formalized,
DSL-based requirements. We show examples with Xtext and
MPS.

� Xtext Example Eclipse-based tooling for requirements en-
gineering is being developed as part of the VERDE21 and ProR22 21 www.itea-verde.org/

22 www.pror.org/research projects. This includes Eclipse RMF23, a "classical"
23 eclipse.org/RMFrequirements engineering tool, in which textual requirements

are classified, structured and put into relationships with each
other24. The requirements structure is represented as an EMF 24 The tool actually implements the

OMG’s ReqIF standard.model, to make integration with other model-based artifacts
simple. In addition to plain text, requirements can have pa-
rameters with well-defined types. The types of these parame-
ters can be primitive (string, int), but they can also be any other
Ecore meta class, so any additional model structure can be em-
bedded into a requirement. Integration with Xtext is available,
which provides textual concrete syntax for these data struc-
tures. In other words, it is possible to enrich prose require-
ments specifications with additional formal specifications ex-
pressed in arbitrary DSLs. Fig. 17.2 shows a screenshot.

� MPS Example We have built a similar solution for MPS
in the mbeddr project. The solution supports collecting trees
of requirements, where each requirement has an ID, a kind
and a short summary. Fig. 17.3 shows an example. In addi-
tion, the one-line summary can be expanded to reveal addi-
tional details (Fig. 17.4). There users can enter a detailed prose
description, as well as additional constraints among require-
ments (requires also, conflicts with.) In the Additional

Specifications section, users can enter arbitrary DSL pro-
grams: since MPS supports language modularization and com-
position (Section 16.2), embedding arbitrary languages with

dsl engineering 451

Figure 17.2: An Xtext DSL embedded in
a requirements engineering tool based
on the Eclipse Requirements Modeling
Framework (RMF).

arbitrary syntax into the requirements language is trivial and
works out of the box. It is also possible to associate a specific
additional specification with a particular requirements kind.
This means that if a requirement has a particular kind, the ad-
ditional data associated with that kind must be present in the
Additional Specifications section25. 25 For example, a requirement kind

timing may require an instance
of TimingSpecification in the
Additional Specifications section.17.4.2 Requirements Traceability

Requirements traceability establishes links, or traces, between
implementation (or design or test) artifacts and requirements.
This allows each (part of) an artifact to be traced back to the
requirements that drive the artifact26. Once such pointers are 26 Traces are typically typed (as in

implements, tests or refines), so
various different relationships can be
established.

available, various analyses become possible. For example, it
is easy to find out whether each requirement has been imple-
mented (or tested), and we know which implementation arti-
facts may have to change if a requirement changes.

Requirements traceability has two challenges. The first one
is social, the second one is technical. The social problem is that,
while traces are easy to analyze once they are available, they
still have to be established manually. This requires discipline
by the people, typically developers, whose job it is to establish
the traces.

The technical problem addresses how to actually establish
the pointers technically. In a world in which requirements –

452 dslbook.org

Figure 17.3: The requirements language
supports creating trees of requirements.
Each requirement has an ID, a kind
and short text. In addition, a detailed
description and constraints among
requirements can be added (Fig. 17.4).

as well as design, implementation and test artifacts – are all
model-based, establishing these pointers becomes trivial. In
mixed environments with many different tools built on many
different foundations, it can become arbitrarily complicated.
Again, we show tooling examples for Xtext and MPS.

Figure 17.4: The detail view of
the requirements language. In the
Additional Specifications section
users can enter arbitrary programs
written in arbitrary DSLs. Constraints
can be used to make sure that specific
additional specifications are always
added to requirements of a particular
kind.

� Xtext Example The VERDE project mentioned above also
develops a traceability framework for Eclipse. Various trace
kinds can be defined, which can subsequently be used to estab-
lish links between arbitrary EMF-based models27. The trace-

27 In addition to generic EMF-based
tracing, tool adapters can be plugged in
to support for trace links from/into a
number of specific tools or formats such
as plain text files, non-EMF UML tools
or AUTOSAR models.

dsl engineering 453

ability links are kept external to the actual models, so no mod-
ifications to existing meta models or languages are required28. 28 This is also the reason why non-EMF

artifacts can be integrated, even though
they require a specific tool adapter.� MPS Example As part of mbeddr, we have implemented a

generic tracing framework base on MPS’ language annotations
(discussed in Section 16.2.7). Arbitrary models – independent
of the language used to create them29 – can be annotated with 29 Of course this only works for arbi-

trary MPS-based languages.traceability links, as shown in the left part of figure 17.5.
A context menu action adds a new trace to any model el-

ement: Ctrl-Space allows the selection of one or more re-
quirements at which to point. Each trace has a kind. The
traced requirements are color coded to reflect their trace sta-
tus (Fig. 17.5, top right). Finally, the Find Usages functionality
of MPS has been customized to show traces directly (Fig. 17.5,
bottom right).

Figure 17.5: Left: A C function with an
attached requirement trace. Traces can
be attached to arbitrary program nodes,
supporting tracing at arbitrary levels of
detail. Right, top: The requirements can
be color coded to reflect whether they
are traced at all (gray), implemented
(blue) and tested (green). Untraced
requirements are red. Right, bottom:
The Find Usages dialog shows the
different kinds of traces as separate
categories. Programs can also be shown
without the traces using conditional
projection. We discuss this mechanism
in the section on product line variability
(Section 7.7).

18
DSLs and Software Architecture

In this chapter we explore the relationship between DSLs
and software architecture. In particular we establish the
notion of an Architecture DSL (or ADSL), which is a DSL
specifically created for a specific architecture. We first dis-
cuss ADSLs based on an extensive example, then discuss
the conceptual details. The chapter also looks at embedding
business logic DSLs, as well as at the role software compo-
nents can play in the context of DSLs.

18.1 What is Software Architecture?

� Definitions Software architecture has many definitions, from
various groups of people. Here are a few. Wikipedia defines
software architecture in the following way:

The software architecture of a program or computing system
is the structure or structures of the system, which comprise
software elements, the externally visible properties of those ele-
ments, and the relationships between them.

This is a classic definition that emphasizes the (coarse grained)
structure of a software system (as opposed to the behavior),
observable by analyzing an existing system1. A definition by 1 As you may suspect from my empha-

sis here, I disagree. Architecture is not
limited to structure, and it is not limited
to coarse-grained things. I will get back
to this later.

Boehm builds on this:

A software system architecture comprises a collection of soft-
ware and system components, connections, and constraints, a
collection of system stakeholders’ need statements as well as a
rationale which demonstrates that the components, connections,
and constraints define a system that, if implemented, would sat-
isfy the collection of system stakeholders’ need statements.

456 dslbook.org

In addition to the structure, this definition also emphasizes
the relevance of the stakeholders and their needs, and ties the
structure of the system to what the system is required to do.
Hayes-Roth introduce another aspect:

The architecture of a complex software system is its style and
method of design and construction.

Instead of looking at the structures, they emphasize that there
are different architectural styles and they emphasize the "method
of design and construction"2. Eoin Woods takes it one step fur- 2 This can be interpreted as emphasiz-

ing the process of how something is
built, and not just the structures of the
built artifact once it is finished.

ther:

Software architecture is the set of design decisions which, if
made incorrectly, may cause your project to be cancelled.

He emphasizes the design decisions that lead to a given sys-
tem. So he doesn’t look at the system as a set of structures,
but rather considers the architecture as a process – the design
decisions – that leads to a given system. While I don’t disagree
with any of these definitions – they all emphasize different as-
pects of the architecture of a software system – I would like to
propose another one:

Software architecture is everything that needs to be consistent
throughout a software system.

This definition is useful because it includes structures and be-
havior; it doesn’t say anything about coarse-grained versus de-
tailed3 and it implies that there needs to be some kind of pro-

3 A locking protocol for accessing a
shared resource is possibly a detail,
but it is important to implement it
consistently to avoid deadlocks and
other concurrency faults.

cess or method to achieve the consistency. As we will see, DSLs
can help with achieving this consistency.

Figure 18.1: Conceptual structure of a
software architecture.

� Terminology Fig. 18.1 looks at software architecture in more
detail. At the center of the diagram you can see the concep-
tual architecture. This defines architectural concepts from which
concrete systems are built (we will come back to this in the
next section). Examples could include: task, message, queue,
component, port, or replicated data structure. Note that these
concepts are independent of specific implementation technolo-
gies: it is the technology mapping that defines how the architec-
ture concepts are implemented based on specific technologies4.

4 Separating the two has the advantage
that the conceptual discussions are not
diluted by what specific technologies
may or may not be able to do, and how.
The decision of what technology to
map to is then driven by non-functional
concerns, i.e. whether and how a given
technology can provide the required
quality of service.

The programming model is the way in which the architectural
concepts are implemented in a given programming language5.

5 Ideally, the programming model
should not change as long as the
architectural concepts remain stable –
even if the technology mapping or the
implementation technologies change.Applications are implemented by instantiating the architectural

dsl engineering 457

concepts, and implementing them based on the programming
model.

� The Importance of Concepts I want to reemphasize the im-
portance of the conceptual architecture. When asking people
about the architecture of systems, one often gets answers like:
"It’s a Web service architecture", or "It’s an XML architecture"
or "It’s a JEE architecture". Obviously, all this conveys is that
a certain technology is used. When talking about architectures
per se, we should talk about architectural concepts and how
they relate to each other. Only as a second step should a map-
ping to one or more technologies be discussed. Here are some
of these fundamental architectural concepts:

Modularize Break big things down into smaller things, so they
can be understood (and potentially reused) more easily. Ex-
amples: procedures, classes, components, services, user sto-
ries.

Encapsulate Hide the innards of a module so that they can be
changed without affecting clients. Examples: private mem-
bers, facade pattern, components, layers/rings/levels.

Contracts Describe the external interface of a module clearly.
Examples: interfaces, pre- and post-conditions, protocol state
machines, message exchange patterns, published APIs.

Decoupling Reduce dependencies in time, data structure or con-
tention. Examples: message queues, eventual consistency,
compensating transactions.

Isolate crosscuts Encapsulate handling of cross-cutting concerns.
Examples: aspect orientation, interceptors, application servers,
exception handling.

As we will see in the following section, architecture DSLs can
specify architectures unambiguously while emphasizing these
fundamentals, instead of technologies.

18.2 Architecture DSLs

An Architecture DSL (ADSL) is a language that expresses a
system’s architecture directly. "Directly" means that the lan-
guage’s abstract syntax contains constructs for all the ingredi-
ents of the conceptual architecture. The language can hence be

458 dslbook.org

used to describe a system on the architectural level without us-
ing low-level implementation code, but still in an unambiguous
way6. Code generation is used to generate representations of 6 Meaning: it is more useful than

Powerpoint architecture, even though
that is also high level and technology
independent :-).

the application architecture in the implementation language(s),
automating the technology mapping7. Finally, the program-

7 Of course, the decisions about the
mapping have to be made manually.
But once they are made (and generators
are implemented), the mapping can be
executed automatically for instances of
the architecture.

ming model is defined with regards to the generated code plus
possibly additional frameworks8.

8 Architecture DSLs are typically incom-
plete. Only the architecturally relevant
structures and behaviors are expressed
with the DSL. The application logic is
implemented in a GPL.

I do not advocate the definition of a generic, reusable lan-
guage such as the various ADLs, or UML (see below). Based
on our experience, the approach works best if you define the
ADSL in real time as you understand, define and evolve the
conceptual architecture of a system9. The process of defin-

9 In other words, like any DSL it should
be closely aligned with the domain it is
supposed to represent. In this case, the
domain is the architecture of system,
platform or product line.

ing the language actually helps the architecture/development
team to better understand, clarify and refine the architectural
abstractions, as the language serves as a (formalized) ubiqui-
tous language that lets you reason about and discuss the archi-
tecture.

18.2.1 An Example ADSL

This section contains an example of an Architecture DSL taken
from a real system in the domain of airport management sys-
tems10. 10 I was helping that customer build an

architecture DSL for their architecture.
They hired me because they needed
to get a grip on their architecture
independent of specific technologies,
since the system was supposed to last
for 20 years.

� Background The customer decided they wanted to build
a new airport management system. Airlines use systems like
these to track and publish information about whether airplanes
have landed at airports, whether they are late, and to track the
technical status of the aircraft11. The system also populates 11 The actual system dealt with a differ-

ent transportation domain, not aircraft.
I had to anonymize the example a bit.
However, the rest of the story happened
exactly as it appears here.

the online-tracking system on the Web and information mon-
itors at airports. This system is in many ways a typical dis-
tributed system: there is a central data center to do some of the
heavy number crunching, but there are additional machines
distributed over relatively large areas. Consequently you can-
not simply shut down the whole system, which leads to a re-
quirement to be able to work with different versions of parts of
the system at the same time. Different parts of the system will
be built with different technologies: Java, C++, C#. This is not
an untypical requirement for large distributed systems either.
Often you use Java technology for the backend, and .NET tech-
nology for a Windows front end. The customer had decided
that the backbone of the system would be a messaging infras-
tructure, and they were evaluating different messaging tools
for performance and throughput.

dsl engineering 459

While my customer knew many of the requirements and had
made specific decisions about some architectural aspects, they
didn’t have a well-defined conceptual architecture. It showed:
when the team were discussing their system, they stumbled
into disagreements about architectural concepts all the time
because they had no language for the architecture. Also, they
didn’t have a good idea of how to maintain the architecture
over the 20 years of expected lifetime in the face of changing
technologies.

� Getting Started To solve this issue, an architecture DSL was
developed. We started with the notion of a component. At that
point the notion of components is defined relatively loosely,
simply as the smallest architecturally relevant building block,
a piece of encapsulated application functionality12. We also 12 In many cases it is a good idea to

start with the notion of a component,
although components may turn out
to look different in different systems.
Since components are so important, we
discuss them in Section 18.3.

assume that components can be instantiated, making compo-
nents the architectural equivalent to classes in object-oriented
programming. To enable components to interact with each
other, we also introduce the notion of interfaces, as well as
ports, which are named communication endpoints typed with
an interface. Ports have a direction13 (provides, requires) as 13 It is important not to just state which

interfaces a component provides, but
also which interfaces it requires, because
we want to be able to understand (and
later analyze with a tool) component
dependencies. This is important for any
system, but is especially important for
the versioning requirement.

well as a cardinality. Based on this initial version of the ADSL,
we could write the following example code14:

14 The following is an example instance
that makes use of the architecture DSL.
In this section we discuss the ADSL
based on an example and don’t discuss
the implementation in Xtext. The DSL is
not very challenging in terms of Xtext.

component DelayCalculator {
provides aircraft: IAircraftStatus
provides managementConsole: IManagementConsole
requires screens[0..n]: IInfoScreen

}

component Manager {
requires backend[1]: IManagementConsole

}

component InfoScreen {
provides default: IInfoScreen

}

component AircraftModule {
requires calculator[1]: IAircraftStatus

}

We then looked at instantiation. There are many aircraft, each
running an AircraftModule, and there are even more Info-

Screens. So we need to express instances of components15. 15 Note that these are logical instances.
Decisions about pooling and redundant
physical instances had not been made
yet.

We also introduce connectors to define actual communication
paths between components (and their ports).

instance dc: DelayCalculator
instance screen1: InfoScreen
instance screen2: InfoScreen
connect dc.screens to (screen1.default, screen2.default)

460 dslbook.org

� Organizing the System At some point it became clear that
in order to not get lost in all the components, instances and
connectors, we need to introduce some kind of namespace. It
became equally clear that we’d need to distribute things to dif-
ferent files:

namespace com.mycompany {

namespace datacenter {

component DelayCalculator {
provides aircraft: IAircraftStatus
provides managementConsole: IManagementConsole
requires screens[0..n]: IInfoScreen

}

component Manager {
requires backend[1]: IManagementConsole

}

}

namespace mobile {

component InfoScreen {
provides default: IInfoScreen

}

component AircraftModule {
requires calculator[1]: IAircraftStatus

}

}
}

It is also a good idea to keep component and interface defini-
tions (essentially type definitions) separate from system defi-
nitions (connected instances), so we introduced the concept of
compositions, which make a group of instances and connectors
identifiable by a name:

namespace com.mycompany.test {

composition testSystem {
instance dc: DelayCalculator
instance screen1: InfoScreen
instance screen2: InfoScreen
connect dc.screens to (screen1.default, screen2.default)

}
}

� Dynamic Connectors Of course in a real system, the Delay-

Calculator would have to dynamically discover all the avail-
able InfoScreens at runtime. There is not much point in man-
ually describing those connections. So, we specify a query
that is executed at runtime against some kind of naming/-
trader/lookup/registry infrastructure16. It is re-executed ev-

16 Note how the specific realization
depends on the technology. In the
model, we just express the fact that
we have to be able to run the queries
specified in the model. We will map
this to an implementation later.

ery 60 seconds to find the InfoScreens that have just come on
line.

dsl engineering 461

namespace com.mycompany.production {

instance dc: DelayCalculator

// InfoScreen instances are created and started in other configurations
dynamic connect dc.screens query {

type = IInfoScreen
status = active

}
}

A similar approach can be used to address load balancing or
fault tolerance. A static connector can point to a primary as
well as a backup instance. Or a dynamic query can be re-
executed when the currently used instance becomes unavail-
able. To support registration of instances with the naming or
registry service, we add additional syntax to their definition. A
registered instance automatically registers itself with the reg-
istry, using its name (qualified through the namespace) and all
provided interfaces. Additional parameters can be specified,
and the following example registers a primary and a backup
instance for the DelayCalculator:

namespace com.mycompany.datacenter {

registered instance dc1: DelayCalculator {
registration parameters {role = primary}

}

registered instance dc2: DelayCalculator {
registration parameters {role = backup}

}
}

� Interfaces So far we hadn’t really defined what an interface
is. We knew that we’d like to build the system based on a
messaging infrastructure. Here’s our first idea: an interface is
a collection of messages, where each message has a name and
a list of typed parameters17. After discussing this notion of 17 This also requires the ability to define

data structures, but in the interests of
brevity we won’t show that.

interfaces for a while, we noticed that it was too simplistic. We
needed to be able to define the direction of a message: does
it flow in or out of the port? More generally, which kinds of
message interaction patterns are there? We identified several;
here are examples of oneway and request-reply18:

18 A oneway message has no result. It
is sent by the client infrastructure to a
receiver with best effort. The client does
not know if the message ever arrives. A
request-reply message is exactly what it
seems: the client sends a message and
expects a reply. Note that at this point
we do not specify whether we expect
the request as a callback, by polling
a Future object, or whether the client
blocks until the reply arrives.

interface IAircraftStatus {

oneway message reportPosition(aircraft: ID, pos: Position)

request-reply message reportProblem {
request (aircraft: ID, problem: Problem, comment: String)
reply (repairProcedure: ID)

}
}

462 dslbook.org

We talked a long time about various message interaction pat-
terns. After a while it turned out that one of the core use cases
for messages was to push updates of various data structures
out to various interested parties. For example, if a flight was
delayed because of a technical problem with an aircraft, then
this information had to be pushed out to all the InfoScreens in
the system. We prototyped several of the messages necessary
for "broadcasting" complete updates, incremental updates and
removal of data items. And then it hit us: we were working
with the wrong abstraction!

� Data Replication While messaging is a suitable transport ab-
straction for these things, architecturally we’re really talking
about replicated data structures. It basically works the same
way for all of those structures:

• You define a data structure (such as FlightInfo).

• The system then keeps track of a collection of such data
structures.

• This collection is updated by a few components and typi-
cally read by many other components.

• The update strategies from publisher to receiver always in-
clude full update of all items in the collection, incremental
updates of just one or a few items, and removal of items.

Once we understood that in addition to messaging, there’s this
additional core abstraction in the system, we added this to our
Architecture DSL and were able to write something like the fol-
lowing. We define data structures and replicated items. Com-
ponents can then publish or consume those replicated data
structures. We state that the publisher publishes the replicated
data whenever something changes in the local data structure.
However, the InfoScreen only needs an update every 60 sec-
onds (as well as a full load of data when it is started up).

struct FlightInfo {
from: Airport
to: Airport
scheduled: Time
expected: Time

}

replicated singleton flights {
flights: FlightInfo[]

}

component DelayCalculator {
publishes flights { publication = onchange }

dsl engineering 463

}

component InfoScreen {
consumes flights { update 60 }

}

This is much more concise compared to a description based
on messages. We can automatically derive the kinds of mes-
sages needed for full update, incremental update and removal,
and create these messages in the model using a model transfor-
mation. The description reflects much more clearly the actual
architectural intent: it expresses better what we want to do
(replicate data) compared to a lower-level description of how
we want to do it (sending around update messages)19. 19 Once again, this shows the advantage

of a DSL that is closely aligned with
its domain, and that can be evolved
together with the understanding of
the domain. With a fixed language, we
most likely would have had to shoehorn
the data replication abstractions into
messaging, somehow. And by doing so,
we would have lost the opportunity to
generate meaningful code based on the
actual architectural intent.

� Interface Semantics While replication is a core concept for
data, there is of course still a need for messages, not just as an
implementation detail, but also as a way to express architec-
tural intent20. It is useful to add more semantics to an inter-

20 Not all communication is actually
data replication.

face, for example to define valid sequencing of messages. A
well-known way to do that is to use protocol state machines.
Here is an example. It expresses the fact that you can only re-
port positions and problems once an aircraft is registered. In
other words, the first thing an aircraft has to do is register itself.

interface IAircraftStatus {

oneway message registerAircraft(aircraft: ID)

oneway message unregisterAircraft(aircraft: ID)

oneway message reportPosition(aircraft: ID, pos: Position)

request-reply message reportProblem {
request (aircraft: ID, problem: Problem, comment: String)
reply (repairProcedure: ID)

}

protocol initial = new {
state new {

registerAircraft => registered
}
state registered {

unregisterAircraft => new
reportPosition
reportProblem

}
}

}

Initially, the protocol state machine is in the new state where the
only valid message is registerAircraft. If this is received,
we transition into the registered state. In registered, you
can either unregisterAircraft and go back to new, or receive
a reportProblem or reportPosition message, in which case
you will remain in the registered state.

464 dslbook.org

� Versioning We mentioned above that the system is dis-
tributed geographically. This means it is not feasible to update
all the software for all parts of the systems (e.g., all InfoScreens
or all AircraftModules) at the same time. As a consequence,
there might be several versions of the same component running
in the system. To make this feasible, many non-trivial things
need to be put in place in the runtime system. But the basic re-
quirement is this: you have to be able to mark versions of com-
ponents, and you have to be able to check them for compatibil-
ity with older versions. The following piece of code expresses
the fact that the DelayCalculatorV2 is a new implementation
of DelayCalculator. newImplOf means that no externally visi-
ble aspects change, which is why no ports and other externally
exposed details of the component are declared21. 21 For all intents and purposes, it’s the

same thing – just maybe a couple of
bugs are fixed.component DelayCalculator {

publishes flights { publication = onchange }
}
newImplOf component DelayCalculator: DelayCalculatorV2

To evolve the externally visible signature of a component, one
can write this:

component DelayCalculator {
publishes flights { publication = onchange }

}

newVersionOf component DelayCalculator: DelayCalculatorV3 {
publishes flights { publication = onchange }
provides somethingElse: ISomething

}

The keyword newVersionOf allows us to add additional pro-
vided ports (such as the somethingElse port) and to remove
required ports22. 22 You cannot add additional required

ports or remove any of the provided
ports, since that would destroy the
"plug-in compatibility". Constraints
make sure that these rules are enforced
on the model level.

