
völter

 i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e
 w w w . v o e l t e r . d e

1 / 13

Handling Cross-Cutting Conerns:
AOP and beyond

Markus Völter, voelter@acm.org, www.voelter.de

With the rise of aspect-oriented programming techniques and tools the issue
of cross-cutting concerns and their efficient handling is becoming more and
more prominent. AspectJ is the most well-known example of aspect-oriented
programming. I have come across many discussions about what constitutes
“real” AOP and what doesn’t. While I certainly don’t have the goal of settling
this discussion once and for all, but I want to widen the scope of the
discussion a little bit: AOP is basically a way to efficiently handle cross-cutting
concerns on language-level. However, there are ways to handle cross-cutting
concerns differently, on other levels, such as design or architecture. While I
don’t want to formally define AO-Design or AO-Architecture, I want to provide
a couple of examples how cross-cutting concerns can be handled without AO
language tools.

Aspect Orientation defined
The following definition is taken from aosd.net [AOSD], a great website which serves as a
really good starting point to get an overview over aspect-oriented software development:

Aspect-oriented software development is a new technology for separation of concerns
(SOC) in software development. The techniques of AOSD make it possible to
modularize crosscutting aspects of a system.

Cross-cutting concerns are all those things in a software system that cannot be localized, or
modularized to one place in the system with traditional (OO, procedural) software
development paradigms. Note that the definition above is not about aspect-oriented
programming (AOP), it is about aspect-oriented software development. As we all know,
software development is not just programming, it also includes analysis, design,
architecture and modelling. Consequently, there is also AO-analysis, AO-design, AO-
architecture and AO-modelling. The most important AO tool or technique, however, is an
AO mindset. A developer needs to understand the problems with cross-cutting concerns
and know ways how to handle (i.e. localize) them with the tools he has at hand, or with
additional tools, if necessary. This article wants to provide some food for thought.

Handling Cross-Cutting Concerns with OO techniques
Let us first of all look at handling cross-cutting concerns with the means of traditional OO
design and implementation techniques. Remember that AO is primarily a mindset – it can
be implemented, more or less comfortably, with traditional OO programming techniques
and languages. Let us look at some features that can easily be implemented with AspectJ,

völter

 i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e
 w w w . v o e l t e r . d e

2 / 13

and see how this can be “simulated” with OO languages. For example: do something
whenever an instance of a class is created. How can we “inject” code into situations where
class instances are created?

The simplest way is to use the Factory pattern [GoF]. Instead of simply calling a class
constructor from client code, you can ask a factory to create the object for you. Consider the
following example1:

public class Vehicle {
…
}

class VehicleFactory {
 public Vehicle createVehicle() {
 return …
 }
}

To create an instance of the Vehicle class, a client simply can call the createVehicle operation:
VehicleFactory f = new VehicleFactory();
Vehicle v = f.createVehicle();

Now, how can this help with handling cross-cutting concerns? By plugging in a Strategy
[GoF].

public class BaseFactory {
 public BaseFactory parent;
 public Action beforeCreation = null;
 public void before(Class cls) {
 if (beforeCreation != null)

beforeCreation.execute(cls);
 if (parent != null) parent.before(cls);

 }
 public Object createInstance(Class cls) {
 before(cls);
 Object o = cls.newInstance();
 // maybe call an after(cls) method, too
 return o;
}

}

This class BaseFactory serves as the base for factories. Such a factory has an Action that is
executed before the instance is created (obviously, you can easily add a method after that
can be used to intercept the situation after the instance is created). For specific types, this
class can be specialized, as follows:

1 Note that we are not using setter/getter operations, for reason sof brevity we use public
attributes. Yes, we know this is bad practice, don’t do it!

völter

 i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e
 w w w . v o e l t e r . d e

3 / 13

class VehicleFactory extends BaseFactory {
 public Vehicle createVehicle() {
 return (Vehicle)createInstance(Vehicle.class);
 }
}

In order to print a message whenever a vehicle is created, the following code suffices:
f.beforeAction = new Action() {
 public void execute(Class cls) {
 System.out.println(“Instantiating “+cls);
 }
};