This wraps up our case study23. In the next subsection we

23 While writing this chapter, I contacted
the customer, and we talked about
the approach in hindsight. As it turns
out, they are still happily using the
approach as the foundation of their
system. They generate several hundred
thousand lines of code from the models,
and they have to migrate to a new
version of Xtext real soon now :-)

recap the approach and provide additional guidance.

18.2.2 Architecture DSL Concepts

� What we did in a Nutshell Using the approach shown here,
we were able to quickly get a grip of the overall architecture of
the system. All of the above was actually done in the first day
of the workshop. We defined the grammar, some important
constraints, and a basic editor (without many bells and whis-
tles). We were able to separate what we wanted the system to
do from how it would achieve it: all the technology discussions
were now merely an implementation detail of the conceptual

dsl engineering 465

descriptions given here24. We also achieved a clear and unam- 24 I don’t want to give the impression
that technology decisions are unim-
portant. However, they should be an
explicit second step, and not mixed
with the concepts. This is particularly
important in light of the fact that the
system should live for more than 20

years, during which technologies will
change more than once.

biguous definition of what the different architectural concepts
mean. The generally nebulous concept of component has a for-
mal, well-defined meaning in the context of this system.

The approach discussed in this chapter therefore recommends
the definition of a formal language for your project’s or sys-
tem’s conceptual architecture. You develop the language as the
understanding of your architecture grows. The language there-
fore always resembles the complete understanding about your
architecture in a clear and unambiguous way.

� Component Implementation By default, architecture DSLs
are incomplete; component implementation code is written man-
ually against the generated API, using well-known composi-
tion techniques such as inheritance, delegation or partial classes.

However, there are other alternatives for component imple-
mentation that do not use a GPL, but instead use formalisms
that are specific to certain classes of behavior: state machines,
business rules or workflows. You can also define and use a
domain-specific language for certain classes of functionality in
a specific business domain. If such an approach is used, then
the code generator for the application domain DSL has to act
as the "implementor" of the components (or whatever other ar-
chitectural abstractions are defined in the architecture DSL).
The code generated from the business logic DSL must fit into
the code skeletons generated from the architecture DSL. The
code composition techniques discussed for incomplete DSLs in
Section 4.5.1 can be used here25. 25 Be aware that the discussion in

this section is only really relevant
for application-specific behavior, not
for all implementation code. Huge
amounts of implementation code are
related to the technical infrastructure
(e.g., remoting, persistence, workflow)
of an application. This can be derived
from the architectural models, and
generated automatically.

� Standards, ADLs and UML Describing architecture with
formal languages is not a new idea. Various communities rec-
ommend using Architecture Description Languages (ADLs) or
the Unified Modeling Language (UML). However, all of those
approaches advocate using existing, generic languages for spec-
ifying architecture, although some of them, including UML,
can be customized to some degree26. 26 I am not going to elaborate on the

reasons why I think profiles are usually
not a good alternative to a DSL. It
should become clear from the example
above and the book in general why I
think this is true.

Unfortunately, efforts like that completely miss the point.
We have not experienced much benefit in shoehorning an ar-
chitecture description into the (typically very limited, as well
as too generic) constructs provided by predefined languages
– one of the core activities of the approach explained is this
chapter is the process of actually building your own language to
capture your system’s specific conceptual architecture.

466 dslbook.org

� Visualization In this project, as well as in many other ones,
we have used textual DSLs. We have argued in this book why
textual DSLs are superior in many cases, and these arguments
apply here as well. However, we did use visualization to show
the relationships between the building blocks, and to commu-
nicate the architecture to stakeholders who were not willing to
dive into the textual models. Figure 18.2 shows an example,
created with Graphviz.

Figure 18.2: This shows the relationship
between the ingredients of the example
system described above. It contains
namespace, components, interfaces and
data structures, as well as the provides
and requires relationships between
components and interfaces.

� Code Generation Now that we have a formal model of the
conceptual architecture (the language) and also a formal de-
scription of system(s) we are building – i.e., the models defined
using the language – we can exploit this by generating code27: 27 It should have become clear from

the chapter that the primary benefit of
developing the architecture DSL (and
using it) is just that: understanding con-
cepts by removing any ambiguity and
defining them formally. It helps you
understand your system and get rid of
unwanted technology interference. But
of course, exploiting these assets further
by generating code is useful.

• We generate an API against which the implementation is
coded. That API can be non-trivial, taking into account the
various messaging paradigms, replicated state, etc. The gen-
erated API allows developers to code the implementation in
a way that does not depend on any technological decisions:
the generated API hides those from the component imple-
mentation code. We call this generated API, and the set of
idioms to use it, the programming model.

• Remember that we expect some kind of component con-
tainer or middleware platform to run the components, so we
also generate the code that is necessary to run the compo-
nents (including their technology-neutral implementation)

dsl engineering 467

on the implementation technology of choice. We call this
layer of code the technology mapping code (or glue code). It
typically also contains the configuration files for the various
platforms involved28. 28 As a side effect, the generators cap-

ture best practices in working with the
technologies you’ve decided to use.It is of course completely feasible to generate APIs for sev-

eral target languages (supporting component implementation
in various languages) and/or generating glue code for several
target platforms (supporting the execution of the same compo-
nent on different middleware platforms). This nicely supports
potential multi-platform requirements29. 29 Even if you don’t have explicit re-

quirements to support several plat-
forms, it may still be useful to be able
to do so. For one, it makes future mi-
gration to a new platform simpler. Or a
second platform may simply be a unit
test environment running on a local
PC, without the expensive distribution
infrastructure of the real system.

Another important point is that you typically generate in
several phases: a first phase uses type definitions (components,
data structures, interfaces) to generate the API code so you can
write the component implementation code. A second phase
generates the glue code and the system configuration code.
Consequently, it is often sensible to separate type definitions
from system definitions into several different viewpoints30: these 30 Viewpoints were discussed in Sec-

tion 4.4.are used at different times in the overall process, and also often
created, modified and processed by different people.

In summary, the generated code supports an efficient and
technology independent implementation and hides much of
the underlying technological complexity, making development
more efficient and less error-prone.

� What Needs to be Documented? I advertise the above ap-
proach as a way to formally describe a system’s conceptual and
application architecture. So, this means it serves as some kind
of documentation, right? Right, but it does not mean that you
don’t have to document anything else. The following things
still need to be documented31: 31 There are probably more aspects of

an architecture that might be worth
documenting, but the following two are
the most important ones when working
with Architecture DSLs.

Rationales/Architectural Decisions The DSLs describe what your
architecture looks like, but it does not explain why it looks
the way it does. You still need to document the rationales
for architectural and technological decisions. Note that the
grammar of your architecture DSL is a really good baseline
for such a documentation. Each of the constructs is the re-
sult of architectural decisions. So, if you explain for each
grammar element why it is there (and why other alterna-
tives have not been chosen) you are well on your way to
documenting the important architectural decisions. A sim-
ilar approach can be used for the application architecture,
i.e. the programs written with the DSL.

468 dslbook.org

User Guides A language grammar can serve as a well-defined
and formal way of capturing an architecture, but it is not a
good teaching tool. So you need to create tutorials for your
users (i.e., the application programmers) that explain how
to use the architecture and the DSL. This includes what and
how to model (using your DSL) and also how to generate
code and how to use the programming model (how to fill in
the implementation code into the generated skeletons).

18.3 Component Models

As I have hinted at already, I think that component-based soft-
ware architectures are extremely useful. There are many (more
or less formal) definitions of what a components is. They range
from a building block of software systems, through something
with explicitly defined context dependencies, to something that
contains business logic and is run inside a container.

Our understanding (notice we are not saying we have a real
definition) is that a component is the smallest architectural
building block. When defining a system’s architecture, you
typically don’t look inside components. Components have to
specify all their architecturally relevant properties declaratively
(using meta data, or models). As a consequence, components
become analyzable and composable by tools. Typically they
run inside a container that serves as a framework to act on
the runtime-relevant parts of the meta data. The component
boundary is the level at which the container can provide tech-
nical services such as as logging, monitoring or fail-over. The
component also provides well-defined APIs to its implemen-
tation to address cross-cutting architectural concerns such as
locking32. 32 A long time ago I coauthored the

book Server Component Patterns. While
the EJB-based technology examples
are no longer relevant, many of the
patterns identified and discussed in the
book still are. The book was not written
with a MDD/DSL background, but
the patterns fit very well with such an
approach.

I don’t have any specific requirements for what meta data
a component actually contains (and hence, which properties
are described). The concrete notion of components has to be
defined for each (system/platform/product line) architecture
separately: this is exactly what we do with the language ap-
proach introduced above.

Based on my experience, it is almost always useful to start
by modeling the component structure of the system to be built.
To do that, we start by defining what a component actually
is – that is, by defining a meta model for component-based
development. Independent of the project’s domain, these meta

dsl engineering 469

models are quite similar, with a set of specific variation points.
We show parts of these meta models here to give you a head
start when defining your own component architecture.

18.3.1 Three Typical Viewpoints

It is useful to look at a component-based system from several
viewpoints (Section 4.4). Three viewpoints form the backbone
of the description.

� The Type Viewpoint The Type viewpoint describes compo-
nent types, interfaces and data structures33. A component pro- 33 Referring back to the terminology in-

troduced in Section 3.3, this viewpoint
is independent. It is also sufficient for
generating all the code that is needed
for developers to implement the appli-
cation logic.

vides a number of interfaces and references a number of re-
quired interfaces (often through ports, as in the example above).
An interface owns a number of operations, each with a return
type, parameters and exceptions. Fig. 18.3 shows this.

Figure 18.3: The types viewpoint
describes interfaces, data types and
components. These are referred to as
types because they can be instantiated
(in the composition viewpoint) to make
up the actual application.

To describe the data structures with which the components
work (the meta model is shown in Fig. 18.4), we start out with
the abstract concept Type. We use primitive types as well as
complex types. A ComplexType has a number of named and
typed attributes. There are two kinds of complex types. Data
transfer objects are simple (C-style) structs that are used to ex-
change data among components. Entities have a unique ID and
can be persisted (this is not visible from the meta model). Enti-
ties can reference each other and can thus build more complex
data graphs. Each reference specifies whether it is navigable in
only one or in both directions. A reference also specifies the
cardinalities of the entities at the respective ends, and whether
the reference has containment semantics.

470 dslbook.org

Figure 18.4: The structure of data
types of course depends a lot on the
application. A good starting point
for data definitions is the well-known
entity relationship model, which is
essentially represented by this meta
model.

� The Composition Viewpoint The Composition viewpoint, ill-
ustrated in Fig. 18.5, describes component instances and how
they are connected34. Using the Type and Composition view-

34 The Composition viewpoint is depen-
dent: it depends on the Type viewpoint.
It is also sufficient for generating stub
implementation of the system for unit
testing and for doing dependency anal-
yses and other checks for completeness
and consistency.

points, we can define logical models of applications. A Confi-

guration consists of a number of ComponentInstances, each
referencing their type (from the Type viewpoint). An instance
has a number of wires (or connectors): a Wire can be seen as
an instance of a ComponentInterfaceRequirement. Note the
constraints defined in the meta model:

• For each ComponentInterfaceRequirement defined in the
instance’s type, we need to supply a wire.

• The type of the component instance at the target end of a
wire needs to provide the interface to which the wire’s com-
ponent interface requirement points.

Figure 18.5: The Composition viewpoint
describes the composition of a logical
system from the component types
defined in the Types viewpoint.

dsl engineering 471

� The System Viewpoint The system viewpoint describes the
system infrastructure onto which the logical system defined
with the two previous viewpoints is deployed (Fig. 18.6), as
well as the mapping of the Composition viewpoint onto this
execution infrastructure35.

35 In some cases it may make sense to
separate the infrastructure definition
from the mapping to the Composi-
tion viewpoint (for example, if the
infrastructure is configured by some
operations department).

Figure 18.6: The System viewpoint maps
the logical system defined in the Compo-
sition viewpoint to a specific hardware
and systems software configuration.

A system consists of a number of nodes, each one hosting con-
tainers. A container hosts a number of component instances.
Note that a container also defines its kind – representing tech-
nologies such as OSGi, JEE, Eclipse or Spring. Based on this
data, together with the data in the Composition viewpoint, you
can generate the necessary "glue" code to run the components
in that kind of container, including container and remote com-
munication configuration code, as well as scripts to package
and deploy the artifacts for each container.

You may have observed that the dependencies among the view-
points are well-structured. Since you want to be able to define
several compositions using the same components and inter-
faces, and since you want to be able to run the same composi-
tions on several infrastructures, dependencies are only legal in
the directions shown in figure 18.7.

Figure 18.7: Viewpoint dependencies
are set up so that the same components
(Type viewpoint) can be assembled into
several logical applications (Compo-
sition viewpoint), and each of those
can be mapped to several execution
infrastructures (System viewpoint).

18.3.2 Aspect Models

The three viewpoints described above are a good starting point
for modeling and building component-based systems. How-
ever, in many cases these three models are not enough. Addi-
tional aspects of the system have to be described using specific

472 dslbook.org

aspect models that are arranged "around" the three core view-
point models. The following aspects are typically handled in
separate aspect models:

• Persistence

• Authorization and Authentication (for enterprise systems)

• Forms, layout, page flow (for Web applications)

• Timing, scheduling and other quality of service aspects (es-
pecially in embedded systems)

• Packaging and deployment

• Diagnostics and monitoring

The idea of aspect models is that the information is not added
to the three core viewpoints, but rather is described using a
separate model with a suitable concrete syntax. Again, the
meta model dependencies are important: the aspects may de-
pend on the core viewpoint models and maybe even on one
another, but the core viewpoints must not depend on any of
the aspect models. Figure 18.8 illustrates a simplified persis-
tence aspect meta model.

Figure 18.8: An example meta model
for a persistence aspect. It maps data
defined in the Type viewpoint to tables
and columns.

18.3.3 Variations

The meta models described above cannot be used in exactly
this way in every project. Also, in many cases the notion of
what constitutes a Component needs to be adapted or extended.
As a consequence, there are many variations of these meta
models. In this section we discuss a few of them36.

36 Consider them as an inspiration for
your own case. In the end, the actual
system architecture drives these meta
models.

dsl engineering 473

� Messaging Instead of operations and their typical call/block
semantics, you may want to use messages, together with the
well-known message interaction patterns. The example system
in this chapter used messaging.

� No Interfaces Operations could be added directly to the
components. As a consequence, of course, you cannot reuse
the interface’s "contracts" separately, independently of the sup-
plier or consumer components. You cannot implement inter-
face polymorphism.

� Component Kinds Often you’ll need different kinds of com-
ponents, such as domain components, data access components,
process components or business rules components. Depending
on this component classification, you can define the valid de-
pendency structures between components (e.g., a domain com-
ponent may access a data access component, but not the other
way round)37. 37 You will typically also use different

ways of implementing component func-
tionality, depending on the component
kind.� Layers Another way of managing dependencies is to mark

each component with a layer tag, such as domain, service, GUI
or facade, and define constraints on how components in these
layers may depend on each other.

� Configuration Parameters A component might have a num-
ber of configuration parameters – comparable to command line
arguments in console programs – that help configure the be-
havior of components. The parameters and their types are de-
fined in the type model, and values for the parameters can be
specified later, for example in the models for the Composition
or the System viewpoints.

� Component Characteristics You may want to express whether
a components is stateless or stateful, whether they are thread-
safe or not, and what their lifecycle should look like (for exam-
ple, whether they are passive or active, whether they want to
be notified of lifecycle events such as activation, and so on).

� Asynchronicity Even if you use operations (and not mes-
saging), it is not always enough to use simple synchronous
communication. Instead, one of the various asynchronous com-
munication paradigms, such as those described in the Remot-
ing Patterns book38, might be applicable. Because using these

38 M. Voelter, M. Kircher, and U. Zdun.
Remoting Patterns. Wiley, 2004

474 dslbook.org

paradigms affects the APIs of the components, the pattern to
be used has to be marked up in the model for the Type view-
point, as shown in Fig. 18.9. It is not enough to define it in the
Composition viewpoint39.

39 If your application uses messaging
interfaces instead of the RPC-style
interfaces discussed in this section, then
an API can be designed that remains
independent of the communication
paradigm.

Figure 18.9: A ComponentInterface-
Requirement may describe which
communication paradigm should be
applied.

� Events In addition to the communication through inter-
faces, you might need (asynchronous) events using a static or
dynamic publisher/subscriber infrastructure40. 40 The "direction of flow" of these

events is typically the opposite of the
dependencies discussed above: this
allows them to be used for notifications
or callbacks.

� Dynamic Connection The Composition viewpoint connects
component instances statically. This is not always feasible. If
dynamic wiring is necessary, the best way is to embed the in-
formation that determines which instance to connect to at run-
time into the static wiring model. So, instead of specifying
in the model that instance A must be wired to instance B, the
model only specifies that A needs to connect to a component
with the following properties: it needs to provide a specific in-
terface, and for example offer a certain reliability. At runtime,
the wire is "deferenced" to a suitable instance using an instance
repository41. 41 We have seen this in the example

system described above.

� Hierarchical Components Hierarchical components, as illus-
trated in figure 18.10, are a very powerful tool. Here a com-
ponent is structured internally as a composition of other com-
ponent instances. This allows a recursive and hierarchical de-
composition of a system to be supported. Ports define how
components may be connected: a port has an optional pro-
tocol definition that allows for port compatibility checks that
go beyond simple interface equality. While this approach is
powerful, it is also non-trivial, since it blurs the formerly clear
distinction between Type and Composition viewpoints.

� Structuring Finally, it is often necessary to provide addi-
tional means of structuring complex systems. The terms busi-

dsl engineering 475

Figure 18.10: Hierarchical components
support the recursive hierarchical
decomposition of systems. In particular,
a HierarchicalComponent consists
internally of connected instances of
other components.

ness component or subsystem are often used. Such a higher-level
structure consists of a set of components (and related artifacts
such as interfaces and data types). Optionally, constraints de-
fine which kinds of components may be contained in a specific
kind of higher-level structure. For example, you might want to
define a business component to always consist of exactly one
facade component and any number of domain components.

19
DSLs as Programmer Utility

This chapter was written by Birgit Engelmann and Sebastian
Benz. You can reach them via birgit.engelmann@gmail.com

and sebastian.benz@gmail.com.

In this chapter we look at an example of a DSL that is used
as a developer utility. This means that the DSL is not nec-
essarily used to implement the core application itself, but
plays an important role as part of the development process.
The example discussed in this chapter is Jnario, an Xtext-
based DSL for behavior-driven development and unit test-
ing.

Tests play an important role in software development1: they 1 We have covered testing DSLs and the
programs written with DSLs earlier in
Chapter 14. This DSL is used to specify
and test application code.

ensure that an application behaves as expected. However, the
benefit of tests goes beyond checking whether a system’s out-
put corresponds to the input. They provide valuable feedback
about the quality your application’s design. For example, if
a class is hard to test, this can be an indication of too many
dependencies or responsibilities, which in turn hinders future
maintainability. Furthermore, tests are effective means for de-
velopers to elaborate, together with the stakeholders, how the
desired features should work. If done right, tests created in
such a way can be used as executable specifications of the ap-
plication’s behavior.

In particular, when tests are used in this latter way, using a
general-purpose programming language for writing tests is not

478 dslbook.org

very suitable, because it is hard for non-developers to read, un-
derstand and perhaps even write the specified behavior2. It is 2 Even when stakeholders are not

involved in the specification and testing
of the system, this is still a domain that
warrants its own DSL.

desirable to describe an application’s behavior using a textual
format that can be understood by business users, developers
and testers. At the same time, it should be possible to make
these specifications executable in order to use them to check
automatically whether the application fulfills its expected be-
havior.

19.1 The Context

The core idea of Jnario is to describe features of your applica-
tion using scenarios. For each scenario, preconditions, events
and expected outcomes are described textually with Given, When
and Then steps. Here is an example acceptance specification for
adding values with a calculator. It is written using Cucumber3, 3 cukes.info

a popular Java-based tool for behavior-driven development.

Feature: Basic Arithmetic

Scenario: Addition
Given a just turned on calculator
When I enter "50"
And I enter "70"
And press add
Then the result should be "120"

This format was introduced six years ago by Dan North4, and 4 dannorth.net/introducing-bdd/

since then has been widely adopted by practitioners. There are
tools for most programming languages to turn these scenarios
into executable specifications. This is accomplished by map-
ping each step to corresponding execution logic. For example,
in Java/Cucumber you need to declare a separate class with a
method for each step:

public class CalculatorStepdefs {
private Calculator calc;

@Given("^a calculator$")
public void a_calculator() {

calc = new Calculator();
}

...
}

The method’s annotation contains a regular expression match-
ing the text in the Given part of a scenario. The method’s
body contains the actual implementation of the step. The tool
then executes a scenario by instantiating the class and execut-
ing each step with the associated method. The problem with
this approach is that the overhead of adding new steps is quite

dsl engineering 479

high, since for every new step, a new implementing method
has to be created as well.

19.2 Jnario Described

To make it simpler to define executable scenarios for Java appli-
cations, we decided to create Jnario5. In Jnario you can directly 5 www.jnario.org

add the necessary code below your steps. In our example we
create a calculator, pass in the parameters defined in the steps
(via the implicit variable args) and check the calculated result:

...
Feature: Basic Arithmetic

Scenario: Addition
Calculator calculator

Given a just turned on calculator
calculator = new Calculator()

When I enter "50"
calculator.enter(args.first)

And I enter "70"
And press add

calculator.add
Then the result should be "120"

result => args.first

This reduces the effort of writing scenarios by not needing to
maintain separate step definitions. It is still possible to reuse
existing step definitions in scenarios. The editor even provides
code completion showing all existing steps. In our example,
the step And I enter "70" reuses the code of the step Given

I enter "50" with a different parameter value. A step is re-
solved by removing all keywords and parameter values from
its descriptions and then matching the normalized description
to the description of steps with an implementation.

Figure 19.1: Hiding the step implemen-
tation in the Editor.

You might think now that mixing code and text in your specs
makes everything pretty unreadable. Actually, this is not a
problem, as you can hide the code in the editor to improve the

480 dslbook.org

readability, as shown in Fig. 19.1. This is accomplished using
the code folding feature of Eclipse for hiding the step imple-
mentations. When editing a step in an editor, its implementa-
tion will automatically be shown6.

6 Mixing prose scenario descriptions
and the implementation code is also not
violating the separation of concerns.
This is because we do not mix scenarios
and application code. The scenario
implementation code really is part of
the scenario, so mixing the code with
the prose makes sense.

Feature definitions in Jnario compile to plain Java JUnit tests,
which can be directly executed from within Eclipse. Figure 19.2
shows the execution result of the Calculator feature in Eclipse.

Figure 19.2: Executing Jnario features
from within Eclipse.

Scenarios are good for writing high-level acceptance specifica-
tions, but writing scenarios for data structures or algorithms
quickly becomes tedious. This is why Jnario provides another
language for writing unit specifications. This languages re-
moves all the boilerplate from normal JUnit tests, helping you
to focus on what is important: specifying facts about your im-
plementation. A fact can be as simple as a single expression
asserting a simple behavior:

package demo

import java.util.Stack

describe Stack{
fact new Stack().size => 0

}

We use => to describe the expected result of an expression.
More complex facts can have an additional description:

describe Stack{
fact "size increases when adding elements" {

val stack = new Stack<String>
stack.add("something")
stack.size => 1

}
}

Objects can behave differently in different contexts. For exam-
ple, calling pop on a non-empty stack decreases its size. How-
ever, if the stack is empty, pop results in an exception. In Jnario

dsl engineering 481

we can explicitly specify such contexts using the context key-
word:

describe "A Stack" {
val stack = new Stack<String>
context "empty" {

fact stack.size => 0
fact stack.pop throws Exception

}
context "with one element" {

before stack.add("element")
fact stack.size => 1
fact "pop decreases size" {

stack.pop stack.size => 0
}

}
}

You can execute unit specifications as normal JUnit tests. Note
that Jnario uses the description as test name or, if not present,
the actual expression being executed. If you look at the ex-
ecuted tests in Fig. 19.3, you can see that your specifications
effectively document the behavior of your code.

Figure 19.3: Executing Jnario unit specs
from within Eclipse.

Jnario is not just another testing framework. It is actually two
domain-specific languages specifically made for writing exe-
cutable specifications. The main advantage of using a DSL
for writing tests is that it becomes possible to adapt the syn-
tax to the skills of the intended users. In our case this means
that specifications written in Jnario can be understood by users
without a programming background.

Another advantage of using a DSL for writing tests is the
possibility of adding features that are not available in a general
purpose programming language, but are really helpful when
writing tests. If you think about current testing frameworks,
they usually "stretch" the syntax of the underlying program-
ming language to be able to write expressive tests. Compare
that to a programming language in which the syntax is specif-
ically designed for the purpose of writing tests. For example,

482 dslbook.org

a common scenario is to test a class with different sets of input
parameters. Writing such tests in Jnario is really easy, as it has
a special table syntax:
describe "Adding numbers" {

def additions {
a	b	sum
1	2	3
4	5	9
10	11	20
21	21	42

}
fact additions.forEach[a + b => sum]

}

Tables in Jnario are type safe: the type of a column will be
automatically inferred to the common supertype of all cells in
a column. You can easily iterate over each row in a table and
write assertions by accessing the column values as variables.
If you execute the example specification, it will fail with the
following error:
java.lang.AssertionError: examples failed

a	b	sum
1	2	3
4	5	9
10	11	20
21	21	42

(1) Expected a + b => sum but
a + b is 21 a is 10 b is 11 sum is 20

This demonstrates another advantage of Jnario: it tries to give
you as much information as possible about which assertion
failed, and why. A failed assertion prints the values of all eval-
uated sub-expressions. This means you don’t need to debug
your tests any further in order to find the exact reason why an
assertion failed.

These are just some examples that demonstrate the advan-
tages of test-centric domain-specific language. Having full con-
trol over the syntax of the language and its translation into Java
code allows us to add features that are helpful when writing
tests, but which would never make sense in a general purpose
language7.

7 They would also be very hard to im-
plement with a GPL and its associated
tooling!

19.3 Implementation

Both Jnario languages – the Feature and Spec languages – are
developed with Xtext. Xtext is used for a number of reasons.

Eclipse Integration Jnario targets Java developers, which makes
Eclipse the best tooling choice, since it is currently the mostly
used Java IDE.

dsl engineering 483

Standalone Support Although Xtext provides tight Eclipse inte-
gration, all language features, such as parser and compiler,
are not restricted to Eclipse. This is important, as it should
be possible to compile Jnario specifications with maven or
from the command line.

Resuable Expression Language Implementing a DSL with a cus-
tom expression language requires a lot of effort. Xtext pro-
vides Xbase, a statically-typed expression language based
on Java, which can be integrated into DSLs with relatively
little effort. This eliminates the need to implement a custom
expression language and ensures compatibility with existing
Java code8.

8 As we mentioned earlier in this book,
Xbase supports extension methods,
type inference, lambda expressions
and other useful extensions of Java. It
compiles to Java source code, and is
100% compatible with the Java type
system.

19.3.1 Language Definition

Xtext’s Xbase provides a reusable expression language that can
be embedded into DSLs. The Xtend language, which also ships
with Xtext, is a general-purpose programming language for the
JVM. Xtend enriches Xbase with additional concepts, such as
classes, fields and methods. In Jnario we needed similar con-
cepts, which is why we decided to base the Jnario languages
on Xtend. Additionally, reusing Xtend had the advantage that
we could reuse a lot of the existing tooling for Jnario.

Figure 19.4: Jnario language hierarchy.
Xbase and Xtend ship with Xtext, and
Xtend reuses the Xbase expression
language by extending Xbase, and
embedding its expressions into concepts
like classes, fields or operations. Since
Jnario Feature and Jnario Specs both use
a set of common Xtend extensions, an
intermediate language Jnario Base was
developed that contains these common
concepts. Jnario Feature and Jnario Specs
then both extend Jnario Base and add
their own specific language concepts.

In Jnario we introduced new expressions, for example more
expressive assertions, which can be used in both languages.
In order to avoid reimplementing these in the feature and the
specs language, we created a base language with all common
features used by Jnario. The resulting language hierarchy is
shown in Fig. 19.4. This example demonstrates that by, care-
fully modularizing language features, it possible in Xtext to
effectively reuse languages together with their tooling in dif-
ferent contexts. Referring back to the design part of the book,
these are all examples of language extension.

As we mentioned earlier, Jnario has assertions with improved
error messages. An example is the assert statement, which con-
sists of the assert keyword followed by an expression evalu-
ating to a Boolean:

assert x != null

Adding a new expression to the Xtext base language works by
overriding the corresponding grammar rules. In our example,
we added the new assertion expression as a primary expres-
sion9:

9 As we discussed in the chapter on
modularity with Xtext (Chapter 16.3),
this requires repeating the original rule
XPrimaryExpression and specifying
its new contents. In this case, we add
Assertion to the list of alternatives.

484 dslbook.org

XPrimaryExpression returns xbase::XExpression:
XConstructorCall |
XBlockExpression |
...
Assertion;

The Assertion expression itself is defined as a separate rule.
Notice how it again embeds concepts from Xbase, namely XEx-

pression:
Assertion returns xbase::XExpression:

’assert’ expression=XExpression;

Tables are another example for an extension of Xtend. Defining
the grammar for a table in Xtext is pretty straightforward10. A 10 Note that the grammar does not actu-

ally specify that the rows and columns
are laid out in the two-dimensional
structure we associate with tables.
However, this is not really a problem
since users will naturally use that
notation. Also, a formatter could be im-
plemented to format the table correctly.
In addition, an editor template could be
defined to create an example table that
is formatted in a meaningful way.

table has a list of columns and rows. Each column in the cells
in a row are separated by ’|’:
Table:

’def’ name=ID ’{’
(’|’ (columns+=Column)*

(rows += Row)*)?
’}’;

Column:
name=ValidID ’|’;

Row:
’|’ {Row} (cells+=XExpression ’|’)*;

Cells in the table can contain arbitrary expressions. We reused
the typing infrastructure provided by Xtext to calculate the
type of each column in the table: a column’s type is the com-
mon supertype of all expressions in the respective column.
Here is the essential part of the code:
@Inject extension ITypeProvider
@Inject extension TypeConformanceComputer

def getType(ExampleColumn column){
val cellTypes = column.cells.map[type]
return cellTypes.commonSuperType

}

In the next section we will have a look at how we map these
custom concepts to the generated Java classes.

19.3.2 Code Generation

Jnario specifications are compiled to plain Java JUnit4 tests.
Xtext provides a framework for mapping DSL concepts to cor-
responding JVM concepts. An example mapping for the fea-
ture language is shown in Fig. 19.5.
Scenarios and Backgrounds11 are mapped to Java classes, in 11 Backgrounds contain steps being

executed before each scenario. They are
usually used to set up preconditions
required by all scenarios.

which each step is mapped to a JUnit test method. The ad-
ditional @Test annotations required by JUnit are added during
the mapping process. The expressions can be completely trans-
formed by the existing Xtend compiler. However, in order to

dsl engineering 485

Figure 19.5: Generation from Jnario
Feature DSL (left column) to Java
classes with JUnit tests (right column).

support custom expressions such as assert, the Xtend com-
piler needs to be extended. Consider the following example:

val x = "hello"
val y = "world"
assert x + y == "hello world"

The execution of these statements will result in the following
error message:

java.lang.AssertionError: Expected x + y == "hello world" but
x + y is "helloworld"
x is "hello"
y is "world"

Note that the error message contains the original failing expres-
sion x + y == "hello world" rendered as text, together with
the value of all subexpressions. Creating such error messages
is not possible in plain Java, as the underlying AST cannot be
accessed. However, in a DSL like Jnario we can include this
information when generating the Java code from our specifica-
tions12. To do so, we subclass the XtendCompiler and add a

12 This "transformation-time reflection"
is a natural consequence of the fact that
a generator can inspect a program’s
structure (and has access to the AST)
during the transformation. We came
across this effect earlier when we noted
mbeddr outputs the source/location of
a reported message together with the
message.

custom generator for our assertion expression:

@Override
public void doInternalToJavaStatement(XExpression obj,

ITreeAppendable appendable, boolean isReferenced) {
if (obj instanceof Assertion) {

toJavaStatement((Assertion) obj, appendable, isReferenced);
} else {

super.doInternalToJavaStatement(obj, appendable, isReferenced);
}

}

The custom generator translates an assertion into the corre-
sponding Java code:

private void toJavaStatement(Assertion assertion, ITreeAppendable b) {
XExpression expr = assertion.getExpr();
toJavaStatement(expr, b, true);

486 dslbook.org

b.newLine();
b.append("org.junit.Assert.assertTrue(");
b.append("Expected ");
b.append(serialize(expr));
b.append(" but ");
appendSubExpressionValues(expr, b);
b.append(", ");
toJavaExpression(expr, b);
b.append(");");

}

We first get the actual expression of the assertion, which is
then compiled by invoking toJavaStatement(expr,...). The
Xtend compiler automatically creates a temporary variable for
each subexpression13. The value of these variables will be 13 This is why the method is

called toJavaStatement and not
toJavaExpression.

used later to generate the error message. The assertion itself
is mapped to the JUnit method Assert.assertTrue(message,

result). The key to showing the expression in a textual form
as part of the error message is that the message is built by seri-
alizing the expression as it is written in the Jnario file together
with the values of the subexpressions taken from previously
created temporary variables. Finally, execution result expres-
sion is compiled by invoking toJavaExpression(expr, ...).

19.3.3 Tooling

For Jnario, good tooling is essential, since the hurdles of learn-
ing a new language should be as low as possible, and being
able to work efficiently is a major goal of Jnario.

The Feature language aims at being readable both for soft-
ware developers and for domain experts who have no pro-
gramming background. The best way to support both groups is
to provide two views on a Jnario Feature file. The editor uses
specialized folding to show or hide the implementation code
of the scenarios and features14. Specialized folding means we

14 This means that domain experts only
see (and edit) the prose description
of scenarios; they don’t have to care
about the implementation code, and it
therefore feels like working with a text
editor.

used the existing folding component from Xtext and extended
it to disable the normal folding functionality. We then intro-
duced a button to trigger the folding of the implementation
logic. In addition, syntax highlighting comes in handy when
referring to existing steps. We used different colors to show
whether a step is implemented (i.e. has its own code associ-
ated with it), not implemented (i.e. needs to be implemented
before the specification can be run), or is a reference to an exist-
ing step (in which case the existing step’s implementation code
is automatically reused).

To improve productivity further, editor features such as quick
fixes for importing necessary libraries or for creating new class

dsl engineering 487

files were added. Auto completion for steps in features is sup-
ported, since you can reuse other steps by referencing them,
even if they are not implemented. Another important produc-
tivity feature is the debug support of Xtext, which lets you step
through your DSL file instead of using the generated code15. 15 This facility did not have to be

adapted for Jnario; it worked out of
the box. We discussed to some extent
how Xtext DSL debugging works in
Section 15.2.

19.3.4 Testing

Testing is an important part of developing a DSL. This of course
applies to Jnario as well. However, Jnario is a special case, since
it itself is a language for writing tests. This gave us the chance
to bootstrap the implementation of Jnario16. The advantage of 16 This means that all tests for Jnario are

written in Jnario.bootstrapping is that bugs or missing features quickly become
apparent just from using the language to build test for the lan-
guage (we ate our own dog food). Here is an example in which
we test Jnario’s throws expression:

Scenario: Testing exceptions with Jnario
Given a unit spec
’’’

describe "expecting exceptions in Jnario"{
fact new Stack().pop throws EmptyStackException

}
’’’
Then it should execute successfully

When we execute this scenario, the given unit specification will
first be parsed and compiled into Java source code17. The Java 17 Note that in this approach, the Jnario

code inside the triple single quotes is
treated as a string and no IDE support
for the Jnario language is available.
This is in contrast to some of the tests
described for Spoofax in Section 14.1.

source code will then be compiled into a Java class file using
the normal Java compiler. The generated class is then loaded
via the Java classloader and executed with JUnit. This pro-
cess is greatly simplified by the testing infrastructure provided
by Xtext, which provides APIs for compiling and classloading
DSL artifacts. The advantage of this approach is that the whole
compiler chain is tested, and tests are relatively stable, as they
are independent of changes in the internal implementation.

19.4 Summary

This chapter introduced Jnario, a DSL for testing, which was
developed based on Xtext. Jnario is a good example for a DSL
that is targeted towards developers with the goal of easing the
development process. It is also a good example of an Xtext-
based language that makes use of Xtext’s reusable expression
language Xbase. Jnario is currently used in various domains,
for example to specify and test the behavior of automotive con-
trol units, web applications and Eclipse-based applications.

20
DSLs in the Implementation

In this chapter we discuss the use of DSLs in the context of
software implementation, based on an extensive case study
in embedded software development: the mbeddr system that
has been discussed in the book before. mbeddr supports ex-
tension of C with constructs useful for embedded software.
In this chapter we show how language extension can ad-
dress the challenges of embedded software development, and
report on our experience in building these extensions.

This section of the book is based on a paper written together
with Daniel Ratiu, Bernd Kolb and Bernhard Schaetz for the
SPLASH/Wavefront 2012 conference.

20.1 Introduction

In this section we discuss the use of DSLs in the context of
implementation. There it is crucial that the DSLs are tightly
integrated with the application code that is typically written in
a GPL. Language embedding and extension (Section 4.6) are
obviously useful approaches. In this chapter we discuss the
mbeddr system1 which supports domain-specific extensions to 1 mbeddr.com

C2. 2 mbeddr is built with MPS, so you
should make sure that you have read
and understood the MPS-based imple-
mentation examples in Part III of the
book.

The amount of software embedded in devices is growing
and the development of embedded software is challenging. In
addition to functional requirements, strict operational require-
ments have to be fulfilled as well. These include reliability
(a device may not be accessible for maintenance after deploy-
ment), safety (a system may endanger life or property if it fails),
efficiency (the resources available to the system may be limited)

490 dslbook.org

or real-time constraints (a system may have to run on a strict
schedule prescribed by the system’s environment). Address-
ing these challenges requires any of the following: abstrac-
tion techniques should not lead to excessive runtime overhead;
programs should be easily analyzable for faults before deploy-
ment; and various kinds of annotations, for example for de-
scribing and type checking physical units, must be integrated
into the code. Process issues such as requirements traceabil-
ity have to be addressed, and developers face a high degree of
variability, since embedded systems are often developed in the
context of product lines3. 3 We discuss product lines and DSLs

specifically in Chapter 21.Current approaches for embedded software development can
be divided roughly into programming and modeling. The pro-
gramming approach mostly relies on C, sometimes C++, and
Ada in rare cases4. However, because of C’s limited support

4 Ada is used mainly in safety-critical
systems, and traditionally in avionics,
space and defense. This has historic
reasons, but is also driven by the fact
that some Ada compilers are certified to
very high levels of reliability.

for defining custom abstractions, this can lead to software that
is hard to understand, maintain and extend. Furthermore, C’s
ability to work with very low-level abstractions, such as point-
ers, makes C code very expensive to analyze statically5. The 5 C is very good for developing low-

level aspects of software systems. It
is not so good for large-scale software
engineering.

alternative approach uses modeling tools with automatic code
generation. The modeling tools provide predefined, higher-
level abstractions such as state machines or data flow compo-
nent diagrams6. Example tools include ASCET-SD7 or Simu-

6 A big problem with the vast majority
of the tools in this space is that they
cannot be extended in meaningful
ways; they are hard to adapt to a
particular domain, platform or system
context.

7 www.etas.com/

link8. Using higher-level abstractions leads to more concise
programs and simplified fault detection using static analysis
and model checking (for example using the Simulink Design
Verifier9). Increasingly, DSLs are used for embedded software,
and studies show that DSLs substantially increase productivity
in embedded software development. However, most real-world
systems cannot be described completely and adequately with a
single modeling tool or DSL, and the integration effort between
manually written C code and perhaps several modeling tools
and DSLs becomes significant.

A promising solution to this dilemma lies in much tighter
integration between low-level C code and higher-level abstrac-
tions specific to embedded software. We achieve this with an
extensible C programming language. The advantages of C can
be maintained: existing legacy code can be easily integrated,
reused, and evolved, and the need for efficient code is immedi-
ately addressed by relying on C’s low-level programming con-
cepts. At the same time, domain-specific extensions such as
state machines, components or data types with physical units

dsl engineering 491

can be made available as C extensions. This improves produc-
tivity via more concise programs, it helps improve quality in
a constructive way by avoiding low-level implementation er-
rors up front, and leads to system implementations that are
more amenable to analysis. By directly embedding the exten-
sions into C, the mismatch and integration challenge between
domain-specific models and general-purpose code can be re-
moved. An industry-strength implementation of this approach
must also include IDE support for C and the extensions: syntax
highlighting, code completion, error checking, refactoring and
debugging.

The LW-ES research project, run by itemis AG, fortiss GmbH,
BMW Car IT and Sick AG explores the benefits of language en-
gineering in the context of embedded software development
with the mbeddr system10. 10 The code is open source and available

via mbeddr.com.

20.2 Challenges in Embedded Software

In this section we discuss a set of challenges we address with
the mbeddr approach. We label the challenges Cn so we can
refer to them from Section 20.3.2, where we show how they are
addressed by mbeddr11. 11 While these are certainly not all the

challenges embedded software develop-
ers face, based on our experience with
embedded software and feedback from
various domains (automotive, sensors,
automation) and organizations (small,
medium and large companies), these
are among the most important ones.

� C1: Abstraction without Runtime Cost Domain-specific con-
cepts provide more abstract descriptions of the system under
development. Examples include data flow blocks, state ma-
chines, or data types with physical units. On one hand, ade-
quate abstractions have a higher expressive power that leads to
programs that are shorter and easier to understand and main-
tain. On the other hand, by restricting the freedom of pro-
grammers, domain-specific abstractions also enable construc-
tive quality assurance. For embedded systems, where run-
time efficiency is a prime concern, abstraction mechanisms are
needed that can be resolved before or during compilation, and
not at runtime.

� C2: C considered Unsafe While C is efficient and flexible,
several of C’s features are often considered unsafe12. Conse- 12 For example, unconstrained cast-

ing via void pointers, using ints as
Booleans, or the weak typing implied
by unions can result in runtime errors
that are hard to track down.

quently, the unsafe features of C are prohibited in many organi-
zations. Standards for automotive software development such
as MISRA limit C to a safer language subset. However, most
C IDEs are not aware of these and other, organization-specific
restrictions, so they are enforced with separate checkers that

492 dslbook.org

are often not well integrated with the IDE. This makes it hard
for developers to comply with these restrictions efficiently.

� C3: Program Annotations For reasons such as safety or ef-
ficiency, embedded systems often require additional data to be
associated with program elements. Examples include physi-
cal units, coordinate systems, data encodings or value ranges
for variables. These annotations are typically used by specific,
often custom-built analysis or generation tools. Since C pro-
grams can only capture such data informally as comments or
pragmas, the C type system and IDE cannot check their correct
use in C programs. They may also be stored separately (for
example, in XML files) and linked back to the program using
names or other weak links13. 13 Even with tool support that checks

the consistency of these links and
helps navigate between code and this
additional data, the separation of core
functionality and the additional data
leads to unnecessary complexity and
maintainability problems.

� C4: Static Checks and Verification Embedded systems often
have to fulfill strict safety requirements. Industry standards for
safety such as ISO-26262, DO-178B or IEC-61508 demand that
for high safety certification levels various forms of static anal-
yses are performed on the software. These range from sim-
ple type checks to sophisticated property checks, for example
by model checking. Since C is a very flexible and relatively
weakly-typed language, the more sophisticated analyses are
very expensive. Using suitable domain-specific abstractions
(for example, state machines) leads to programs that can be
analyzed much more easily.

� C5: Process Support There are at least two cross-cutting
and process-related concerns relevant to embedded software
development. First, many certification standards (such as those
mentioned above) require that code be explicitly linked to re-
quirements such that full traceability is available. Today, re-
quirements are often managed in external tools, and maintain-
ing traceability to the code is a burden to the developers and
often done in an ad hoc way, for example via comments. Sec-
ond, many embedded systems are developed as part of product
lines with many distinct product variants, where each variant
consists of a subset of the (parts of) artifacts that comprise the
product line. This variability is usually captured in constraints
expressed over program parts such as statements, functions or
states. Most existing tools come with their own variation mech-
anism, if variability is supported at all. Integration between
program parts, the constraints and the variant configuration

dsl engineering 493

(for example via feature models) is often done through weak
links, and with little awareness of the semantics of the under-
lying language14. As a consequence, variant management is a 14 For example, the C preprocessor,

which is often used for this task, per-
forms simple text replacement or
removal controlled by the conditions in
#ifdefs.

huge source of accidental complexity.

An additional concern is tool integration. The diverse require-
ments and limitations of C discussed so far often lead to the use
of a wide variety of tools in a single development project. Most
commercial off-the-shelf (COTS) tools are not open enough
to facilitate seamless and semantically meaningful integration
with other tools, leading to significant accidental tool integra-
tion complexity. COTS tools often also do not support mean-
ingful language extension, severely limiting the ability to de-
fine and use custom domain-specific abstractions.

20.3 The mbeddr Approach

Language engineering provides a holistic approach to solving
these challenges. In this section we illustrate how mbeddr ad-
dresses the challenges with an extensible version of the C pro-
gramming language, growing a stack of languages extensions
(see Fig. 20.2, and Section 4.6.2 for a discussion of language
extension). The following section explores which ways Wm of
extending C are necessary to address the challenges Cn. Sec-
tion 20.3.2 then shows examples that address each of the chal-
lenges and ways of extending C.

Figure 20.1: Higher-level abstractions
such as state machines or components
are reduced incrementally to their
lower-level equivalent, reusing the
transformations built for lower-level
extensions.

The semantics of an extension are typically defined by a
transformation back to the base language. For example, in
an extension that provides state machines, these may be trans-
formed to a switch/case-based implementation in C. Exten-
sions can be stacked (Fig. 20.2), where a higher-level extension
extends (and transforms back to) a lower-level extension in-
stead of C. At the bottom of this stack resides plain C in text
form, and a suitable compiler. Fig. 20.1 shows an example in
which a module containing a component that contains a state
machine is transformed to C, and then compiled.