To actually handle cross-cutting concerns (such as: printing a message for all class
instantiations, not just for vehicles) you can use a chain of responsibility [GoF]. You can
define an instance of a BaseFactory that has a beforeAction assigned that provides default
behaviour. The VehicleFactory, as well as the other factories in the system, has this
BaseFactory instance assigned as a parent; it delegates to this instance:

BaseFactory defaultFactory = new BaseFactory();
defaultFactory.beforeAction = someAction;
VehicleFactory vf = new VehicleFactory();
vf.parent = defaultFactory;
SomeOtherFactory of = new SomeOtherFactory();
of.parent = defaultFactory;

In order to intercept method invocations on objects as opposed to constructors, you would
typically use a Proxy object [GoF] that has the same interface as the target object, but
internally uses the same Action-based approach. After executing the before action it would
delegate execution of the method to the “real object”, an instance of the implementation
class.

Note that these two approaches fit together nicely since the factory can be used to insert a
proxy between the client and the real object:

class VehicleFactory extends BaseFactory {
 public Vehicle createVehicle() {
 Vehicle v = (Vehicle)createInstance(Vehicle.class);
 VehicleAOProxy vp = new VehicleAOProxy(v);
 return vp;
 }
}

Obviously, writing these factories and proxies by hand is annoying and error prone. It is
much more advantageous to use code generation, suitable tools are available [Voelter-
CodeGen]. There is another, more serious problem: Using this approach to handling cross-
cutting concerns requires invasive changes to the software system. Client code actually has
to use the factories in order to benefit from the concerns handling. You have to design the
client code with these factories or proxies in mind. It is not possible to introduce these
aspects into the system after the fact, something you can easily do with tools such as

völter

 i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e
 w w w . v o e l t e r . d e

4 / 13

AspectJ. There are other reasons why you might want to use AspectJ instead of a hand-
crafted solution: AspectJ provides you with information about the join point. For example,
you can query the thisJoinPoint variable for the client who called the constructor or method.
In the hand-crafted soution, you would have to pass this data to the operation manually:

public class SomeOtherClass {
 public void someOperation() {
 Vehicle v = f.createVehicle(this, “someOperation”);
 }
}

This might be acceptable for the factory, but it is certainly unacceptable for method
invocations on proxies, because each operation would require these parameters in its
signature. If you need this kind of data for your system on language level, use AspectJ.

AOP for handling cross-cutting concerns on language level

The most well-known realization of aspect-oriented software development is aspect-
oriented programming, where new language constructs are introduced to handle cross-
cutting concerns on language level. The most well-known implementations are AspectJ for
Java, AspectC++ for C++ as well as several implementations for other languages (see
[AOSD]). AspectJ is implemented as a so-called weaver, a kind of precompiler that merges
traditional OO code (the so-called base program) with the aspect code. It produces another
piece of code that contains intermingled OO and AO code. This process can happen on the
basis of source code or on the basis of Java bytecode. AspectJ is a tool about which many
many articles haven been written. I will not go into any more details here.

Metaprogramming

Metaprogramming and meta-object protocols [AOMP] is another way of handling cross-
cutting concerns on programming language level – if the language supports these features.
What is metaprogramming? Metaprogramming, in the context of this article, basically
means that it is possible to modify the behaviour of a program not by modifying the
program itself, but by programmatically modifying the execution engine that runs the
program. Take OO programming as an example: instead of hardcoding the behavior that
occurs when, for example, an operation is invoked, this behavior is also defined with the
help of classes and objects (i.e. searching for the correct polymorphic implementation
method of an operation, passing parameter, etc.). Such classes are called metaclasses. Each
class defined by a developer is assigned a metaclass that defines the semantics behaviour
related to the execution of the class. Consider the following example2. Let us first define an
ordinary class Test.