As we have seen in Section 16.2, MPS supports modular lan-
guage extension, as well as the use of independently devel-
oped language extensions in the same system. For example, in
mbeddr a user can include an extension that provides state ma-
chines and an extension that provides physical units in the same
program without first defining a combined language statema-
chine-with-units. This is very useful, because it addresses real-

494 dslbook.org

world constraints: a set of organizations, such as the depart-
ments in a large company, will probably not agree on a sin-
gle set of extensions to C, since they typically work in slightly
different areas. Also, a language that contains all relevant ab-
stractions would become big and unwieldy. Modular language
extension solves these problems.

Figure 20.2: Based on MPS, mbeddr
comes with an implementation of the
C programming language. On top
of C, mbeddr defines a set of default
extensions (white boxes) stacked on
top of each other. Users can use them
in their programs, but they don’t
have to. Support for requirements
traceability and product line variability
is cross-cutting. Users build their own
extensions on top of C or on top of the
default extensions. (Component/state
machine integration and state machine
tests are not discussed in this chapter.)20.3.1 Ways of Extending C

In this section we discuss in which particular ways C needs to
be extensible to address the challenges discussed above15. 15 Section 20.3.2 shows examples for

each of these.

�W1: Top-Level Constructs Top level constructs (on the level
of functions or struct declarations) are necessary. This enables
the integration of test cases or new programming paradigms
relevant in particular domains, such as state machines, or in-
terfaces and components.

�W2: Statements New statements, such as assert or fail

statements in test cases, must be supported16. Statements may 16 If statements introduce new blocks,
then variable visibility and shadowing
must be handled correctly, just as in
regular C.

have to be restricted to a specific context; for example, assert
or fail statements must only be used in test cases and not in
any other statement list.

�W3: Expressions New kinds of expressions must be sup-
ported. An example is a decision table expression that rep-
resents a two-level decision tree as a two-dimensional table
(Fig. 20.4).

�W4: Types and Literals New types, e.g., for matrices, com-
plex numbers or quantities with physical units, must be sup-
ported. This also requires the definition of new operators, and
overriding the typing rules for existing ones. New literals may
also be required: for example, physical units could be attached
to number literals (as in 10kg).

dsl engineering 495

�W5: Transformation Alternative transformations for exist-
ing language concepts must be possible. For example, in a
module marked as safe, the expression x + y may have to be
translated into an invocation of addWithBoundsCheck(x, y),
an inline function that performs bounds-checking, besides the
addition.

�W6: Meta Data Decoration It should be possible to add meta
data, such as trace links to requirements or product line vari-
ability constraints, to arbitrary program nodes, without chang-
ing the concept of the node.

�W7: Restriction It should be possible to define contexts that
restrict the use of specific language concepts17. For example, 17 Like any other extension, such con-

texts must be definable after the original
language has been implemented, with-
out invasive change.

the use of pointer arithmetic should be prohibited in modules
marked as safe, or the use of real numbers should be prohibited
in state machines that are intended to be model checked (model
checkers do not support real numbers).

20.3.2 Extensions Addressing the Challenges

In this section we present example extensions that illustrate
how we address the challenges discussed in Section 20.2. We
show at least one example for each challenge18. The table be- 18 How such extensions are built will be

discussed in Section 20.4.low shows an overview of the challenges, the examples in this
section, and the ways of extension each example makes use
of19.

19 This is not the full set of extensions
available in mbeddr. The mbeddr user
guide contains the full description.

Challenge Example Extensions

C1 State machines (W1, W2)
(Low-Overhead Components (W1)
Abstraction) Decision Tables (W3)
C2 Cleaned up C (W7)
(Safer C) Safe Modules (W5, W7)
C3 Physical Units (W4)
(Annotations)
C4 Unit Tests (W1, W2)
(Static Checks, State Machines (W1, W2)
Verification) Safe Modules (W2, W5, W7)
C5 Requirements Traceability (W6)
(Process Support) Product Line Variability (W6)

� A Cleaned-Up C (addresses C2, uses W7) To make C ex-
tensible, we first had to implement C in MPS. This entails the

496 dslbook.org

definition of the language structure, syntax and type system20. 20 A generator to C text is also required,
so that the code can be fed into an
existing compiler. However, since this
generator merely renders the tree as
text, with no structural differences, this
generator is trivial: we do not discuss it
any further.

In the process we changed some aspects of C. Some of these
changes are the first step in providing a safer C (challenge C2).
Others changes were implemented, because it is more conve-
nient to the user, or because it simplified the implementation of
the language in MPS. Out of eight changes in total, four are for
reasons of improved robustness and analyzability, two are for
end-user convenience and three are to simplify the implemen-
tation in MPS. We discuss some of them below, and the table
below shows a summary.

Difference Reason

No Preprocessor Robustness
Native Booleans (and a cast Robustness
operator for legacy interop)
enums are not ints (special Robustness
operators for next/previous
C99 Integral Types Required Robustness
Modules instead of Headers End-User Convenience
hex<..>, oct<..>, bin<..> Simplified
instead of 0x.. and 0.. Implementation
Type annotation on type Simplified
(int[] a instead of int a[]) Implementation
Cleaned up syntax for function End-User Convenience,
types and function pointers Simplified

Implementation

Figure 20.3: Modules are the top-level
container in mbeddr C. They can
import other modules, whose exported
contents they can then use. Exported
contents are put into the header files
generated from modules.

mbeddr C provides modules (Fig. 20.3). A module contains the
top-level C constructs (such as structs, functions or global
variables). These module contents can be exported. Modules
can import other modules, in which case they can access the
exported contents of the imported modules. While header files
are generated, we do not expose them to the user: modules
provide a more convenient means of controlling modularizing
programs and limiting which elements are visible globally.

mbeddr C does not support the preprocessor. Empirical stud-
ies21 show that it is often used to emulate missing features of C

21 M. D. Ernst, G. J. Badros, and
D. Notkin. An empirical analysis of
c preprocessor use. IEEE Trans. Softw.
Eng., 28, December 2002

in ad hoc way, leading to problems regarding maintenance and
analyzability. Instead, mbeddr C provides first-class support
for the most important use cases of the preprocessor. Examples
include the modules mentioned above (replacing #include), as
well as the support for variability discussed below (replacing
#ifdefs). Instead of defining macros, users can create first-

dsl engineering 497

class language extensions, including type checks and IDE sup-
port. Removing the preprocessor and providing specific sup-
port for its important use cases goes a long way in creating
more maintainable and more analyzable programs. The same
is true for introducing a separate boolean type and not inter-
preting integers as Booleans by default (an explicit cast opera-
tor is available).

Type decorations, such as array brackets or the pointer aster-
isk, must be specified on the type, not on the identifier (int[]
a; instead of int a[];). This has been done for reasons of
consistency and to simplify the implementation in MPS: it is
the property of a type to be an array type or a pointer type, not
the property of an identifier. Identifiers are just names.

� Decision Tables (addressing C1, uses W3) Decision tables
are a new kind of expression, i.e. they can be evaluated. An ex-
ample is shown in Fig. 20.4. A decision table represents nested
if statements. It is evaluated to the value of the first cell whose
column and row headers are true (the evaluation order is left
to right, top to bottom). A default value (FAIL) is specified to
handle the case in which none of the column/row header com-
binations is true. Since the compiler and IDE have to compute
a type for expressions, the decision table specifies the type of
its result values explicitly (int8).

Figure 20.4: A decision table evaluates
to the value in the cell for which the
row and column headers are true,
a default value otherwise (FAIL in
the example). By default, a decision
table is translated to nested ifs in a
separate function. The figure shows the
translation for the common case where
a decision table is used in a return.
This case is optimized to not use the
indirection of an extra function.

� Unit Tests (addresses C4, uses W1, W2) Unit tests are new
top-level constructs (Fig. 20.5) introduced in a separate unittest
language that extends the C core. They are like void func-
tions without arguments. The unittest language also introduces
assert and fail statements, which can only be used inside test
cases. Testing embedded software can be a challenge, and the
unittest extension is an initial step towards providing compre-
hensive support for testing.

Figure 20.5: The unittest language
introduces test cases as well as assert
and fail statements which can only
be used inside of a test case. Test
cases are transformed to functions,
and the assert statements become if
statements with a negated condition.
The generated code also counts the
number of failures so that it can be
reported to the user via a binary’s exit
value.

� Components (addresses C1, uses W1) are new top-level con-
structs that support modularization, encapsulation and the sep-
aration between specification and implementation (Fig. 20.6).
In contrast to modules, a component uses interfaces and ports
to declare the contract it obeys. Interfaces define operation sig-
natures and optional pre- and post-conditions (not shown in
the example). Provided ports declare the interfaces offered by
a component; required ports specify the interfaces a component
expects to use. Different components can implement the same

498 dslbook.org

interface differently. Components can be instantiated (also in
contrast to modules), and each instance’s required ports have to
be connected to compatible provided ports provided by other
component instances. Polymorphic invocations (different com-
ponents "behind" the same interface) are supported.

Figure 20.6: Two components providing
the same interface. The arrow maps
operations from provided ports to
implementations. Indirection through
function pointers allows different im-
plementations for a single interface,
enabling OO-like polymorphic invoca-
tions.

� State Machines (addresses C1, C4, uses W1, W2) State ma-
chines provide a new top-level construct (the state machine it-
self), as well as a trigger statement to send events into state
machines (see Fig. 20.7). State machines are transformed into a
switch/case-based implementation in the C program. Entry,
exit and transition actions may only access variables defined
locally in state machines and fire out events. Out events may
optionally be mapped to functions in the surrounding C pro-
gram, where arbitrary behavior can be implemented. In this
way state machines are semantically isolated from the rest of
the code, enabling them to be model checked: if a state ma-
chine is marked as verifiable, we also generate a representa-
tion of the state machine in the input language of the NuSMV
model checker22, including a set of property specifications that 22 nusmv.fbk.eu

dsl engineering 499

are verified by default. Examples include dead state detec-
tion, dead transition detection, non-determinism and variable
bounds checks. In addition, users can specify additional high-
level properties based on the well-established catalog of tem-
poral logic properties patterns23. The state machines extension 23 M. B. Dwyer, G. S. Avrunin, and J. C.

Corbett. Patterns in property specifi-
cations for finite-state verification. In
ICSE, 1999

also supports hierarchical states as a further means of decom-
posing complex behavior.

Figure 20.7: A state machine is em-
bedded in a C module as a top-level
construct. It declares in and out
events, as well as local variables,
states and transitions. Transitions react
to in events, and out events can
be fired in actions. Through bindings
(e.g., tickHandler), state machines in-
teract with C code. State machines can
be instantiated. They are transformed
to enums for states and events, and a
function that executes the state machine
using switch statements. The trigger
statement injects events into a state
machine instance by calling the state
machine function.

� Physical Units (addresses C3, uses W4) Physical units are
new types that specify a physical unit in addition to the data
type (see Fig. 20.8). New literals support the specification of
values for those types that include the physical unit. The typ-
ing rules for the existing operators (+, * or >) are overridden to
perform the correct type checks for types with units. The type
system also performs unit computations to deal correctly with
unit computations (as in speed = length/time).

� Requirements Traces (addresses C5, uses W6) Requirements
traces are meta data annotations that link a program element
to requirements, essentially elements in other models imported
from requirements management tools24. Requirements traces

24 We discussed traces in Chapter 17.
We also briefly introduced mbeddr’s
approach to traces there.

can be attached to any program element without that element’s
definition having to be aware of this (see green (gray in print)
highlights in Fig. 20.9 and in Fig. 20.22).

500 dslbook.org

Figure 20.8: The units extension ships
with the SI base units. Users can define
derived units (such as the mps in the
example), as well as convertible units
that require a numeric conversion for
mapping back to SI units. Type checks
ensure that the values associated with
unit literals use the correct unit and
perform unit computations (as in speed
equals length divided by time). Errors
are reported if incompatible units
are used together (e.g., if we were to
add length and time). To support this
feature, the typing rules for the existing
operators (such as + or /) have to be
overridden.

� Presence Conditions (addresses C5 and W6) A presence con-
dition determines whether the program element to which it is
attached is part of a product in the product line25. A prod-

25 For details about DSLs and product
lines, see Chapter 21.

uct is configured by specifying a set of configuration flags (ex-
pressed via feature models), and the presence condition spec-
ifies a Boolean expression over these configuration switches.
Like requirements traces, presence conditions can be attached
to any program element26. Upon transformation, program el- 26 For example, in Fig. 20.9, the

resetted out event and the on
start... transition in the second
state have the resettable presence
condition, where resettable is a
reference to a configuration flag.

ements whose presence condition evaluates to false for the
selected product configuration are simply removed from the
program (and hence will not end up in the generated binary).
This program customization can also be performed by the edi-
tor, effectively supporting variant-specific editing.

� Safe Modules (addresses C2, uses W5, W7) Safe modules
help prevent writing risky code. For example, runtime range
checking is performed for arithmetic expressions and assign-
ments. To enable this, arithmetic expressions are replaced by
function calls that perform range checking and report errors if
an overflow is detected. As another example, safe modules also
provide the safeheap statement, which automatically frees dy-
namic variables allocated inside its body (see Fig. 20.13).

20.3.3 Addressing the Tool Integration Challenge

By building all languages (C, its extensions or any other DSLs)
on top of MPS, the tool integration challenge is completely
solved. All languages get an MPS-style IDE, including syn-
tax highlighting, code completion, static error checking and
annotation, quick fixes and refactorings, as well as a debugger
(details see Section 15.2.5). Fig. 20.9 shows a screenshot of the
tool, as we edit a module with a decision table, a state machine,
requirements traces and presence conditions.

dsl engineering 501

Figure 20.9: A somewhat overloaded
example program in the mbeddr IDE
(an instance of MPS). The module
contains an enum, a decision table and
a state machine. Requirements traces
are attached to the table and the step
in-event, and a presence condition
is attached to an out-event and a
transition.

20.4 Design and Implementation

This section discusses the implementation of mbeddr language
extensions. We briefly discuss the structure of the C core lan-
guage. The main part of this section discusses each of the ways
Wm of extending C based on the extensions discussed in the
previous section27. 27 We expect you to have read the MPS

examples in Part III of the book.

20.4.1 The mbeddr Core Languages

C can be partitioned into expressions, statements, functions,
etc. We have factored these parts into separate language mod-
ules to make each of them reusable without pulling in all of
C. The expressions language28 is the most fundamental lan- 28 The language is actually called

com.mbeddr.core.expressions. We
won’t repeat the prefix in this chapter.

guage. It depends on no other language and defines the prim-
itive types, the corresponding literals and the basic operators.
Support for pointers and user defined data types (enum, struct,

union) is factored into the pointers and udt languages respec-

502 dslbook.org

tively. statements contains the procedural part of C, and the
modules language covers modularization. Fig. 20.10 shows an
overview of some of the languages and constructs.

Figure 20.10: Anatomy of the mbeddr
language stack: the diagram shows
some of the language concepts, their
relationships and the languages that
contain them.

20.4.2 Addressing W1 (Top-Level Constructs): Test Cases

In this section we illustrate the implementation of the test

case construct, as well as of the assert and fail statements
available inside test cases.

� Structure Modules own a collection of IModuleContents,
an interface that defines the properties of everything that can
reside directly in a module. All top-level constructs such as
Functions implement IModuleContent. IModuleContent ex-
tends MPS’ IIdentifierNamedConcept interface, which pro-
vides a name property. IModuleContent also defines a Boolean
property exported that determines whether the respective mod-
ule content is visible to modules that import this module29. 29 This property is queried by the

scoping rules that determine which
elements can be referenced.

Since the IModuleContent interface can also be implemented
by concepts in other languages, new top-level constructs such
as the TestCase in the unittest language can implement this
interface, as long as the respective language has a dependency
on the modules language, which defines IModuleContent. The
class diagram in Fig. 20.10 shows some of the relevant concepts
and languages.

dsl engineering 503

� Constraints A test case contains a StatementList, so any
C statement can be used in a test case. StatementList becomes
available to the unit test language through its dependency on
the statements language. unittest also defines new state-
ments: assert and fail. They extend the abstract Statement
concept defined in the statements language. This makes them
valid in any statement list, for example in a function body. This
is undesirable, since the transformation of asserts into C de-
pends on them being used in a TestCase. To enforce this, a can
be child constraint is defined (Fig. 20.11).

concept constraints AssertStatement {
can be child

(context, scope, parentNode, link, childConcept)->boolean {
parentNode.ancestor<TestCase>.isNotNull;

}
}

Figure 20.11: This constraint restricts
an AssertStatement to be used only
inside a TestCase by checking that at
least one of its ancestors is a TestCase.

� Transformation The new language concepts in unittest

are reduced to C concepts: the TestCase is transformed to a
void function without arguments, and the assert statement
is transformed into a report statement defined in the logging
language. The report statement, in turn, it is transformed into
a platform-specific way of reporting an error (console, serial
line or error memory). Fig. 20.12 shows an example of this
two-step process.

test case exTest { void test_exTest { void test_exTest {
int x = add(2, 2); int x = add(2, 2); int x = add(2, 2);
assert(0) x == 4; report if (!(x == 4)) {

} test.FAIL(0) printf("fail:0");
on !(x == 4); }

} }

Figure 20.12: Two-stage transforma-
tion of TestCases. The TestCase is
transformed into a C function using the
logging framework to output error mes-
sages. The report statement is in turn
transformed into a printf statement
if we generate for the Windows/Mac
environment. It would be transformed
to something else if we generated for
the actual target device (configured by
the user in the build configuration).

20.4.3 Addressing W2 (Statements): Safeheap Statement

We have seen the basics of integrating new statements in the
previous section where assert and fail extended the State-

ment concept inherited from the C core languages. In this sec-
tion we focus on statements that need to handle local variable
scopes and visibilities. We implement the safeheap statement
mentioned earlier (see Fig. 20.13), which automatically frees
dynamically allocated memory. The variables introduced by
the safeheap statement must only be visible inside its body,
and have to shadow variables of the same name declared in

504 dslbook.org

outer scopes (such as the a declared in the second line of the
measure function in Fig. 20.13).

� Structure The safeheap statement extends Statement. It
contains a StatementList as its body, as well as a list of Safe-
HeapVars. These extend LocalVarDecl, so they fit with the ex-
isting mechanism for handling variable shadowing (explained
below).

Figure 20.13: A safeheap statement
declares heap variables which can
only be used inside the body of the
statement. When the body is left, the
memory is automatically freed. Notice
also how we report an error if the
variable tries to escape.

� Behavior LocalVarRefs are expressions that reference a
LocalVarDecl. A scope constraint determines the set of visible
variables for a given LocalVarRef. We implement this con-
straint by plugging into mbeddr’s generic local variable scop-
ing mechanism using the following approach. The constraint
ascends the containment tree until it finds a node which imple-
ments ILocalVarScopeProvider, and calls its getLocalVar-

Scope method. A LocalVarScope has a reference to an outer
scope, which is set by finding its ILocalVarScopeProvider an-
cestor, effectively building a hierarchy of LocalVarScopes. To
get at the list of the visible variables, the LocalVarRef scope
constraint calls the getVisibleLocalVars method on the in-
nermost LocalVarScope object. This method returns a flat list
of LocalVarDecls, taking into account that variables owned by
a LocalVarScope that is lower in the hierarchy shadow vari-
ables of the same name from a higher level in the hierarchy. So,
to plug the SafeHeapStatement into this mechanism, it has to
implement ILocalVarScopeProvider and implement the two
methods shown in Fig. 20.14.

� Type System To make the safeheap statement work cor-
rectly, we have to ensure that the variables declared and allo-
cated in a safeheap statement do not escape from its scope. To

dsl engineering 505

public LocalVarScope getLocalVarScope(node<> ctx, int stmtIdx) {
LocalVarScope scope = new LocalVarScope(getContainedLocalVariables());
node<ILocalVarScopeProvider> outer =

this.ancestor<ILocalVarScopeProvider>;
if (outer != null) {

scope.setOuterScope(outer.getLocalVarScope(this, this.index));
}
return scope;

}
public sequence<node<LocalVariableDecl>> getContainedLocalVars() {

this.vars;
}

Figure 20.14: A safeheap statement im-
plements the two methods declared by
the ILocalVarScopeProvider interface.
getContainedLocalVariables returns
the LocalVarDecls that are declared
between the parentheses (see Fig. 20.13).
getLocalVarScope constructs a scope
that contains these variables and then
builds the hierarchy of outer scopes
by relying on its ancestors that also
implement ILocalVarScopeProvider.
The index of the statement that contains
the reference is passed in to make sure
that only variables declared before the
reference site can be referenced.

prevent this, an error is reported if a reference to a safeheap

variable is passed to a function. Fig. 20.15 shows the code.

checking rule check_safeVarRef for concept = LocalVarRef as lvr {
boolean isInSafeHeap =

lvr.ancestor<SafeHeapStatement>.isNotNull;
boolean isInFunctionCall =

lvr.ancestor<FunctionCall>.isNotNull;
boolean referencesSafeHeapVar =

lvr.var.parent.isInstanceOf(SafeHeapStatement);
if (isInSafeHeap && isInFunctionCall && referencesSafeHeapVar)

error "cannot pass a safe heap var to a function" -> lvr;
}

Figure 20.15: This type system rule
reports an error if a reference to a local
variable declared and allocated by
the safeheap statement is used in a
function call.

20.4.4 Addressing W3 (Expressions): Decision Tables

Fig. 20.4 showed the decision table expression. It is evaluated
to the expression in a cell c if the column header of c and the
row header of c are true30. If none of the condition pairs is 30 Strictly speaking, it is the first of the

cells for which the headers are true.
It is optionally possible to use static
verification based on an SMT solver to
ensure that only one of them will be
true for any given set of input values.

true, then the default value, FAIL in the example, is used as the
resulting value. A decision table also specifies the type of the
value it will evaluate to, and all the expressions in content cells
have to be compatible with that type. The type of the header
cells has to be Boolean.

� Structure The decision table extends the Expression con-
cept defined in the expressions language. Decision tables con-
tain a list of expressions for the column headers, one for the
row headers and another for the result values. It also contains
a child of type Type, to declare the type of the result expres-
sions, as well as a default value expression. The concept defines
an alias dectab to allow users to instantiate a decision table in
the editor31. 31 Obviously, for non-textual notations

such as the table, the alias will be
different than the concrete syntax (in
textual notations, the alias is typically
made to be the same as the "leading
keyword", e.g., assert).

� Editor Defining a tabular editor is straightforward: the
editor definition contains a table cell, which delegates to a
Java class that implements ITableModel. This is similar to

506 dslbook.org

the approach used by Java Swing. It provides methods such
as getValueAt(int row, int col) or deleteRow(int row),
which have to be implemented for any specific table-based ed-
itor. To embed another node in a table cell (such as the expres-
sion in the decision table), the implementation of getValueAt
simply returns the node (whose editor is then embedded in the
table’s editor).

� Type System MPS uses unification in the type system. Lan-
guage concepts specify type equations that contain type liter-
als (such as boolean) as well as type variables (such as typeof
(dectab)). The unification engine then tries to assign values
to the type variables such that all applicable type equations be-
come true. New language concepts contribute additional type
equations. Fig. 20.16 shows those for decision tables32. 32 New equations are solved along

with those for existing concepts.
For example, the typing rules for a
ReturnStatement ensure that the
type of the returned expression is
the same or a subtype of the type
of the surrounding function. If a
ReturnStatement uses a decision
table as the returned expression, the
type calculated for the decision table
must be compatible with the return
type of the surrounding function.

// the type of the whole decision table expression
// is the type specified in the type field
typeof(dectab) :==: typeof(dectabc.type);
// the type of each of the column header
// expressions must be Boolean
foreach expr in dectab.colHeaders {

typeof(expr) :==: <boolean>;
}
// ... same for row headers
foreach expr in dectabc.rowHeaders {

typeof(expr) :==: <boolean>;
}
// the type of each of the result values must
// be the same or a subtype of the table itself
foreach expr in dectab.resultValues {

infer typeof(expr) :<=: typeof(dcectab);
}
// ... same for the default
typeof(dc.def) :<=: typeof(dectab);

Figure 20.16: The type equations for the
decision table (see the comments for
details).

20.4.5 Addressing W4 (Types and Literals): Physical Units

We use physical units to illustrate the addition of new types
and literals. We have already shown example code earlier in
Fig. 20.8.

� Structure Derived and convertible UnitDeclarations are
IModuleContents. Derived unit declarations specify a name
(mps, kmh) and the corresponding SI base units (m, s), plus
an exponent; a convertible unit declaration specifies a name
and a conversion formula33. The backbone of the extension

33 The unit extension does not auto-
matically support prefixes like k, M or
m. If you need km or mm you have to
define this as a convertible unit with
the respective conversion formulae.
This is a conscious decision driven by
limited value ranges in C data types
and conversion overhead.

is the UnitType, which is a composite type that has another
type (int, float) in its valueType slot, plus a unit (either

dsl engineering 507

an SI base unit or a reference to a UnitDeclaration). It is
represented in programs as baseType/unit/. We also pro-
vide LiteralWithUnits, which are expressions that contain a
valueLiteral and, like the UnitType, a unit (so we can write,
for example, 100 kmh).

� Scoping LiteralWithUnits and UnitTypes refer to a Unit-
Declaration, which is a module content. According to the vis-
ibility rules, valid targets for the reference are the UnitDecla-

rations in the same module, and the exported ones in all im-
ported modules. This rule applies to any reference to any mod-
ule content, and is implemented generically. Fig. 20.17 shows
the code for the scope of the reference to the UnitDeclaration.
We use an interface IVisibleNodeProvider, (implemented by
Modules) to find all instances of a given type. The implementa-
tion of visibleContentsOfType searches through the contents
of the current and imported modules and collects instances of
the specified concept. The result is used as the scope for the
reference.

link {unit} search scope:
(model, refNode, enclosingNode, operationContext)

->sequence<node<UnitDeclaration>> {
enclosingNode.ancestor<IVisibleNodeProvider>.

visibleContentsOfType(concept/UnitDeclaration/);
}

Figure 20.17: The visibleContents-
OfType operation returns all instances
of the concept argument in the cur-
rent module, as well as all exported
instances in modules imported by the
current module.

� Type System We have seen how MPS uses equations and
unification to specify type system rules. However, there is
special support for binary operators that makes overloading
for new types easy: overloaded operations containers essen-
tially specify 3-tuples of (leftArgType, rightArgType, resultType),
plus applicability conditions to match type patterns and de-
cide on the resulting type. Typing rules for new (combina-
tions of) types can be added by specifying additional 3-tuples.
Fig. 20.18 shows the overloaded rules for C’s MultiExpression
(the language concept that implements the multiplication op-
erator *) when applied to two UnitTypes: the result type will
be a UnitType as well, where the exponents of the SI units are
added.

While any two units can legally be used with * and / (as
long as we compute the resulting unit exponents correctly),
this is not true for + and -. There, the two operand types must

508 dslbook.org

operation concepts: MultiExpression
left operand type: new node<UnitType>()
right operand type: new node<UnitType>()

is applicable:
(op, leftOpType, rightOpType)->boolean {

node<> resultingValueType = operation type(op,
leftOpType.valueType , rightOpType.valueType);

return resultingValueType != null;
}

operation type:
(op, leftOpType, rightOpType)->node<> {

node<> resultingValueType = operation type(op,
leftOpType.valueType, rightOpType.valueType);

UnitType.create(resultingValueType,
leftOpType.unit.toSIBase().add(

rightOpType.unit.toSIBase(), 1)
);

}

Figure 20.18: This code overloads
the MultiExpression to work for
UnitTypes. In the is applicable sec-
tion we check whether there is a typing
rule for the two value types (e.g., int
* float). This is achieved by trying
to compute the resulting value type. If
none is found, the types cannot be mul-
tiplied (and consequently, the two types
with unit cannot be multiplied either).
In the computation of the operation
type we create a new UnitType that
uses the resultingValueType as the
value type and then computes the
resulting unit by adding up the expo-
nents of component SI units of the two
operand types.

be the same in terms of their representation in SI base units.
We express this by using the following expression in the is

applicable section34: 34 isSameAs actually reduces each unit
to their SI base unit (with exponents),
then compares the result for structural
equality.

leftOpType.unit.isSameAs(rightOpType.unit)

In the operation type section we then compute the resulting
unit type by adding the exponents of the components of the
two unit types.

The typing rule for the LocalVariableDeclaration requires
that the type of the init expression must be the same or a sub-
type of the type of the variable. To make this work correctly,
we have to define a type hierarchy for UnitTypes. We achieve
this by defining the supertypes for each UnitType: the super-
types are those UnitTypes whose unit is the same, and whose
valueType is a supertype of the current UnitType’s value type.
Fig. 20.19 shows the rule.

subtyping rule supertypeOf_UnitType
for concept = UnitType as ut {

nlist<> res = new nlist<>;
foreach st in immediateSupertypes(ut.valueType) {

res.add(UnitType.create(st, ut.unit.copy));
}
return res;

}

Figure 20.19: This typing rule computes
the direct supertypes of a UnitType. It
iterates over all immediate supertypes
of the current UnitType’s value type,
wrapped into a UnitType with the
same unit as the original one.

20.4.6 Addressing W5 (Alternative Transformations):
Range Checking

The safemodules language defines an annotation to mark Mo-

dules as safe (we will discuss annotations in the next subsec-
tion). If a module is safe, the binary operators such as + or * are
replaced with calls to functions that, in addition to performing
the addition or multiplication, perform a range check.

dsl engineering 509

� Transformation The transformation that replaces the binary
operators with function calls is triggered by the presence of
this annotation on the Module which contains the operator.
Fig. 20.20 shows the code. The @safeAnnotation != null

checks for the presence of the annotation.

Figure 20.20: This reduction rule trans-
forms instances of PlusExpression
into a call to a library function
addWithRangeChecks, passing in
the left and right argument of the +
using the two COPY_SRC macros. The
condition ensures that the transforma-
tion is only executed if the containing
Module has a safeAnnotation attached
to it. A transformation priority defined
in the properties of the transformation
makes sure it runs before the C-to-text
transformation.

MPS uses priorities to specify relative orderings of transfor-
mations, and MPS then calculates a global transformation or-
der for any given model. We use a priority to express the fact
that this transformation runs before the final transformation that
maps the C tree to C text for compilation.

20.4.7 Addressing W6 (Meta Data): Requirements Traces

Annotations are concepts whose instances can be added as chil-
dren to a node N without this being specified in the definition
of N’s concept35. While structurally the annotations are chil-

35 We discussed annotations in Sec-
tion 16.2.7.

dren of the annotated node, the editor is defined the other way
round: the annotation editor delegates to the editor of the an-
notated element. This allows the annotation editor to add ad-
ditional syntax around the annotated element36.

36 Optionally, it is possible to explic-
itly restrict the concepts to which a
particular annotation can be attached.
However, for the requirements traces
discussed in this section, we do not
want such a restriction: traces should be
attachable to any program node.

We illustrate the annotation mechanism based on the re-
quirements traces. As we discussed at the end of Section 20.3.2,
a requirements trace establishes a link from a program element
to a requirement. It is important that this annotation can be
annotated to any node, independent of the concept of which it
is an instance. As a consequence of the projectional approach,
the program can be shown with or without the annotations,
controlled by a global switch. Fig. 17.5 had shown an example.

� Structure Fig. 20.21 shows the structure. Notice how it
extends the MPS-predefined concept NodeAnnotation. It also
specifies a role, which is the name of the property that is used
to store TraceAnnotations under the annotated node.

510 dslbook.org

concept TraceAnnotation extends NodeAnnotation implements <none>
children:

TraceKind tracekind 1
TraceTargetRef refs 0..n

concept properties:
role = trace

concept links:
annotated = BaseConcept

Figure 20.21: Annotations have to
extend the MPS-predefined concept
NodeAttribute. They can have an
arbitrary child structure (tracekind,
refs), but they have to specify the
role (the name of the property that
holds the annotated child under its
parent), as well as the attributed
concept. The annotations can only be
attached to instances of this concept (or
subconcepts).� Editor In the editor annotations look as if they surrounded

their parent node (although they are in fact children). Fig. 20.22

shows the definition of the editor of the requirements trace
annotation (an example is shown in Fig. 20.9): it puts the trace
to the right of the annotated node. Since MPS is a projectional
editor, there is base-language grammar that needs to be made
aware of the additional syntax in the program. This is key to
enabling arbitrary annotations on arbitrary program nodes.

Figure 20.22: The editor definition for
the ReqTrace annotation (an example
trace annotation is shown in Fig. 20.9).
It consists of a vertical list [/ .. /]
with two lines. The first line contains
the reference to the requirement. The
second line uses the attributed node
construct to embed the trace into the
editor of the program node to which
this annotation is attached. So the
annotation is always rendered over of
whatever syntax the original node uses.

Annotations are typically attached to a program node via an
intention. Intentions are an MPS editor mechanism: a user
selects the target element, presses Alt-Enter and selects Add

Trace from the popup menu. Fig. 20.23 shows the code for the
intention that attaches a requirements trace.

intention addTrace for BaseConcept {
description(node)->string {

"Add Trace";
}
isApplicable(node)->boolean {

node.@trace == null;
}
execute(editorContext, node)->void {

node.@trace = new node<TraceAnnotation>();
}

}

Figure 20.23: An intention defini-
tion consists of three parts. The
description returns the string that
is shown in the intentions popup menu.
The isApplicable section determines
under which conditions the intention
is available in the menu – in our case,
we can only add a trace if there is no
trace on the target node already. Fi-
nally, the execute section performs the
action associated with the intention.
In our case we simply put an instance
of TraceAnnotation into the @trace
property of the target node.

20.4.8 Addressing W7 (Restriction): Preventing Use of Real
Numbers

We have already seen in Section 20.4.2 how constraints can pre-
vent the use of specific concepts in certain contexts. We use the
same approach for preventing the use of real number types in-
side model-checkable state machines: a can be ancestor con-
straint in the state machine prevents instances of float in the
state machine if the verifiable flag is set37.

37 It is possible to define such con-
straints in extensions, thereby restrict-
ing existing concepts after the fact, in a
modular way.

dsl engineering 511

20.5 Experiences

In Section 20.5.1 we provide a brief overview of our experiences
in implementing mbeddr, including the size of the project and
the efforts spent. Section 20.5.2 discusses to what degree this
approach leads to improvements in embedded software devel-
opment.

Element Count LOC-Factor

Language Concepts 260 3

Property Declarations 47 1

Link Declarations 156 1

Editor Cells 841 0.25

Reference Constraints 21 2

Property Constraints 26 2

Behavior Methods 299 1

Type System Rules 148 1

Generation Rules 57 10

Statements 4,919 1.2
Intentions 47 3

Text Generators 103 2

Total LOC 8,640

Figure 20.24: We count various lan-
guage definition elements and then use
a factor to translate them into lines of
code. The reasons why many factors
are so low (e.g., reference constraints
or behavior methods) is that the imple-
mentation of these elements is made
up of statements, which are counted
separately. In the case of editor cells,
typically several of them are on the
same line, hence the fraction. Finally,
the MPS implementation language sup-
ports higher-order functions, so some
statements are rather long and stretch
over more than one line: this explains
the 1.2 in the factor for statements.

20.5.1 Language Extension

� Size Typically, lines of code are used to describe the size
of a software system. In MPS, a "line" is not necessarily mean-
ingful. Instead we count important elements of the implemen-
tation and then estimate a corresponding number of lines of
code. Fig. 20.24 shows the respective numbers for the core,
i.e. C itself plus unit test support, decision tables and build/-
make integration (the table also shows how many LOC equiva-
lents we assume for each language definition element, and the
caption explains to some extent the rationale for these factors).
According to our metric the C core is implemented with less
than 10,000 lines of code.

Let us look at an incremental extension of C. The compo-
nents extension (interfaces, components, pre- and post-con-
ditions, support for mock components in testing and a gen-
erator back to plain C) is circa 3,000 LOC equivalents. The
state machines extension is circa 1,000. Considering the fact
that these LOC equivalents represent the language definition
(including type systems and generators) and the IDE (includ-

512 dslbook.org

ing code completion, syntax coloring, some quick fixes and
refactorings), this clearly demonstrates the efficiency of MPS
for language development and extension.

� Effort In terms of effort, the core C implementation has
been circa 4 person months divided between three people. This
results in roughly 2,500 lines of code per person month. Ex-
trapolated to a year, this would be 7,500 lines of code per de-
veloper. According to McConnell38, in a project up to 10,000

38 www.codinghorror.com/
blog/2006/07/diseconomies-of-
scale-and-lines-of-code.html

LOC, a developer can typically do between 2,000 and 25,000

LOC. The fact that we are at the low end of this range can be
explained by the fact that MPS provides very expressive lan-
guages for DSL development: you don’t have to write a lot of
code to express a lot about a DSL. Instead, MPS code is rela-
tively dense and requires quite a bit of thought. Pair program-
ming is very valuable in language development.

Once a developer has mastered the learning curve, language
extension can be very productive. The state machines and com-
ponents extension have both been developed in about a month.
The unit testing extension or the support for decision tables can
be implemented in a few days.

� Language Modularity, Reuse and Growth Modularity and com-
position are central to mbeddr. Building a language extension
should not require changes to the base languages. This requires
that the extended languages are built with extension in mind.
Just as in object-oriented programming, where only complete
methods can be overridden, only specific parts of a language
definition can be extended or overwritten. The implementation
of the default extensions served as a test case to confirm that
the C core language is in fact extensible. We found a few prob-
lems, especially in the type system, and fixed them. None of
these fixes were "hacks" to enable a specific extension – they
were all genuine mistakes in the design of the C core. Due to
the broad spectrum covered by our extensions, we are confi-
dent that the current core language provides a high degree of
extensibility.

Independently developed extensions should not interact with
each other in unexpected ways. While MPS provides no auto-
mated way of ensuring this, we have not seen such interactions
so far. The following steps can be taken to minimize the risk
of unexpected interactions. Generated names should be qual-
ified to make sure that no symbol name clashes occur in the

dsl engineering 513

generated C code. An extension should never consume "scarce
resources": for example, it is a bad idea for a new Statement

to require a particular return type of the containing function,
or change that return type during transformation. Two such
badly designed statements cannot be used together, because
they are likely to require different return types39. 39 Note that unintended syntactic in-

tegration problems between indepen-
dently developed extensions (known
from traditional parser-based systems)
can never happen in MPS. This was one
of the reasons to use MPS for mbeddr.

Modularity should also support reuse in contexts not antic-
ipated during the design of a language module. Just as in the
case of language extension (discussed above), the languages to
be reused have to be written in a suitable way so that the right
parts can be reused separately. We have shown this with the
state machines language. State machines can be used as top-
level concepts in modules (binding out-events to C functions),
and also inside components (binding out-events to component
methods). Parts of the transformation of a state machine have
to be different in these two cases, and these differences were
successfully isolated to make them exchangeable. Also, we
reuse the C expression language inside the guard conditions
in a state machine’s transitions. We use constraints to prevent
the use of those C expression that are not allowed inside tran-
sitions (for example, references to global variables). Finally,
we have successfully used physical units in components and
interfaces.

Summing up, these facilities allow different user groups to
develop independent extensions, growing40 the mbeddr stack 40 "Growing" in the sense of Growing a

Language, Guy Steele’s great OOPSLA
talk.

even closer towards their particular domain.

� Who can create Extensions? mbeddr is built to be extended.
The question is by whom. This question can be addressed in
two ways: who is able to extend it from a skills perspective, and
who should extend it?

Let us address the skills question first. We find that it takes
about a month for a developer with solid object-oriented pro-
gramming experience to become proficient with MPS and the
structures of the mbeddr core languages41. Also, designing

41 This may be reduced by better docu-
mentation, but a steep learning curve
will remain.good languages, independent of their implementation, is a skill

that requires practice and experience42. So, from this perspec- 42 The first part of this book provides
some guidance.tive we assume that in any given organization there should be

a select group of language developers who build the extensions
for the end users. Notice that such an organizational structure
is common today for frameworks and other reusable artifacts.

There is also the question of who should create extensions.

514 dslbook.org

One could argue that, as language development becomes sim-
pler, an uncontrolled growth in languages could occur, ulti-
mately resulting in chaos. This concern should be addressed
with governance structures that guide the development of lan-
guages. The bigger the organization is, the more important
such governance becomes43. 43 The modular nature of the mbeddr

language extensions makes this prob-
lem much easier to tackle. In an large
organization we assume that a few
language extensions will be strategic:
aligned with the needs of the whole
organization, well-designed, well tested
and documented, implemented by a
central group, and used by many de-
velopers. In addition, small teams may
decide to develop their own, smaller
extensions. Their focus is much more
local, and the development requires
much less coordination. These could
be developed by the smaller units
themselves.

20.5.2 Improvements in Embedded Development

In this section we discuss preliminary results of a real-world
development project. The project develops the software for a
smart meter system44. A smart meter is an electrical meter

44 The smart meter system is developed
by itemis France. Technical contacts
are Bernd Kolb (kolb@itemis.de) and
Stephan Eberle (eberle@itemis.de).

that continuously records the consumption of electric power in
a home and sends the data back to the utility for monitoring
and billing. The particular software we develop will run on a
2-chip board (TI MSP-430 for metrology, another TI processor
(tbd.) for the remaining application logic). Instead of the gcc

compiler used in mbeddr by default, this project uses an IAR
compiler.

The software comprises circa 30,000 lines of mbeddr code,
has several time-sensitive parts that require a low-overhead im-
plementation, and will have to be certified by an independent
body. The software is derived from an existing example smart
meter meter system written in traditional C, and reuses exist-
ing artifacts such as header files and libraries45. 45 While the project is still going on, we

can already report some experiences
and draw some conclusions.� Why mbeddr? mbeddr was chosen to implement the smart

meter for the following reasons. The project has to work with
an existing code base which had no production-level quality.
The code quality needed to be improved incrementally. So start-
ing with the existing C code and then refactoring towards bet-
ter abstractions seemed like a good idea. Also, as we will see
below, the existing C extensions provided by mbeddr are a
good match for what is needed in the smart meter (see be-
low)46. Finally, as the goal is to have the meter certified, test-

46 In particular, the smart meter is not
just a state-based or a data flow-based
system, it contains multiple different
behavioral paradigms. Using a state
chart or data flow modeling tool was
hence not an option.ing the software is very important. By using the abstraction

mechanisms provided by mbeddr, and by exploiting the ability
to build custom extensions, testability can be improved sig-
nificantly. In particular, hardware-specifics can be isolated,
which enables testing without the actual target hardware. Also,
mbeddr’s support for requirements traceability comes in handy
for the upcoming certification.

dsl engineering 515

� Using the Existing Extensions The smart meter uses the fol-
lowing default extensions:

Components The smart meter uses components to improve the
structure of the application, and to support different imple-
mentations of the same interface. This improves modularity
and testability. Mocks components are used excessively for
testing.

State Machines The smart meter communicates with its envi-
ronment via several different protocols. So far, one of these
protocols has been refactored to use a state machine. This
has proven to be much more readable than the original C
code. Components and state machines are combined, which
allows decoupling message assembly and parsing from the
application logic in the server component.

Units A major part of the smart meter application logic per-
forms computations on physical quantities (time [s], current
[A] or voltage [V]). So mbeddr’s support for physical units
comes in handy. The benefits of these extensions are mostly
in type checking, using types with units also improves the
readability and comprehensibility of the code.

Requirements Tracing The smart meter also makes use of re-
quirements traces. During the upcoming certification pro-
cess, these will be extremely useful for tracking if and how
the customer requirements have been implemented. Because
of their orthogonal nature, the traces can be attached to the
new language concepts specifically developed for the smart
meter.

� Custom Extensions As part of the smart meter, so far mbeddr
has been extended in the following ways:

Registers The smart meter software makes extensive use of reg-
isters (metrology: access the sensor values, UART: send and
receive data). This cannot be abstracted away easily due to
performance/overhead constraints. In addition, some reg-
isters are special-purpose registers: when a value is written
to such a register, a hardware-implemented computation is
automatically triggered based on the value supplied by the
programmer. The result of this computation is then stored
in the register. To run code that works with these regis-
ters on the PC for testing, developers face two problems:

516 dslbook.org

first, the header files that define the addresses of the reg-
isters are not valid for the PC’s processor. Second, there
are no special-purpose registers on the PC, so no automatic
computations or other hardware-triggered actions would be
triggered. This problem was solved with a language exten-
sion that supports registers as first-class citizens and sup-
ports accessing them from mbeddr-C code (see code below).

exported register8 ADC10CTL0 compute as val * 1000

void calculateAndStore(int8 value) {
int8 result = // some calculation with value
ADC10CTL0 = result; // actually stores result * 1000

}

The extension also supports specifying an expression that
performs the computation. When the code is translated for
the real device, the real headers are included, and access to
the registers is replaced with access to the constants defined
in the header. In testing, structs are generated to hold the
register data. Each write access to a register is replaced with
a write access to the struct, and the expression that simulates
the special purpose register is included in that assignment.

Interrupts Many aspects of the smart meter system are driven
by interrupts. To integrate the component-based architec-
ture used in the smart meter with interrupts, it is neces-
sary to trigger component runnables (methods) via an in-
terrupt. To this end, we have implemented a language ex-
tension that allows us to declare interrupts. In addition, the
extension provides runnable triggers that express the fact
that a runnable is triggered by an interrupt47. The extension

47 By default, runnables are triggered
by an "incoming" invocation, upon
initialization or by a timer. This new
trigger connects a runnable to an
interrupt.

also provides a concept to assign an interrupt to a runnable
during component instantiation. A check makes sure that
each interrupt-triggered runnable has at least one interrupt
assigned48.

48 For testing purposes on the PC,
special language constructs can be
used to emulate the occurrence of an
interrupt: the test driver simulates the
triggering of interrupts based on a test-
specified schedule and checks whether
the system reacts correctly.

Data Encoding As part of the communication protocol, data has
to be encoded into messages49. A language extension sup- 49 The message/data format is similar to

ASN.1.ports the definition of data structures, and generated code
deals with constructing messages. In particular, the gener-
ated code deals with packed data (where data has sizes that
are not multiples of 8 bits). Also, code that processes mes-
sages can be statically checked against the message structure
definition, making this code much more robust (in particular
if the message definitions are changed).

dsl engineering 517

� Conclusions The mbeddr default extensions have proven
extremely useful in the development of the smart meter. The
fact that the extensions are directly integrated into C (as op-
posed to the classical approach of using external DSLs or sep-
arate modeling tools) reduces the hurdle of using higher-level
extensions and removes any potential mismatch between DSL
code and C code.

Generating code from higher-level abstractions may intro-
duce performance and resource consumption overhead. While
we have not yet performed a systematic analysis of the over-
head incurred by the mbeddr extensions, it is low enough to
run the smart meter system on the hardware intended for it50. 50 Some extensions (registers, interrupts

or physical units) have no runtime
overhead at all, since they have no
representation in the generated C code.
Others, such as the components, incur
a very small overhead as a consequence
of indirections from function pointers
(to support polymorphism).