2 The example is rendered in a language called MetaJava, a hypothetical version of Java that
supports metaprogramming. Real languages would be for example CLOS or, to some extent,
Smalltalk.

völter

 i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e
 w w w . v o e l t e r . d e

5 / 13

class Test extends Object {
 public void doSomething() {
 // do something
 }
}

As we did not specify anything else, the default metaclass of Test is StdMetaClass. If, for
example, we want to log all invocations of methods, we can simply define a new metaclass
and associate it with all classes whose method invocations should be logged:

public class LoggingClass extends StdMetaclass {
 public void invokeMethod(Object dest,

String name, Object[] pars) {
 System.out.println(name+" called on "+dest+

 " with "+pars);
 super.invokeMethod(dest, name, pars);
 }
}

public class LogTest extends Object metaclass LoggingClass {
 public void doSomething() {
 // do something
 }
}

The following sequence diagram shows what happens when a method (doSomething()) is
invoked on class LogTest, which has LoggingClass defined as its metaclass.

Cross-cutting behavior can be defined by associating a custom-developed metaclass with
all application classes for which a certain behaviour is required. The behaviour that can
actually be influenced with the help of the metaclass depends on the level of detail that the
metaobject protocol allows to control. A good introduction to meta object protocols as well
as a good example example can be seen in the book by Kiczales & Co, called The Art of the
Metaobject Protocol [AOMP].

völter

 i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e
 w w w . v o e l t e r . d e

6 / 13

AO and enterprise development
For many large distributed systems the level of the programming language is practically
not important, the features of the language are not essential. More important is system
architecture and design. It is therefore a valid approach to handle cross-cutting concerns on
the level of the architecture instead of the language. As a consequence, this approach does
not require an aspect-oriented language – instead, an architecture/design is required that
allows for handling of cross-cutting concerns. I would like to show a couple of examples.

One way to achieve this is to design a metalevel architecture (see the Reflection pattern in
[POSA1] and the stuff by Brian Foote [FooteReflection]). Here, the metaobject protocol is
explicitly built into an application design. The factory/proxy example in the first section
can be considered an (very simple) example of this approach.

Another example that is often used in enterprise application architecture are interceptors.
Interceptors, as their name implies, typically intercept method invocations or other points
in the execution of a program. Typically this happens in the context of remoting
frameworks or component containers. In such architectures it is possible to associate the
same interceptor with several remote objects/components and thus provide centralized
handling of cross-cutting concerns. There are several examples:

• CORBA’s portable interceptors provide a way to intercept remote invocations for
CORBA objects. The interceptors and their interfaces are standardized. It is also
possible to include cross-cutting behaviour into the custom policy classes that can
be configured into the POA [VinoskiHenningCORBA].

• In .NET it is possible to include custom-developed sinks into the message handling
chain. Also, these sinks have a standardized interface and it is possible to use the
same set of custom-sinks for a wide-variety of remote objects [RammerRemoting].

• In EJB, there are no standardized ways to handle cross-cutting concerns. We will
show two approaches how this can be done manually below.

Note that all the examples mentioned above provide developers with “reflective”
information about the method invocation that it intercepted. This is possible because the
remoting or component infrastructure needs items anyway and can thus provide these to
the developer. For example, in .NET the following is the interface of a DynamicSink:

public interface IDynamicMessageSink {
 void processMessageStart(IMessage request,

bool clientSide, bool isAsync);
 void processMessageFinish(IMessage reply,

 bool clientSide, bool isAsync);
}

The IMessage interface provides information about the invoked method, such as method
arguments.

völter

 i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e
 w w w . v o e l t e r . d e

7 / 13

Let us look at some examples of interceptors in the context of EJB component containers
[VoelterEtAlComponents]. The JBoss application server [JBoss] uses the concept of the so-
called generalized aspect container. The complete EJB functionality is implemented as a
series of interceptors. Each handles “a little bit of EJB”, such as pooling, transactions,
security, passivation or entity bean persistence. A specific type of EJB container (stateless
session bean, stateful session bean, entity bean or message-driven bean) is simply a specific
configuration of interceptors that includes those that are required to implement the EJB
standard. To be able to handle application-specific cross-cutting concerns, it is possible to
develop custom interceptors and include those into the container configuration. Of course,
this is non-EJB-standard and thus not portable. It is, however, relatively easy to develop
such a system in a portable manner. This works by code-generating proxies for bean
implementation classes. Code generators to develop such kinds of proxies are available in
many facets [VoelterCodeGen]. This proxy delegates to the regular bean implementation
class in order to provide the implementation functionlity. In addition, this proxy provides
an interface where interceptors can be plugged in. The configuration can happen based on
a configuration file or some other means. The following illustration shows this approach.