Additional effort is required to integrate with existing legacy
code. As a consequence of the projectional editor, we have to
parse the C text (with an existing parser) and construct the MPS
AST. mbeddr provides an importer for header files as a means
of connecting to existing libraries. However, mostly as a conse-
quence of C’s preprocessor, which allows all kinds of mischief
to be done to otherwise well-structured C code, this importer
is not trivial. For example, we currently cannot import all alter-
natives expressed by #ifdefs. Users have to specify a specific
configuration to be imported (in the future, we will support
importing of all options by mapping the #ifdefs to mbeddr’s
product line variability mechanism). Also, header files often
contain platform-specific keywords or macros. Since they are
not supported by the mbeddr C implementation, these have to
be removed before they can be imported. The header importer
provides a regular expression-based facility to remove these
platform specifics before the import. The smart meter project,
which is heavily based on an existing code base, also drove the
need for a complete source code importer (including .c files,
not just header files), which we are currently in the process of
developing51.

51 The integration of legacy code de-
scribed in this paragraph is clearly a
disadvantage of projectional editing.
However, because of the advantages
of mbeddr and language extensibility
discussed in this chapter, we feel that it
is a good trade-off.

We have performed scalability tests and found that mbeddr
scales to at least the equivalent of 100,000 lines of C code in
the developed system. These tests were based on automati-
cally generated sample code and measured editor responsive-
ness and transformation times. While there are certainly sys-
tems that are substantially larger, a significant share of embed-
ded software is below this limit and can be addressed with
mbeddr52.

52 The smart meter system consists of
30,000 lines of mbeddr code. Since
there is a factor of about 1.5 between
the mbeddr code and generated C, the
smart meter system corresponds to
circa 45,000 lines of C.

518 dslbook.org

20.6 Discussion

� Why MPS? Our choice of MPS is due to its support for
all aspects of language development (structure, syntax, type
systems, IDE, transformations), its support for flexible syn-
tax as a consequence of projectional editing, and its support
for advanced modularization and composition of languages.
The ability to attach annotations to arbitrary program elements
without a change to that element’s definition is another strong
advantage of MPS (we we use this for presence conditions and
trace links, for example).

While the learning curve for MPS is significant (a developer
who wants to become proficient in MPS language development
has to invest at least a month), we found that it scales extremely
well for larger and more sophisticated languages53. 53 This is in sharp contrast to some

of the other tools the authors have
worked with, where implementing
simple languages is quick and easy,
and larger and more sophisticated
languages are disproportionately more
complex to build. This is illustrated by
the very reasonable effort necessary for
implementing mbeddr.

� Projectional Editing Projectional editing is often considered
a drawback, because the editors feel somewhat different and
the programs are not stored as text, but as a tree (XML). We
have already highlighted the fact that MPS does a good job
regarding the editor experience, and we feel that the advan-
tages of projectional editors regarding syntactic freedom far
outweigh the drawback of requiring some initial familiariza-
tion. Our experience so far with about ten users (pilot users
from industry, students) shows that after a short guided in-
troduction of about 30 minutes, and an initial accommodation
period (circa 1-2 days), users can work productively with the
projectional editor. Regarding storage, the situation is not any
worse than with current modeling tools that store models in a
non-textual format, and MPS does provide good support for
diff and merge using the projected syntax.

� Feasibility of Language Extension Based on the experience
with the smart meter, the effort for building extensions is rea-
sonable. For example, the implementation of the language ex-
tensions for registers (and the simulation for testing) was done
in half a day. The addition of interrupts, interrupt-trig-gered
runnables and the way to "wire them" up was circa one day54.

54 In the context of a development
project which, like the smart meter,
is planned to run a few person years,
these efforts can easily be absorbed.
The benefits are well worth the effort in
terms of the improved type safety and
testability.

Building a language extension should not require changes to
the base language. The extensions for the smart meter demon-
strate this point. The registers extension discussed above has
been built without changing the underlying C language55. Sim-

55 It requires new top-level module
contents (the register definition them-
selves), new expressions (for reading
and writing into the registers), and em-
bedding expressions into new contexts
(the code that emulates the hardware
computation when registers are writ-
ten).ilarly, the interrupt-based runnable triggers have been hooked

dsl engineering 519

into the generic trigger facility that is part of the components
language. Once a language is designed in a reasonable way,
the language (or parts of it) should be reusable in contexts that
have not been specifically anticipated in advance. The smart
meter system contains such examples: expressions have been
embedded in the register definition concept for emulating the
hardware behavior, and types with units have been used in de-
cision tables. Again, no change to the existing languages has
been necessary.

One criticism that has been used against language exten-
sion is that the language will grow large and that it is hard
for users to learn all its constructs. In our experience, this is
not a problem in mbeddr for the following three reasons: first,
the extensions provide linguistic abstractions for concepts that
are well known to the users: state-based behavior, interfaces
and components or test cases. Second, the additional language
features are easily discoverable because of the IDE support.
Third, and most important, these extensions are modularized,
and any particular end user will only use those extensions that
are relevant to whatever their current program addresses. This
avoids overwhelming the user with too much "stuff" at a time.

21
DSLs and Product Lines

This chapter discusses the role of DSLs in Product Line En-
gineering (PLE). We first briefly introduce PLE and feature
models and discuss how feature models can be connected to
programs expressed in DSLs. We then explain the differ-
ence in expressivity between feature models and DSLs and
argue why sometimes features models are not enough to ex-
press the variability in a product line, and how DSLs can
help. The chapter concludes with a mapping of the con-
cepts relevant to PLE and DSLs. This chapter is written
mostly for people with a background in PLE who want to
understand how DSLs fit into PLE.

21.1 Introduction

The goal of product line engineering (PLE) is to efficiently man-
age a range of products by factoring out commonalities such
that definitions of products can be reduced to a specification
of their variable aspects1. As a consequence of this approach,

1 PLE also involves a lot product man-
agement, process and organizational
aspects. We do not cover these in this
book.

software quality can be improved and time-to-market of any
single product in the product line can be reduced2. One way

2 It can also help establish a common
user experience among a range of
products.

of achieving this is the expression of product configurations
on a higher level of abstraction than the actual implementa-
tion3. An automated mapping transforms the configuration to

3 This higher level of abstraction is often
called the problem space; the lower
level is often called the solution space
or implementation space.

the implementation.

522 dslbook.org

Figure 21.1: An example feature di-
agram for a product line of Stack
data structures. Filled circles repre-
sent mandatory features, empty circles
represent optional features. Filled arcs
represent n-of-m selection and empty
arcs represent 1-of-m.

21.2 Feature Models

In PLE, this higher level of abstraction is typically realized
with feature models4. Feature models express configuration 4 There are other approaches, such as

Orthogonal Variability Models, but they
are similar in essence to feature models.

options and the constraints among them. A graphical nota-
tion, called feature diagrams, is often used to represent feature
models (Fig. 21.1 shows an example). Here is why we need
constraints: if a product line’s variability was just expressed by
a set of Boolean options, the configuration space would grow
by 2n, with n representing the number of options. With feature
models, constraints are expressed regarding the combinations
of features, limiting the set of valid configurations to a more
manageable size. Constraints include5: 5 Additionally, non-hierarchical con-

straints can be expressed as well.
For example, a feature can declare
conflicts with and a requires also
constraints relative to arbitrary other
features.

• Mandatory (filled circles): mandatory features have to be in
each product. For example, in Fig. 21.1, each Stack has to
have the feature ElementType.

• Optional (empty circles): optional features may or may not
be in a product. Counter and Optimization are examples
of optional features.

• Or (filled arc): a product may include zero, one or any num-
ber of the features in an or group. In the example, a product
may include any number of features from ThreadSafety,
BoundsCheck and TypeCheck.

• Xor (empty arc): a product must include exactly one of the
features grouped into a xor group. The ElementType must
either be int, float or String.

A configuration represents a product in the product line. It
comprises a set of feature selections from a feature model that
comply with the constraints expressed in the feature model.

dsl engineering 523

For example, the configuration {Optimization, Memory Use,

Additional Features, Type Check, Element Type, int,

Size, Dynamic} would be valid. A configuration that includes
Speed and Memory Usage would be invalid, because it violates
the xor constraint between those two features expressed in the
feature model.

Note that a feature model does not yet describe the imple-
mentation of a product or the product line, the feature model
has to be connected to implementation artifacts in a separate
step6. 6 While this sounds like a drawback,

it is one of the main advantages of
the approach: feature models support
reasoning about product configurations
independent of their implementation.21.3 Connecting Feature Models to Artifacts

By definition, feature models express product line variability
at a level that is more abstract than the implementation. In
many systems, the implementation of variability is scattered
over (parts of) many implementation artifacts. However, to re-
sult in a correct system, several variation points (VP) may need
to be configured in a consistent, mutually dependent way. If
each VP has to be configured separately, the overall complex-
ity grows quickly. By identifying logical variation points and
factoring them into features in a feature model, and then tying
the (potentially many) implementation variation points to these
logical variation points, related implementation variations can
be tied together and managed as one (Fig. 21.2).

Figure 21.2: The Artifact Level rep-
resents realization artifacts such as
models, code or documentation. The
Logical Level is the external description
of variation points and the conceptual
constraints among them, typically a
feature model. One or more VPs in the
implementation level are associated
with variation points in the logical level
(n:1, n:m).

If DSLs are used to implement a software system, then the
artifacts configured from the feature model are typically DSL
programs, and the variation points are program elements. By

524 dslbook.org

using DSL models instead of low-level implementation code,
the number of variation points in the artifacts will be reduced,
because you use the DSL-to-code transformation to expand all
the details in a consistent way. The trade-off is that you have
to define this high-level domain specific language, including a
way to define variants of programs written in that language.
You also need to define the transformation down to the actual
implementation artifacts (Fig. 21.3).

Figure 21.3: A model describes domain
abstractions in a formal and concise
way. Transformations map the model
to (typically more than one) implemen-
tation artifact. Variability is expressed
with fewer VPs in the models compared
to implementation artifacts.

The configuration of models (and other artifacts) can be done
in several different ways: removal, injection and parameteriza-
tion.

Figure 21.4: Removal represents nega-
tive variability, in that it takes optional
things (small squares) away from a
comprehensive whole, based on the
configuration expressed over the fea-
tures a,b,c. The optional parts are
annotated with presence conditions
referring to the configuration features.

� Removal (also known as negative variability) In this approach,
the mapping from a feature model to implementation artifacts
removes parts of a comprehensive whole (Fig. 21.4). This im-
plies marking up the various optional parts of the comprehen-
sive whole with Boolean expressions that determine when to
remove the part. These expressions are called presence condi-
tions. The biggest advantage of this approach is its apparent
simplicity. However, the comprehensive whole has to contain
the parts for all variants (maybe even parts for combinations of
variants), making it potentially large and complex. Also, de-
pending on the tool support, the comprehensive whole might
not even be a valid instance of the underlying language or for-
malism7. In an IDE, the respective artifact might show errors, 7 For example, a Java class may have to

extend different base classes, depending
on the variant, or it may contain fields
with different types.

which makes this approach annoying at times.
ifdefs in C and C++ are a well-known implementation of

this strategy. A preprocessor removes all code regions whose
ifdef condition evaluates to false. When calling the compil-
er/preprocessor, you have to provide a number of symbols

dsl engineering 525

that are evaluated as part of the conditions. Conditional com-
pilation can also be found in other languages. Preprocessors
that treat the source code simply as text are available for many
languages and are part of many PLE tool suites. The AU-
TOSAR standard, as well as other modeling formalisms, sup-
port the annotation of model elements with presence condi-
tions. The model element (and all its children) are removed
from the model if the condition evaluates to false. The same
approach is available in mbeddr.

Figure 21.5: A minimal base arti-
fact made of various parts (the small
rectangles) exists. There is also variant-
specific code (the strange shapes),
connected to features external to the
actual artifact and pointing to the parts
of the artifact to which they can be at-
tached. Implementing a variant means
that the variant-specific code associated
with the selected features is injected
into the base artifact, attached to the
parts they designate.

� Injection (also known as positive variability) In this approach,
additions are defined relative to a minimal core (Fig. 21.5). The
core does not know about the variability: the additions point
to the place where they need to be added. The clear advantage
of this approach is that the core is typically small and contains
only what is common for all products. The parts specific to a
variant are kept external and added to the core only when nec-
essary. To be able to do this, however, there must be a way to
refer to the location in the minimal core at which to add a vari-
able part. This either requires the explicit definition of named
hooks in the minimal core, or some way of pointing into the
core from an external source. Also, interactions between the
additions for various features may also be hard to manage.

Aspect-oriented programming is a way of implementing this
strategy. Pointcuts are a way of selecting from a set of join
points in the base asset. A joint point is an addressable location
in the core. Instead of explicitly defining hooks, all instances
of a specific language construct are automatically addressable.
Various preprocessors can also be used in this way. However,
they typically require the explicit markup of hooks in the min-
imal core. For models, injection is especially simple, since in
most formalisms model elements are addressable by default
and/or the language can be extended to be able to mark up
hooks. This makes it possible to point to a model element, and
add additional model elements to it, as long as the result is still
a valid instance of the meta model.

Figure 21.6: An artifact defines a num-
ber of (typed) parameters. A variant
provides values for the parameters.

� Parameterization The variable artifact defines parameters.
A variant is constructed by providing values for those parame-
ters (Fig. 21.6). The parameters are usually typed to restrict the
range of valid values. In most cases, the values for the param-
eters are relatively simple, such as strings, integers, Booleans
or regular expressions. However, in principle, they can be arbi-

526 dslbook.org

trarily complex8. The parameterized artifact needs to explicitly 8 In the extreme case, these parameters
can be complete programs in some
DSL.

define the parameters, as well as a way to specify values. The
artifact has to query the values of those parameters explicitly
and use them for whatever it does. The approach requires the
core to be explicitly aware of the variability9.

9 This is not necessarily the case with
the other two approaches.

A configuration file that is read out by the an application is
a form of parameterization. The names of the parameters are
predefined by the application, and when defining a variant, a
set of values is supplied. The Strategy pattern is a form of
parameterization, especially in combination with a factory. A
variant is created by supplying an implementation of an inter-
face defined by the configurable application. All kinds of other
small, simple or domain-specific languages can be used as a
form of parameterization. A macro language in an application
is a form of parameterization, where the type of parameter is
"valid program written in language X"10.

10 There is an obvious connection
to DSLs – a DSL can be used here.
This approach is useful when the
primary product definition can be
expressed with a feature model. The
DSL-typed attributes can be used
for those variation points for which
selection is not expressive enough.

21.3.1 Example Implementation in mbeddr

In mbeddr we use a textual notation for feature models. Fig. 21.7
shows this notation for the stack feature model shown graph-
ically above. Note how the constraint affects all children of a
feature, so we had to introduce the intermediate feature options
to separate mandatory features from optional features. Fea-
tures can also have configuration attributes (of any type).

Figure 21.7: An example feature model
in mbeddr. Until MPS provides support
for graphical notations (planned for
2013), we use a textual notation.

A configuration is a named set of selections from the fea-
tures in a feature model. The selection has to be valid regarding
the constraints defined in the feature model. Fig. 21.8 shows
two example configurations. If an invalid configuration is cre-
ated, errors will be shown in the configuration model.

Figure 21.8: Two valid configurations of
the feature model.

Presence conditions can be attached to any program element
expressed in any language11, without this language having to

11 Note that the fact that you can make
arbitrarily detailed program elements
depend on features is not meant to
imply that no further structuring of
the product line is necessary, and all
variability should be expressed via fine-
grained presence conditions. Instead,
presence conditions should be used to
configure more coarse-grained entities
such as the instantiation and wiring of
components.

know about it, thanks to MPS’ annotations (discussed in Sec-
tion 16.2.7). For example the two report statements and the
message list in the left program in Fig. 21.9 are only part of a

dsl engineering 527

product if the logging feature is selected in the product con-
figuration. The background color of an annotated node is com-
puted from the expression: annotated nodes using the same
expression have the same color (an idea borrowed from Chris-
tian Kaestner’s CIDE12). 12 C. Kaestner. Cide: Decomposing

legacy applications into features. In
Software Product Lines, 11th International
Conference, SPLC 2007, Kyoto, Japan,
September 10-14, 2007, Proceedings.
Second Volume (Workshops), pages
149–150. Kindai Kagaku Sha Co. Ltd.,
Tokyo, Japan, 2007

It is possible to edit the program as a product line (with the
annotations), undecorated (without annotations), as well as a
specific product. Fig. 21.9 shows an example. During transfor-
mation, those parts of programs that are not in the product are
removed from the model.

Figure 21.9: Left: A C program with
product line annotations. Right: The
program rendered in the Production
variant. Note how the program is "cut
down" to include only those parts that
are part of the variant, even in the
editor.

21.3.2 Feature Models on Language Elements

Instead of using feature models to vary programs expressed
with DSLs, the opposite approach is also possible. In this case,
the primary product definition is done with DSLs. However,
some language concepts have a feature model associated with
them for detailed configuration. When the particular language
concept is instantiated, a new ("empty") feature configuration
is created, and can be configured by the application engineer.

528 dslbook.org

21.3.3 Variations in the Transformation or Execution

When working with DSLs, the execution of models – by trans-
formation, code generation or interpretation – is under the con-
trol of the domain engineer. The transformations or the inter-
preter can also be varied based on a feature model.

� Negative Variability via Removal The transformations or the
interpreter can be annotated with presence conditions; the con-
figuration happens before the transformations or the interpreter
are executed.

� Branching The interpreter or the transformations can query
over a feature configuration and then branch accordingly at
runtime.

� Positive Variability via Superimposition Transformations or
interpreters can be composed via superposition before execu-
tion. For transformations, this is especially feasible if the trans-
formation language is declarative, which means that the order
in which the transformations are specified is irrelevant. In-
terpreters are usually procedural, object-oriented or functional
programs, so declarativeness is hard to achieve in those.

� Positive Variability via Aspects If the transformation lan-
guage or the interpreter implementation language support as-
pect oriented programming, then this can be used to configure
the execution environment. For example, the Xpand code gen-
eration engine13 supports AOP for code generation templates. 13 wiki.eclipse.org/Xpand

Creating transformations with the help of other transforma-
tions, or by any of the above variability mechanisms, is also
referred to as higher-order transformations14. Note that if a boot- 14 J. Oldevik and O. Haugen. Higher-

order transformations for product lines.
In SPLC, pages 243–254, 2007

strapped environment is used, the transformations are them-
selves models created with a transformation DSL. This case
then reduces to just variation over models, as described in the
previous subsection.

21.4 From Feature Models to DSLs

A feature model is a compact representation of the features of
the products in a product line, as well as the constraints im-
posed on combinations of these features in products. Feature
models are an efficient formalism for configuration, i.e. for select-

dsl engineering 529

ing a valid combination of features from the feature model. The
set of products that can be defined by feature selection is fixed
and finite: each valid combination of selected features consti-
tutes a product. This means that all valid products have to be
"designed into" the feature model, encoded in the features and
the constraints among them. Some typical examples of things
that can be modeled with feature models are the following:

• Does the communication system support encryption?

• Should the in-car entertainment system support MP3s?

• Should the system be optimized for performance or memory
footprint?

• Should messages be queued? What is the queue size?

Because of the "select from set of options" metaphor, feature
model-based configuration is simple to use – product definition
is basically a decision tree. This makes product configuration
efficient, and potentially accessible for stakeholders other than
software developers. Also, as described by Batory15 and Czar- 15 D. S. Batory. Feature models, gram-

mars, and propositional formulas. In
SPLC, pages 7–20, 2005

necki16, one advantage of feature models is that a mapping

16 K. Czarnecki and A. Wasowski.
Feature diagrams and logics: There and
back again. In SPLC, pages 23–34, 2007

to logic exists. Using SAT solvers, it is possible to check, for
example, whether a feature model has valid configurations at
all. The technique can also be used to automatically complete
partial configurations.

In the rest of this section we will discuss the limitations of
feature models, in particular, that they are not suited for open-
ended construction of product variants. Instead of giving up
on models completely and using low-level programming, we
should use DSLs instead. This avoids losing the differentiation
between problem space and solution space, while still support-
ing more expressivity in the definition of a product.

As an example, we use a product line of water fountains,
as found in recreational parks17. Fountains can have several 17 This is an anonymized version of

an actual project the author has been
working on. The real domain was
different, but the example languages
presented in this chapter have been
developed and used for that other
domain.

basins, pumps and nozzles. Software is used to program the
behavior of the pumps and valves to make the sprinkling wa-
ters aesthetically pleasing. The feature model in Fig. 21.10 rep-
resents valid hardware combinations for a simple water foun-
tain product line. Each feature corresponds to the presence of
a hardware component in a particular fountain installation.

The real selling point of water fountains is their behavior.
A fountain’s behavior determines how much water each pump
should pump, at which time, with what power, or how a pump

530 dslbook.org

Figure 21.10: Feature model for the sim-
ple fountains product line used as the
example. Fountains have basins, with
one or two nozzles, and an optional full
sensor. In addition, fountains have a
pump.

reacts when a certain condition is met, e.g., a basin is full. Ex-
pressing the full range of such behaviors is not possible with
feature models. Feature models can be used to select among
a fixed number of predefined behaviors, but approximating all
possible behaviors would lead to unwieldy feature models.

21.4.1 Feature Models as Grammars

To understand the limitations of feature models, we consider
their relation to grammars. Feature models essentially corre-
spond to context-free grammars without recursion18. For ex- 18 K. Czarnecki, S. Helsen, and U. W.

Eisenecker. Formalizing cardinality-
based feature models and their special-
ization. SOPR, 10(1):7–29, 2005

ample, the feature model in Fig. 21.10 is equivalent to the fol-
lowing grammar19:

19 We use all caps to represent termi-
nals, and camel-case identifiers as
non-terminals.

Fountain -> Basin PUMP
Basin -> ISFULLSENSOR? (ONENOZZLE | TWONOZZLES)

This grammar represents a finite number of sentences: there
are exactly four possible configurations, which correspond to
the finite number of products in the product line. However,
this formalism does not make sense for modeling behavior, for
which there is typically an infinite range of variability. To ac-
commodate for unbounded variability, the formalism needs to
be extended. Allowing recursive grammar productions is suf-
ficient to model unbounded configuration spaces, but for con-
venience, we consider also attributes and references.

Attributes express properties of features. For example, the
PUMP could have an integer attribute rpm, representing the power
setting of the pump20. 20 Some feature modeling tools support

attributes on features. An example is
pure::variants.Fountain -> Basin PUMP(rpm:int)

Basin -> ISFULLSENSOR? (ONENOZZLE | TWONOZZLES)

Recursive grammars can be used to model repetition21 and nest- 21 Repetition is also supported by
cardinality-based feature models, as
described in .

K. Czarnecki, S. Helsen, and U. W.
Eisenecker. Formalizing cardinality-
based feature models and their special-
ization. SOPR, 10(1):7–29, 2005

ing. Nesting is necessary to model tree structures such as those
occurring in expressions. The following grammar extends the
fountain feature model with a Behavior, which consists of a
number of Rules. The Basin can now have any number of
Nozzles.

dsl engineering 531

Figure 21.11: An extended feature mod-
eling formalism is used to represent the
example feature model with attributes,
recursion and references (the dotted
boxes).

Fountain -> Basin PUMP(rpm:int) Behavior
Basin -> ISFULLSENSOR? NOZZLE*
Behavior -> Rule*
Rule -> CONDITION CONSEQUENCE

References allow the creation of context-sensitive relations be-
tween parts of programs described by the grammar. For ex-
ample, by further extending our fountain grammar we can de-
scribe a rule whose condition refers to the full attribute of
the ISFULLSENSOR and whose consequence sets a PUMP’s rpm to
zero.

Fountain -> Basin id:PUMP(rpm:int)? Behavior
Basin -> id:ISFULLSENSOR(full:boolean)? id:NOZZLE*
Behavior -> Rule*

Rule -> Condition Consequence
Condition -> Expression
Expression -> ATTRREFEXPRESSION | AndExpression |

GreaterThanExpression | INTLITERAL;

AndExpression -> Expression Expression
GreaterThanExpression -> Expression Expression

Consequence -> ATTRREFEXPRESSION Expression

Fig. 21.11 shows a possible rendering of the grammar with an
enhanced feature modeling notation. We use cardinalities, as
well as references to existing features, the latter are shown as
dotted boxes. A valid configuration could be the one shown
in Fig. 21.12. It shows a fountain with one basin, two nozzles
named n1 and n2, one sensor s and a pump p. It contains a

532 dslbook.org

rule that expresses the condition that if the full attribute of s
is set, and the rpm of pump p is greater than zero, then the rpm

should be set to zero.

Figure 21.12: Example configuration
using a tree notation. Referenceable
identities are rendered as labels to
the left of each box. The dotted lines
represent references to variables.

21.4.2 Domain-Specific Languages

While the extended grammar formalism discussed above en-
ables us to cover the full range of behavior variability, the use
of a graphical tree notation to instantiate these grammars is
not practical. Another interpretation of these grammars is as
the definition of a DSL – the tree in Fig. 21.12 looks like an
abstract tree (AST). To make the language readable we need to
add concrete syntax definitions (keywords), as in the following
extension of the fountain grammar:

Fountain -> "fountain" Basin Pump Behavior
Basin -> "basin" IsFullSensor Nozzle*
Behavior -> Rule*

Rule -> "if" Condition "then" Consequence
Condition -> Expression
Expression -> AttrRefExpression | AndExpression |

GreaterThanExpression | IntLiteral;

AndExpression -> Expression "&&" Expression
GreaterThanExpression -> Expression ">" Expression
AttrRefExpression -> <attribute-ref-by-name>
IntLiteral -> (0..9)*

Consequence -> AttrRefExpression "=" Expression

IsFullSensor -> "sensor" ID (full:boolean)?
Nozzle -> "nozzle" ID
Pump -> "pump" ID (rpm:int)?

dsl engineering 533

We can now write a program that uses a convenient textual
notation, which is especially useful for the expressions in the
rules. We have created a DSL for configuring the composition
and behavior of fountains22.

22 As we have discussed at length in this
book, a complete language definition
would also include typing rules and
other constraints. However, to under-
stand the difference in expressibility
between DSLs and feature models, a
grammar is sufficient.fountain

basin sensor s
nozzle n1
nozzle n2

pump p
if s.full && p.rpm > 0 then p.rpm = 0

DSLs fill the gap between feature models and programming
languages. They can be more expressive than feature mod-
els, but they are not as unrestricted and low-level as program-
ming languages. Like programming languages, DSLs support
construction, allowing the composition of an unlimited num-
ber of programs. Construction happens by instantiating lan-
guage concepts, establishing relationships, and defining values
for attributes. We do not a-priori know all possible valid pro-
grams23. In contrast to programming languages, DSLs keep 23 This is in contrast to configuration,

where users select from a limited set
of options. Feature models support
configuration.

the distinction between problem space and solution space in-
tact, since they consist of concepts and notations relevant to
the problem domain. Non-programmers can continue to con-
tribute directly to the product development process, without
being exposed to implementation details.

21.4.3 Making Feature Models More Expressive

We described the limitations of the feature modeling approach
above, and proposed DSLs as an alternative. However, the fea-
ture modeling community is working on alleviating some of
these limitations.

For example, cardinality based feature models24 support the 24 K. Czarnecki, S. Helsen, and U. W.
Eisenecker. Formalizing cardinality-
based feature models and their special-
ization. SOPR, 10(1):7–29, 2005

multiple instantiation of feature subtrees. References between
features could be established by using feature attributes typed
with another feature – the value range would be the set of in-
stances of this feature. Name references are an approximation
of this approach.

Clafer25 combines meta modeling and feature modeling. In 25 K. Bak, K. Czarnecki, and A. Wa-
sowski. Feature and meta-models in
clafer: Mixed, specialized, and cou-
pled. In 3rd International Conference on
Software Language Engineering, 10/2010

2010

addition to providing a unified syntax and a semantics based
on sets, Clafer also provides a mapping to SAT solvers to sup-
port validation of models. The following is an example Clafer26:

26 adapted from Michal Antkiewicz’
Concept Modeling Using Clafer tutorial at
gsd.uwaterloo.ca/node/310

abstract Person
name : String
firstname : String
or Gender

Male
Female

534 dslbook.org

xor MaritalStatus
Single
Married
Divorced

Address
Street : String
City : String
Country : String
PostalCode : String
State : String ?

abstract WaitingLine
participants -> Person *

The code describes a concept Person with the following char-
acteristics:

• A name and a first name of type String (similar to at-
tributes).

• A gender, which is Male or Female, or both27 (similar to 27 Don’t ask me why it’s an or and not
a xor constraint, so you can be two
genders at once. It is in the original
example :-)

or-groups in feature models).

• A marital status, which is either single, married or divorced
(similar to xor-groups in feature models).

• An Address (similar composition is language definitions) .

• An optional State attribute on the address (similar to op-
tional features in feature modeling).

The code also shows a reference: a WaitingLine refers to any
number of Persons.

Note however that an important ingredient for making DSLs
work in practice is the domain-specific concrete syntax. None
of the approaches mentioned in this section provide customiz-
able syntax. However, approaches like Clafer are a very inter-
esting backend for DSLs, to support analysis, validation and
automatic creation of valid programs from partial configura-
tions.

21.5 Conceptual Mapping from PLE to DSLs

This section looks at the bigger picture of the relationship be-
tween PLE and DSLs. It contains a systematic mapping from
the core concepts of PLE to the technical space of DSLs. First
we briefly recap the core PLE concepts.

Core Assets designate reusable artifacts that are used in more
than one product. As a consequence of their strategic rel-
evance, they are usually high quality and maintained over
time. Some of the core assets might have variation points.

dsl engineering 535

A Variation Point is a well-defined location in a core asset where
products differ from one another.

Kind of Variability classifies the degrees of freedom one has when
binding the variation point. This ranges from setting a sim-
ple Boolean flag, through specifying a database URL or a
DSL program, to a Java class hooked into a platform frame-
work.

Binding Time denotes the point in time when the decision is
made as to which alternative should be used for a variation
point. Typical binding times include source time (changes
to the source code are required), load time (bound when the
system starts up) and runtime (the decision is made while
the program is running).

The Platform is those core assets that actually form a part of the
running system. Examples include libraries, frameworks or
middleware.

Production Tools are core assets that are not part of the plat-
form, but which are used during the (possibly) automated
development of products.

Domain Engineering refers to activities in which the core assets
are created. An important part of domain engineering is do-
main analysis, during which a fundamental understanding
of the domain, its commonalities and variability is estab-
lished.

Application Engineering is the phase in which the domain engi-
neering artifacts are used to create products. Unless varia-
tion points use runtime binding, they are bound during this
phase.

The Problem Space refers to the application domain in which
the product line resides. The concepts found in the prob-
lem space are typically meaningful to non-programmers as
well.

The Solution Space refers to the technical space that is used to
implement the products. In the case of software product line
engineering28, this space is software development. The plat- 28 Product Lines often also contain

non-software artifacts, often electronic
hardware.

form lives in the solution space. The production tools create
or adapt artifacts in the solution space based on a specifica-
tion of a product in the problem space.

536 dslbook.org

In the following sections we now elaborate on how these con-
cepts are realized when DSLs are used.

21.5.1 Variation Points and Kinds of Variability

This represents the core of the chapter and has been discussed
extensively above: DSLs provide more expressivity than fea-
ture models, while not being completely unrestricted as pro-
gramming languages.

21.5.2 Domain Engineering and Application Engineering

As we develop an understanding of the domain, we classify
the variability. If the variability at a particular variation point
is suitable for DSLs (i.e. it cannot be expressed sensibly by
pure configuration), we develop the actual languages together
with the IDEs during domain engineering. The abstract syntax
of the DSL constitutes a formal model of the variability found
at the particular variation point29. The combination of several 29 This is similar to analysis models,

with the advantage that DSLs are
executable. Users can immediately
express example domain structures or
behavior and thereby validate the DSL.
This should be exploited: language
definition should proceed incrementally
and iteratively, with user validation
after each iteration. The example
models created in this way should be
kept around; they constitute unit tests
for the language.

DSLs is often necessary. Different variation points may have
different DSLs that must be used together to describe a com-
plete product30.

30 We discussed language composition
in Section 4.6 and Chapter 16.

Application engineering involves using the DSLs to bind the
respective variation points. The language definition, the con-
straints and the IDE guide the user along the degrees of free-
dom supported by the DSL.

21.5.3 Problem Space and Solution Space

DSLs can represent any domain. They can be technical, in-
spired by a library, framework or middleware, expected to be
used by programmers and architects. DSLs can also cover ap-
plication domains, inspired by the application logic for which
the application is built. In this case they are expected to be used
by application domain experts. In the case of application DSLs,
the DSL resides in the problem space. For execution they are
mapped to the solution space by the production tools. Techni-
cal DSLs can, however, also be part of the solution space. In this
case, DSL programs may be created by the mapping of an ap-
plication domain DSL to the solution space. It is also possible
for technical DSLs to be used by developers as an annotation
for the application domain DSLs, controlling the mapping to
the solution space, or configuring some technical aspect of the
solution directly.

dsl engineering 537

21.5.4 Binding Time

DSL programs can either be transformed to executable code or
interpreted. This maps to the binding times introduced above
in the following way:

• If we generate source code that has to be compiled, pack-
aged and deployed, the binding time is source. We speak of
static variability, or static binding.

• If the DSL programs are interpreted, and the DSL programs
can be changed as the system runs, this constitutes runtime
binding, and we speak of dynamic variability.

• If we transform the DSL program into another formalism
that is then interpreted by the running system, we are in
the middle ground. Whether the variability is load-time or
runtime depends on the details of how and when the result
of the transformation is (re-)loaded into the running system.

21.5.5 Core Assets, Platform and the Production Tools

DSLs constitute core assets; they are used for many, and often
all, of the products in the product line. It is however not easy
to answer the question of whether they are part of the platform
or the production tools:

• If the DSL programs are transformed, the transformation
code is a production tool; it is used in the production of the
products. The DSL or the models are not part of the running
system.

• In the case of interpretation, the interpreter is part of the
platform. Since it directly works with the DSL program, the
language definition becomes a part of the platform as well.

• If we can change the DSL programs as the system runs, even
the IDE for the DSL is part of the platform.

• If the DSL programs are transformed into another formalism
that is in turn interpreted by the platform, then the transfor-
mations constitute production tools, and the interpreter of
the target formalism is a part of the platform.

22
DSLs for Business Users

This chapter has been written by Intentional’s Mats Helander.
You can reach him via mats@intentsoft.nl.

In this chapter we will examine using DSLs for business
professionals. The example is a system in the healthcare do-
main – essentially a system for defining questionnaires and
the business rules to process them. A secondary purpose of
this chapter is to provide an impression of Intentional Soft-
ware’s technology for defining DSL: the example system is
built with the Intentional Domain Workbench.

22.1 Intentional Software

Intentional Software was one of the first companies to create
a language workbench1, and their focus has been on business

1 Intentional Software was started by
Charles Simonyi after he left Microsoft.
There he had been one of the early
employees and served as the chief ar-
chitect for Excel and Word, introducing
the principle of WYSIWYG. During
his later years he ran the Intentional
Programming research project in Mi-
crosoft Research (which is described
very well in Czarnecki and Eisenecker’s
Generative Programming book). His
company, Intentional Software, contin-
ues to work on the ideas pioneered by
Intentional Programming.

K. Czarnecki and U. Eisenecker.
Generative Programming: Methods,
Techniques and Applications. Addison-
Wesley, 1999

professionals and less on programmers as users for the DSLs2.

2 This has always been a focus of DSLs.
However, as we will see in this chapter,
focussing on non-programmers leads to
different tradeoffs in the design of the
languages and the tools.

Business professionals are often the source of domain knowl-
edge. Today this knowledge has to be captured and explained
to software engineers for it to be actionable. Agile principles
help bridge this gap, but this communication gap remains the
biggest obstacle in software development today. DSLs for busi-
ness professionals have the potential to bridge this gap.

540 dslbook.org

22.2 The Project Challenge

This case study describes an application in which domain knowl-
edge is captured and maintained directly by the domain ex-
perts using DSLs, validated at the domain level, and used for
code generation to create an executable application3. The do- 3 The DSL is complete: no manual coding

of "business logic" is required. If that
were necessary, the premise of a DSL
for business professionals would be
infeasible.

main is tele-health, where patients with chronic conditions or
diseases like diabetes, hypertension or obesity stay at home,
and are provided with daily recommendations based on ob-
served values of various daily measurements of the patient. A
medical professional has defined which values to observe for
each particular patient, and the rules for the daily individual
recommendations based on those values4. The input from the 4 This is not an expert system. All de-

cisions are made originally by medical
doctors.

patient at home is provided through sensors, medical devices
and patient interactions with the system through mobile de-
vices, set-top boxes or web interfaces. The system needs to be
flexible enough to address the requirements of multiple health
care providers that will have different sets of criteria for differ-
ent patients.

The system described in this chapter replaces a legacy sys-
tem developed using a traditional approach in which domain
knowledge was captured in big Excel documents that encoded
the physician’s rules. A typical rule looked like this:
if WHtR < 46 and (LDL < 100 and No LDL Meds) and (SBP < 125 and No BP Meds)

and
(HgbA1c >= 6.5 and No Glucose Meds)

This Excel text should be interpreted as:
if the patient

has a Weight Height ratio of less than 46
and

a cholesterol LDL level below 100 and does not take LDL medications
and

the systolic blood pressure level is less than 125
and does not take blood pressure medication

and
the hemoglobin A1c test is equal or greater than 6.5

and does not take glucose medication
then <advice according to diabetes plan>.

The Excel spreadsheet had hundreds of rules like this. The
repetition resulting from lack of abstractions available to the
rules programmer meant that for each new observable attribute
the number of rules doubled5. Each rule was then transformed 5 The lack type checks, testing, refactor-

ings, and all the other amenities we are
used from an real IDE also hampered
productivity and maintainability.

by a programmer into rules for a Drools rules engine. The
patient data had a similar workflow, in which information for
the patient-recorded data was captured also in Excel sheets.
Once this information was confirmed with the doctor, XML
documents were created for this data to feed a custom web

dsl engineering 541

application application to be used by the patient to fill in the
data.

The medical professional was overwhelmed with the com-
plexity. It was clear that the doctors knew exactly what in-
tentions they wanted to express, but the complexity to express
them became a big bottleneck. Furthermore, when the doctor
wanted to add or make any changes to the application, it had
to go through a convoluted process, with limited traceability, to
update XML documents, Drools rules, database schemas and
other application-dependent logic.

22.3 The DSL-Based Solution

22.3.1 Intentional Domain Workbench

Intentional Software provides a knowledge processing plat-
form to allow business professionals to turn their specialized
expertise into software. The development environment, the In-
tentional Domain Workbench (IDW), is a language workbench
for building DSL-oriented applications for business users. These
applications can be run stand-alone, and can optionally also
generate applications using various languages and runtimes
(such as XML and Drools in this example).

The Intentional platform provides a number of key technolo-
gies that make the DSLs especially suited for business users.
In particular, this includes a projectional editor that allows lan-
guages to be edited in multiple syntactical forms, and with
multiple semantic interpretations. It can use and mix textual,
tabular and graphical notations to approximate the needs of a
business domain as closely as possible6. The projections of a 6 As we will see, it also supports Word

document-like headings, and more
generally, looks a bit like Microsoft
Office. This also helps acceptance with
business users.

language can potentially be ambiguous, but that does not cause
a problem, because they are just projections of an underlying
consistent representation, and a user can always switch to an-
other projection to resolve any ambiguity. The platform also
allows for combination and interaction across languages. A
single projection can integrate knowledge represented in mul-
tiple disparate languages.

22.3.2 Overview of the Solution

The purpose of the custom language workbench application
examined in this case study is to let business experts edit ques-
tionnaire definitions that are used as input to a web application
that in turn allows end users to fill out their answers. Fig. 22.1
shows an example definition of a questionnaire.

542 dslbook.org

Figure 22.1: An example questionnaire,
as seen and edited by the medical pro-
fessional. Questionnaires are essentially
trees of questions with the possible an-
swers, as well as dependencies between
questions (when answer is...).

In addition to defining the questions, the medical professional
can also define business rules that should be applied to the
questionnaires, as well as tests to ensure that the business rules
are working correctly. Fig. 22.2 shows an example of such rules;
we will get back to testing later.

22.3.3 Implementation

To implement this, we have used IDW to define a set of domain
schemas7 along with logic for validation, transformations, eval-

7 A schema is the structure definition
of a domain. It roughly corresponds
to the abstract syntax or meta model,
even though the meta meta model of
the IDW is substantially different from
EMF or MPS’ structure definition.

uation, code generation and projectional editors. All of these
concerns are implemented with a custom language supported
by IDW that extends C# with additional operators and key-
words that are useful for working with tree structures8. The 8 This approach is similar to MPS:

MPS’ BaseLangauage extends Java with
constructs useful for working on the
meta level of languages.

language also contains several dedicated DSLs for defining do-
main schemas, validators or projections9. The result of com-

9 This is similar to MPS and Spoofax,
which also come with a set of DSLs
specific to various aspects of language
definition.

piling the language definition is a custom workbench: a stan-
dalone Windows application that lets the business experts edit
the defined domains in a projectional editor where all the rules
for validation, projection layout and such are applied. Fig. 22.2
shows the editor for business rules with definition expressions,
assessment tables, choice lists and results.

As its output the workbench in this case study generates
files that are fed into a web application that executes the ques-
tionnaires and applies the business rules10. The web applica- 10 The patient interacts with this web

application in addition to the sensors
mentioned earlier.

tion itself is developed separately and consists of web pages
with JavaScript that consumes the XML files generated by the
workbench. The JavaScript then uses these XML files to pro-
duce a dynamic user interface11. The workbench also generates 11 The web application acts as an in-

terpreter for an intermediate language
whose serialization format is XML

business rule files in a format that the Drools business rule en-
gine can consume, and the web application can in turn call the
Drools engine to access the running rules.

dsl engineering 543

Figure 22.2: This screenshot shows
how the medical professional sees and
edits business rules for questionnaire
questions. In this example, the body
mass index is calculated.

� Domain Structure The IDW is very suitable for modulariz-
ing, reusing and composing languages ("domains" in the termi-
nology of Intentional Software). Consequently, the application
consists of several domains, some of them specific to the appli-
cation discussed here, others more general12. 12 Some are generalized because future

reuse is anticipated, others are existing
languages reused in this application.

We use two domains that are motivated by the underly-
ing technology: to generate the XML, we employ a reusable
XHTML domain that comes with IDW. To generate the Drools
rules, we have created a Drools domain (which may be reused
for other applications in the future).

Similarly, the domains that are closer to the business do-
main are also modularized. The medical professionals in this
case study have a particular subject they want to create ques-
tionnaires about, but the questionnaire domain itself is general

544 dslbook.org

and has high potential for reuse. The business rules are also
general enough to be reused on their own, independent of the
questionnaires. This results in two main domains: the ques-
tionnaire domain and the business rule domain. These are in
turn divided into subdomains to allow selection of features to
reuse. We then complement this with an adapter domain that
includes the reusable questionnaire and business rule domains,
and define how they should work together. Finally, we have an
overarching domain for the application that we call Intentional
Health Workbench (IHW), which adapts the combined ques-
tionnaire and business rule domains to the particular customer
requirements. In total we end up with ten domains (Fig. 22.3
shows an overview of the relationships between them):

FitBase: The generic questionnaire domain13. Contains abstrac- 13 The prefix "Fit" stands for Forms,
Interview, Tables.tions such as interviews, questions and answers.

FitRunner: In-workbench execution of the generic questionnaire
domain FitBase, allowing the business expert editing the
questionnaires to experiment with filling out answers inside
the workbench.

FitSimple: A simplification of the generic questionnaire domain
FitBase to a subset suitable for combination with the busi-
ness rules domain and intuitive editing.

RulesEngine: The generic business rule domain, with table-style
editing and in-workbench evaluation of business rules.

RulesChecking: Consistency validation of the rules in the generic
business rule domain RulesEngine.

RulesCompiler: Generates the business rules from RulesEngine
to files that the Drools business rule engine can use.

FitSimpleWithRules: Combines the simplified subset of the ques-
tionnaire domain FitSimple with the generic business rule
domain RulesEngine.

Drools: Provides abstractions from the Drools business rules
engine domain. Supports generation to the Drools file for-
mat.

XHTML: Provides abstractions from the XML and HTML do-
mains. Supports generation of XHTML and XML files.

IHW: The workbench that ties all the other domains together.
When compiled, this results in the workbench application
that lets business users edit questionnaires and business rules,

dsl engineering 545

test them and generate output for the web application and
the Drools business rule engine.

Figure 22.3: Dependencies between the
ten domains that make up the system
described in this chapter. The arrows
represent an includes relationship.
Like the extends relationship in MPS,
includes is generic in the sense that it
may be an actual include in terms of
language concepts, or it represents a
generic dependency. An example is the
RulesCompiler. Its relationship with
the Drools domain captures the fact
that it generates Drools rules.

� Defining a Domain The schema for each language is de-
fined using a DSL for schema definition. Because no parser
is involved, we only have to define the data structure of the
tree that the user will edit. IDW provides a default projection
for all domains until you create custom projections, so you can
start editing and experimenting with your structures inside the
editor as soon as you have defined them14.

14 This is a very useful feature, because
it allows the incremental definition
of concrete syntax. Also, if a concrete
syntax definition is broken (in the sense
that it has a bug) or is ambiguous, the
program tree can always be unambigu-
ously rendered in this tree view like
default notation (even if that notation is
not necessarily as elegant as a custom
projection).

Defining a schema for a domain is all about deciding what
types of nodes there may be in the tree structure and what
types of child nodes to expect under them. To define the tree
structure schema for a domain, we use the keywords domaindef,
def and fielddef. A domaindef is used for defining a new do-
main, def defines a new type of node that can be used in the
domain15 and fielddef defines a field under a def where new 15 It is essentially what’s called a lan-

guage concept in this book.child nodes can be added.
While defs and fielddefs are similar to EClasses and EFea-

tures in EMF (and consequently also quite similar to MPS’
structure definition), there are a few differences. For exam-
ple, a fielddef can be assigned more than one type. In EMF,
accepting a range of types in a field would require the cre-
ation of a supertype that the field would use as its type. A
fielddef will take a list of types that are all considered ac-
ceptable. If the same list of types is used in several places, we
can package them in a reusable way using the typedef key-
word. We can also reuse field definitions in multiple defs
with the includefield keyword, potentially overriding (lim-
iting, extending) their type16.