Remote
Interface

Implementation
Class

<<realizes>>

Home Interface

<<realizes>>

Remote
Interface

 Implementation
Interceptor

Proxy

<<realizes>>

Home Interface

Implementation
Class

delegates to<<generated>>

<<realizes>>

<<realizes>>

Note that information about the current “join point”, i.e. the method that is invoked and its
parameters, the caller, etc., can be made available to the interceptors by code-generating a
suitable implementation for the proxy. As a consequence of this approach, it is possible to
handle cross-cutting concerns for all or some beans in a system in a portable manner. This
approach has been used by the author in several projects, mainly for implementing
logging, monitoring and advanced security policies not implementable with the help of
declarative J2EE security.

Another example (that actually is J2EE compliant) are Servlet filters. Servlet filters are a
means to attach cross-cutting behavior to a series of servlets. They pre- or postprocess the
http request and response respectively. In my view however, this approach is not
particularly relevant anymore, since most larger web applications are built using the Struts
framework [Struts], or similar tools. Struts provides a way to handle cross-cutting concerns
by developing a custom handler servlet, or by implementing a base class for struts actions
(and using the template method pattern (see [GoF]) for the concrete actions).

völter

 i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e
 w w w . v o e l t e r . d e

8 / 13

Cross-Cutting Concerns in the context of code generation
Code Generation is becoming a more and more important means for application
development, mainly because of the proliferation of model driven development, and
specifically OMG’s MDA [OMGMDA]. Let us look at how we can handle cross-cutting
concerns in the context of code generation from (UML) models. Note that we do not intend
to explain a general approach to describe aspects using UML (there are already some
proposals available on the web), we use some rather crude mechanisms here; the goal is to
show code generation.

Let’s again use the typical logging example (yes I know it is rather useless, but it is
simple!). Consider a system that is modeled with the help of some UML tool. For example,
the following simple model could be used:

<<entity>>
Account

<<process>>
Account
Manager

<<entity>>
Customerowner

<<entity>>
Transaction

past
transactions

In this example, an Account is what you might expect, an Account is owned by a Customer,
and an Account also keeps track of the history of Transactions in which it has been involved.
An AccountManager is responsible for running Transactions against Accounts, in a
transaction (ACID) manner.

Now consider we want to log all method invocations on all the entity classes. There are
two aspects (no pun intended) of this issue: How do we specify this fact in the model, and
how do we implement it in the context of code generation. We don’t want to look too much
into the specification issue, but there are two primary ways. One is the use of TaggedValues.
For example, a tagged value “logging” can be defined that can have true and false as its
values, false being the default in case the tagged value is not specified for a model element.
The following shows an example notation for such a tagged value.

<<entity>>
Customer

{logging=true}

The same approach can be used for other aspects, obviously. This approach has the
disadvantage, that it requires an invasive change to the model, however. The definitions of
all classes whose operations should be logged needs to be modified to include the tag. An

völter

 i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e
 w w w . v o e l t e r . d e

9 / 13

alternative approach could be to use an external aspect definition, for example using an
XML file:

<aspect-definitions>
 <aspect id="logging" className=”LogAspect”>
 <config>
 <logger-target type="file" parameter="c:\\temp\\log.txt"/>
 </config>
 <apply-to>
 <class name="Customer"/>
 <class name="Account"/>
 <class name="Transaction"/>
 </apply-to>
 </aspect>
</aspect-definitions>

Once the application of aspects to classes (or other model elemens such as methods,
attributes or associations) is defined, we need to consider how to implement this. Of
course, this depends heavily on the implementation of the generator – details below.
However, there is one important observation: typically, all instances of a metamodel
element (such as all classes, all methods, etc.) are generated by one part of the generator.
Cross-cutting concerns can thus be handled naturally in a centralized place: the place in the
generator, where the code for the metamodel element is generated. Let us look at
examples.