16 In all the other tools described in
this book, fields are always owned by
a language concepts. In IDW they can
stand on their own and can be included
in defs. This provides an additional
level of modularization and reuse.
This design also allows associating
additional specifications with a field,
such as constraints or projections. These
can be reused along with the field.As we are working with tree structures, the default relation-

ship between a node and its child node under a field is contain-

546 dslbook.org

Figure 22.4: A domaindef defines a
new domain/language. It can include
other domains, making their contents
available to the domain. A def defines
a new language concept. defs contain
fields. New fields are defined with
fielddef, existing fields are included
via includefield. Each field defines
a shape (list, set, single element) and a
type (one or more other defs). When
including a field, these can be overrid-
den. The main field is reused by many
defs and has special editing support.
virtualdefs use a match pattern to
select existing nodes. Based on this
virtualdef, projection rules or other
aspects can be defined.

ment. The Question def, for example, has an answer fielddef
with the Answer def as its type. Just using a def directly im-
plies containment. Let us now look at references.

The Category def reuses the main field (a commonly reused
fielddef that comes with IDW) and overrides its type; it expects
those types listed in the QuestionHierarchy typedef. When
we look for the definitions of the types in that list we discover
that two of them are not defs, but use the virtualdef key-
word. A virtualdef can use an arbitrary match pattern (not
just ref). This allows a new virtual def to be assigned to any
node that matches the match clause. You can then define pro-
jections or constraints for this new virtualdef. They will ap-

dsl engineering 547

ply to all nodes that match the match clause in the virtualdef.
In this case DvRefQuestion defines a type for references to
Question nodes, and DvRefCategory defines a type for ref-
erences to Category nodes, allowing questions and categories
to be reused in multiple places.

� Constraints and Behavior Defining the basic shape of the
tree that users should edit will usually be done in a declara-
tive fashion using the schema DSL. However, in many cases,
additional constraints are required. These are typically imple-
mented in validators. Validators can enforce scoping rules (that
the referenced variable is available in the scope), scan for ille-
gal names or naming collisions, and ensure that any number
of domain-specific business rules for the DSL are adhered to
by users when they edit their DSL code. Fig. 22.5 shows a sim-
ple validator that ensures that the length of a name does not
exceed a specified maximum.

Figure 22.5: This constraint checks for
the maximum length of all kinds of
names. Notice how the error message
itself is represented as a def: it is of
category Message. cat represents
structural subtyping, in the sense that
all the fields of Message are also added
to Category

Here are some more examples of constraints: "categories should
not be nested more than five levels deep", "questions may not
be modified once they are published" or "negative answer op-
tions should be displayed in red".

The first constraint, about level nesting, could be imple-
mented using the DSL for writing validators that comes with
IDW17. A code snippet showing how such a validator could be

17 Validators run over the tree structure
as it is edited and assert conditions that
go beyond what is reasonable to define
in the declarative schema language,
such as a recursive check to determine
nesting levels. When a validator fails,
an error message is produced, which
is shown together with any error
messages that the system generates if
the user breaks the schema constraints
defined in the schema DSL.

implemented is shown below.

validator implfor: FitSimpleWithRulesets {
def Category too deeply nested cat: Message { }

548 dslbook.org

validatenode : sequence(Book) procedure Vnode(var Dmx dmx, var Node
node) {

code:
var level = 0;
var parent = node.Parent;
while (parent != null) {

if (parent.Isa == ‘(Category)) {
level++;

}
parent = parent.Parent;

}
assert level < 5 else Category too deeply nested;

}
}

The second constraint, about preventing modification to pub-
lished questions, could be implemented using the DSL for be-
haviors. Behaviors are a bit like database triggers, in that they
contain code that is triggered to run on events that signal chan-
ges to the tree structure, such as when nodes are inserted, mod-
ified or deleted. In this case we could use behaviors to asso-
ciate code that should be run on modify and delete events for
Question instances. The code would check if the question has
been published and if so, prevent the modification or delete
operation from executing. The following code snippet shows a
possible implementation18.

18 overproc overrides an existing,
predefined procedure. Execres is a
type that signifies whether something is
successful or not. Error and Success
are subtypes. rh is essentially the this
pointer.

def behavior implfor: Question {
overproc: Execres procedure CanEdit() {

if (rh->published) {
return Error("May not modify published question!");

}
return Success();

}
}

The third constraint, about showing negative answer options in
red, could be implemented in the presentation for the Answer-

Option nodes using IDW’s DSL for defining. The code respon-
sible for showing the AnswerOption node on screen would sim-
ply use the C# if statement to check whether the option is neg-
ative (such as the No answer option to a Yes/No question) and
if so, present the node on screen using a red color. We will see
examples of code using conditionals in a projection later on.

While we would use three different DSLs to define the three
constraints described above, we would also mix that DSL code
with standard C# code. The DSLs that come with IDW extend
C#, so in addition to the DSL keywords for defining schemas,
validators, behaviors and projections, it is also possible to write
standard C# classes, and even to mix C# code into declarative
DSLs, such as the projection DSL. Some DSLs, such as the val-
idator and behavior DSLs, expect to be implemented using C#

dsl engineering 549

and have no declarative way to be implemented. The projec-
tion for C# code uses a textual notation that looks basically like
standard C#, but because it is a tree projection, albeit one that
looks like text, there are a few differences from what the same
code would look like in a text editor. Consider the following
example code:

program RulesChecking using: [RulesEngine, FitBase, FitSimple, Validation,
Gen, DL, Core, mscorlib, System] {

region RulesTesting {

[SerializableAttribute()]
public class DcsUnique : Dcs {

static var int counter = 0;
var int index = 0;

public constructor DcsUnique() {
this.index = counter++;

}

public override bool procedure Equals(var Object obj) {
var DcsUnique that = obj as DcsUnique;
return that != null && Equals(this.index, that.index);

}

public override int procedure GetHashCode() {
return this.index;

}

public Kselection property kselection {
get {

return Crown;
}

}
public Kend property kend {

get {
return Nil;

}
}

}
}

}

In contrast to C#, there is the procedure keyword. This is
shown in the projection simply to give the user something to
click on if they want to select the whole procedure (or method as
they are more commonly referred to in C#)19. Clicking on the 19 In IDW, the procedure keyword

would be known as the crown of a
subtree.

public keyword lets the user change that keyword to for exam-
ple private, and lets the user enter additional modifiers such
as static. Clicking on the name lets the user change the name.
But if the user wants to delete the whole method, they just click
on the procedure keyword to select the whole method and hit
the Delete key. In the tree structure, the name, the modifiers
and the whole method body are child nodes contained by the
procedure node, so deleting that node will delete all the con-
tained child nodes as well. The constructor keyword is there
for the same reason – something to click on to select the whole
thing – as is the var keyword in the field definitions. When

550 dslbook.org

generated to C# source code for compilation, these additional
keywords are not included in the output.

Another use case for validators is to verify the types in ex-
pressions edited by users. Depending on the DSL, the expres-
sion 1 + True may or may not be illegal, but many languages
would prevent the addition of a Boolean value to an integer.
IDW includes a DSL for defining the rules for the type calculus
in a mix of declarative and C# code, and uses recursive evalu-
ation to determine the resulting type from an expression. The
validator will then call the recursive IDW type calculator, and
if a problem is discovered an appropriate error shows up in
the error pane. In this customer case the workbench has a lot
of expressions in the business rules and they are all validated
for type consistency.

� Projection The ability to write C# is not only useful when
writing utility classes; several of the DSLs included with IDW
support the ability to mix C# code into the DSL code. The
projections are one example, where some projections are writ-
ten in an entirely declarative manner using just the keywords
from the projection DSL, while others make use of mixed in C#
to produce dynamic behaviors. Before looking at examples of
such mixed code we will examine a couple of purely declara-
tive projections first.

Each def20 (Category, Question, or Answer) comes with its 20 Projections can also be defined
for virtualdefs. This allows nodes
in a specific context to be projected
differently.

own projection rules. The projection of the overall tree is then
a composition of the projections of all involved nodes. The
projection for each type is defined in a declarative fashion,
where a template is specified that defines how nodes of that
type should be presented to the user (Fig. 22.6). The parts with
gray background in Fig. 22.6 constitute the template, whereas
the parts with white background are either references to fields
that should be projected in place or full blocks of imperative
code.

Projection works by mapping domain defs to concepts from
the Abstract Projection Language (whose concepts all have names
beginning with A to make them easily identifiable). These con-
cepts are then transformed further, until, at least conceptually,
we arrive at the level of pixels on the screen21. Some of the A

21 As a language developer, you don’t
have to care about anything below the
A level. You just map your domain con-
cepts to concepts from the A language.

constructs are quite primitive, such as AVert, which only spec-
ifies that its contents should be displayed as a vertical list, or
ASeq, which specifies that the contents should be presented in

dsl engineering 551

Figure 22.6: The projection rules for
Category and Question. The one for
Category creates an AChapter (which
is rendered with large, bold font text)
whose text is made up of the name
of the category (cf. the names field
under the name), and then a colon,
with no space separating the two.
In the chapter’s own main field we
put the main field of the Category
(which contains all the questions in that
category).

a sequence – horizontal or vertical is up to the presentation en-
gine and depends on available screen estate. Others are more
high-level, such as AChapter, which presents its contents in
the form of a word processor-style chapter (thick text, optional
chapter numbering and indentation, etc). To project something
as a graph, we just have to use the AGraph, AGraphNode and
AGraphEdge constructs. To project something as a table, we
use ATable, ARow and ACell. AImage displays a bitmap im-
age. AButton and AHyperLink make it possible to add buttons
and links to the projections that execute C# code or move focus
to a different place in the projection when clicked, providing
an alternative to having the user type everything in with the
keyboard22.

22 Of course developers can define new,
higher level projection concepts that are
in turn transformed to A concepts. It
is also possible to define new concepts
on the abstraction level of A and then
project them manually to the next finer
level.

Each A Language construct has a number of fields where
values can be entered in the template. Sometimes this will
be literal information that should be displayed, such as the

552 dslbook.org

string literals "Question:" and "answer:" in the projection for
the Question def. Other literals control the behavior of the
projection, such as the True value under the Indent_Chapters

field in the AChapter projection for the Category def. To make
the child nodes of the projected type show up in the projection,
we just put a reference to the relevant fielddefs in the appro-
priate places in the projection definition23. 23 These references get a white back-

ground in the definition where the rest
is gray.

Templates are a good fit for a declarative DSL, because pro-
jections can often be defined in an entirely declarative way.
When there is demand for dynamic behavior, the declarative
context of the template can be broken out from using the Back-
Quote() function: standard C# can be entered inside it. The C#
code should end by returning a new "piece of tree" that is in-
serted into the hosting template in the place of the BackQuote.
A new piece of tree can be created with the BookQuote()24, 24 A Book is a basically a subtree literal

that can be inserted into another tree.inside of which declarative structures can be created.
There are many cases in which dynamic behaviors in projec-

tions are useful. Common examples include changing the color
depending on the displayed values, showing or hiding some of
the values depending on editing modes or access rights, and
even displaying the results from dynamic evaluation of expres-
sions and values that the end users type in25. 25 This can be used nicely for hooking

interpreters that execute tests based on
the data entered by the user.� Dynamic Schemas Another case is when the DSLs that end

users edit influence each other dynamically, such as when one
DSL is the schema language for a second DSL. Consider for
example an Entities DSL in which users can define entity types
with attributes. A second DSL allows users to define instances
of the entities, specifying values for the attributes. The schema
language allows this by letting us hook in C# code to dynami-
cally determine the fields that the schema should consider un-
der a def or a virtualdef.

Let us look at an example. When creating a program ex-
pressed in the second DSL, a user may want to create an in-
stance of the Person entity defined with the first DSL. The
Person entity in turn contains firstName and lastName at-
tributes. The editor should then read the definition for the
Person entity and go on to present two fields under the new
instance, label them firstName and lastName, and let the user
enter the names for their new Person instance. This works by
hooking in code into the Instances DSL that returns fielddefs
for each attribute under the entity referenced in the type field26

26 Here we assume that each Instance
in the instances DSL references the
Entity it instantiates in a field called
type.

dsl engineering 553

of the instance, and potentially from any supertypes of that en-
tity. The IDW default projection would detect this and present
firstName and lastName fields ready to be edited under a
Person entity. In a custom projection dynamic code would
be used to iterate over the appropriate fields and create projec-
tions for them.

In the case of the workbench in this case study we have a
Rule def, which has one fielddef called outcome that is declar-
atively defined in the standard schema DSL; the rest of its fields
are determined dynamically, as described above. In the projec-
tion we want to display each rule as a row in a table and each
dynamic field under a rule as its own cell. The outcome field
should also get its own cell, which is defined in the declara-
tive way in the template, but for the dynamic fields we have
to break out from the declarative template context and write
some C# code. Fig. 22.7 shows the respective code.

Figure 22.7: The projection rule for a
Rule. The gray parts are declarative
templates that are inserted "as is" into
the projected screen representation of a
Rule. The white parts, and in particular,
the BackQuotes, use procedural C#
code to dynamically project a part
of the tree. Inside this procedural
code, BookQuotes are used to escape
to literal mode, where, again in gray,
we construct little "pieces of tree"
(called Books) in IDW) which are in turn
inserted into the resulting projection.

The schema of the projected node can be accessed with the ex-
pression ehi.GetDmx().Rgdf(), where ehi is the input node
to the projection, GetDmx() retrieves domain context informa-
tion about it and Rgdf() returns the fields that are expected
under the node. Normally Rgdf() will only return the fields
we have declared in the schema DSL, but in this case it has
been overridden for the Rule def to return a set of fields that

554 dslbook.org

are determined dynamically by other input to the Rule DSL.
The C# code in the projection definition for the Rule (shown
in Fig. 22.7) iterates over the fields that should go under the
Rule def according to the schema and our overriding code, then
uses the BookQuote() function to create a piece of tree with an
ACell in each one27. A simple C# expression (ehi.Index + 1)

27 But taking care to avoid doing so for
the outcome fielddef, which is already
projected in the declarative part of the
projection rule.

is also used to display the row index in a leading cell for each
row.

The ability to mix C# into projections opens up the possi-
bility of creating very powerful dynamic projections including
DSL evaluation, and even running of test cases for a DSL di-
rectly in the editor for that DSL. Projections can also be com-
bined with transformations, such that the tree structure edited
by the user undergoes a series of transformations before being
projected onto the screen28. These transformations are two-

28 In fact, projections, transformations
and code generation work essentially
the same way in IDW. As we will see
later, code generators in IDW are im-
plemented as transformations between
a source domain and a target domain.
Projections are in turn just transforma-
tions that have the Abstract Projection
Language as their target domain. There
are two differences. First, projections
are evaluated lazily, such that only the
parts of the projection required for
showing what is on screen will actu-
ally be executed, whereas for a code
generator the whole transformation
will always be executed at once. The
second difference is that projections are
automatically triggered as the program
tree changes, whereas code generators
are executed only on demand (e.g.,
by the user pressing a button in the
Workbench.)

way, so the projections built including such a transformation
continue to be fully editable. They work in a similar way to
projections, in that they let the developer create templates in
their target language (rather than the A language) declaratively,
but with the option of breaking out into C# code. By moving
calls to things like test evaluation into a transformation that
precedes the projection, code with different types of respon-
sibilities is separated by concern and kept simple and to the
point.

A testing framework was created for the case study dis-
cussed in this chapter, so that business rules can be evaluated
with test data and the results verified against expected values,
all directly in the workbench. The tests are run continuously, so
that whenever the user modifies the business rules, the tests go
red or green as the rules break or correspond to expectations.
Fig. 22.8 shows an example of such a test case.
The evaluation of the business rules is implemented as an in-
terpreter that works by evaluating each node in the tree struc-
ture according to its type in a recursive fashion. The code for
this is packaged in a helper class called by a transformation
that passes the test inputs to the evaluation method and dec-
orates the transformation’s output tree with the results. The
projection then takes the decorated tree, presents the editable
input values, expected values and calculated test results (not
editable), and compares the test results with the expected val-
ues to show green, red or orange bullets as appropriate.

In this case study we see another interesting example of pro-

dsl engineering 555

Figure 22.8: The testing aspect of the
Health workbench lets users create
test data and evaluate the business
rules directly in the IDE. As mentioned
earlier in this book, in-IDE-testing is an
important ingredient to making a DSL
accessible to non-programmers: in some
sense, the tests make the DSL "come
alive" and help build understanding
about the semantics of the language.

jecting dynamically derived information about the user input.
The projection for a questionnaire calls out to C# code that per-
forms consistency analysis on the combined business rules and
questionnaire domains. The analysis ensures that when busi-
ness rules are applied to a particular questionnaire, the rules
do not refer to questions absent from that questionnaire.
The tests and consistency analysis are implemented and pre-
sented in a way specific to the application, but it is also possi-
ble to use the IDW validation framework to ensure validity of
user inputs. The developer then writes validators that run in
the background against the tree structure as it is being edited
by the user. When a rule in a validator is broken, it yields an
error message, which is shown in the IDW error pane, a central
place for collecting custom error messages from validators and
system error messages from built-in generic validators alike.

� Transformation and Generation Once the input is known to
be consistent29, the time has come to do something with the

29 For this application this means that
the structure is correct, all validators
are happy, all tests are green and
consistency analysis is satisfied.

556 dslbook.org

Figure 22.9: The consistency analysis
ensures that when a set of business
rules is used together with a particular
questionnaire, all questions evaluated
by the rules are actually present in the
selected questionnaire.

information the medical professional has provided. In this
case study this means invoking code generation to produce the
XML files that the JavaScript in the web application will con-
sume, and the files with business rule definitions for the Drools
engine.

IDW includes a DSL for defining how to create output fold-
ers and files, and, together with the DSL for transformations,
it constitutes how code generators are defined. While it is pos-
sible to take the tree that the user has edited and generate raw
text files in the target format directly, it is often a better ap-
proach to use a transformation to create a tree structure in the
domain of the target format from the tree structure that the
user edited30. Such transformations that result in information

30 As we discussed in Part II, this
allows us to reuse parts of the overall
transformation. For example, the Drools
and XML domains are likely to be
reusable in other applications.

being generated to files rather than being presented to the user
on screen do not have to be two-way, as there is no requirement
for the information to stay editable.

The workbench in this case study uses a transformation that
takes the questionnaire domain as input and outputs a tree
structure in the XHTML domain that is included with IDW.
The resulting XHTML tree is then passed on to a second trans-
formation that knows how to transform such trees to text. The
result of this transformation is finally passed to a file gener-
ator defined with the DSL for creating files and folders, with
the result that the text is saved to files on disk. To generate
the Drools files a similar transformation chain is executed, but
with the difference that both the Drools domain and its trans-
formation to text had to be developed for the project.

Fig. 22.10 shows the transformation to the Drools domain.
Again, parts with a gray background are declarative, whereas

dsl engineering 557

the white background signifies imperative code. We can see
the use of the FIn() function which determines if a given item
is in a list of items. We also see the use of BookNew(), which
creates a single node that can be inserted into a larger tree.

Figure 22.10: This is part of the trans-
formation from the business rules
domain into the Drools domain. The
template-based approach is similar to
projections.

558 dslbook.org

22.4 Wrapping Up

With the code generators in place the whole workbench is ready
for use by the medical professionals. They can now define in-
terviews and rules that they can run and validate against tests
directly in the workbench. When they are satisfied with their
work, they hit the button to generate the XML and Drools rules
for the web application, which can then be used immediately
by end users. All the time the workbench guides them in their
work with helpful validation messages, auto-completion and
running tests, allowing for consistently high quality in the gen-
erated applications.

To implement the workbench we used several DSLs for sche-
ma definitions, projections, transformations and more in con-
cert. The final product also combines several domains, with
the two most prominent domains for interviews and for busi-
ness rules split up into individually reusable subdomains. The
projectional approach is well suited for such complex language
composition and provides flexible notation, which makes it a
powerful technology in scenarios that target business profes-
sionals. The ability to mix DSLs with GPLs such as C# ensures
that each DSL can remain short and to the point without taking
on all the burdens of a GPL as requirements grow in complex-
ity.

	I Introduction
	About this Book
	Thank You!
	This book is Donationware
	Why this Book
	What you will Learn
	Who should Read this Book
	About the Cover
	Feedback, Bugs and Updates
	The Structure of the Book
	How to Read the Book
	Example Tools
	Case Studies and Examples

	Introduction to DSLs
	Very Brief Introduction to the Terminology
	From General Purpose Languages to DSLs
	Modeling and Model-Driven Development
	Modular Languages
	Benefits of using DSLs
	Challenges
	Applications of DSLs
	Differentiation from other Works and Approaches

	II DSL Design
	Conceptual Foundations
	Programs, Languages and Domains
	Model Purpose
	The Structure of Programs and Languages
	Parsing versus Projection

	Design Dimensions
	Expressivity
	Coverage
	Semantics and Execution
	Separation of Concerns
	Completeness
	Language Modularity
	Concrete Syntax

	Fundamental Paradigms
	Structure
	Behavior
	Combinations

	Process Issues
	DSL Development
	Using DSLs

	III DSL Implementation
	Concrete and Abstract Syntax
	Fundamentals of Free Text Editing and Parsing
	Fundamentals of Projectional Editing
	Comparing Parsing and Projection
	Characteristics of AST Formalisms
	Xtext Example
	Spoofax Example
	MPS Example

	Scoping and Linking
	Scoping in Spoofax
	Scoping in Xtext
	Scoping in MPS

	Constraints
	Constraints in Xtext
	Constraints in MPS
	Constraints in Spoofax

	Type Systems
	Type Systems Basics
	Type Calculation Strategies
	Xtext Example
	MPS Example
	Spoofax Example

	Transformation and Generation
	Overview of the approaches
	Xtext Example
	MPS Example
	Spoofax Example

	Building Interpreters
	Building an Interpreter with Xtext
	An Interpreter in MPS
	An Interpreter in Spoofax

	IDE Services
	Code Completion
	Syntax Coloring
	Go-to-Definition and Find References
	Pretty-Printing
	Quick Fixes
	Refactoring
	Labels and Icons
	Outline
	Code Folding
	Tooltips/Hover
	Visualizations
	Diff and Merge

	Testing DSLs
	Syntax Testing
	Constraints Testing
	Semantics Testing
	Formal Verification
	Testing Editor Services
	Testing for Language Appropriateness

	Debugging DSLs
	Debugging the DSL Definition
	Debugging DSL Programs

	Modularization, Reuse and Composition
	Introduction
	MPS Example
	Xtext Example
	Spoofax Example

	IV DSLs in Software Engineering
	DSLs and Requirements
	What are Requirements?
	Requirements versus Design versus Implementation
	Using DSLs for Requirements Engineering
	Integration with Plain Text Requirements

	DSLs and Software Architecture
	What is Software Architecture?
	Architecture DSLs
	Component Models

	DSLs as Programmer Utility
	The Context
	Jnario Described
	Implementation
	Summary

	DSLs in the Implementation
	Introduction
	Challenges in Embedded Software
	The mbeddr Approach
	Design and Implementation
	Experiences
	Discussion

	DSLs and Product Lines
	Introduction
	Feature Models
	Connecting Feature Models to Artifacts
	From Feature Models to DSLs
	Conceptual Mapping from PLE to DSLs

	DSLs for Business Users
	Intentional Software
	The Project Challenge
	The DSL-Based Solution
	Wrapping Up