Using the Jenerator API-based code generator [VoelterGaertnerJenerator], typically, a class
CEntity can be used for generating <<entity>> classes3. These generator classes are fed with
data from the model. The following is an example:

public class CEntity extends CClass {
 private List definedBusinessAttributes = new ArrayList();
 public void addAttribute(BusinessAttribute bi) {
 definedBusinessAttributes.add(bi);
 }
 public void generateCode(CodeContainer container) {
 super.generateCode(container);
 Iterator it = definedBusinessAttributes.iterator();
 while (it.hasNext()) {
 BusinessAttribute bi = (BusinessAttribute)it.next();
 addAttribute(generateAttribute(bi));
 addMethod(generateGetter(bi));
 addMethod(generateSetter(bi));
 }
 }
}

3 In the example, we do not create the implementation code, this is done manually.

völter

 i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e
 w w w . v o e l t e r . d e

10 / 13

The following piece of code shows how to use this generator class:
CEntity entity = new CEntity(“Customer”);
entity.addAttribute(new BusinessAttribute(“name”, “String”);
entity.addAttribute(new BusinessAttribute(“age”, “int”);
entity.generateCode(…);

Although we did not explain all the details of the CEntity class, its use should be clear from
reading the code. There is no cross-cutting concerns handling yet. Let’s look at some more
details. Here we show the implementation of the generateSetter() method. We can see that it
uses the CMethod class internally.

public class CEntity extends CClass {
 // …
 public void generateSetter(BusinessAttribute bi) {
 CMethod m = new CMethod(this, "set”+
 bi.getName(), bi.getType());
 return m;
 }
}

Once the CMethod object is created, it is returned to the CEntity class which in turn calls the
addMethod() operation, thus adding the new method object to the list of method objects of
the class. Here is where the interesting things happen with regards to aspects:

public class CClass {
 public void addMethod(CMethod m) {
 methods.add(m);
 Iterator it = Aspects.getAspects();
 while (it.hasNext()) {
 CAspect aspect = (CAspect)it.next();
 if (aspect.isApplicableTo(m)) aspect.applyTo(m);
 }
 }
}

Here we scan the list of aspects registered in the generator session for all the aspects that
are applicable to the particular method. If it is applicable, we actually apply it to the target
object:

public abstract class CAspect {
 public àbstract boolean isApplicableTo(CObject o);
 public abstract void applyTo(CObject o);
}

public class LogAspect {
 public void isApplicableTo(CObject o) {
 return o instanceof CMethod;
 }
 public void applyTo(CObject o) {
 CMethod m = (CMethod)o;
 CCode body = m.getBody();

völter

 i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e
 w w w . v o e l t e r . d e

11 / 13

 body.prepend(new CCode(“Calling “+m.getName()+”));
 }
}

The following piece of code shows how to use this system:
public class GeneratorMain {
 public GeneratorMain() {
 Aspect.addAspect(new LogAspect());
 // get all entities from the model
 // and instantiate them…
 }
}

This piece of code will apply the aspect to all classes in the system. If we want to integrate
this with the the tagged value approach we could use the following approach:

public class LogAspect {
 public void isApplicableTo(CObject o) {
 if (o instanceof CMethod) {
 CMethod m = (CMethod)o;
 m.getContainingClass().getTaggedValue(

“logging”).hasValue(“true”);
 }
 }
}

For an integration with the XML-config-file-driven approach, the Aspect class would read
this file, register all the aspects configured in it, and would only ask those aspects whether
they are applicable if these are configured to be applicable in the config file.

In template-driven generators, the handling of cross-cutting concerns can be implemented
in the templates. For example, the following is a (part of a) template for a generator that
generated EJBs from models.

<<FOREACH Bean b IN Model m>>
 <<DEFINE ImplementationClass FOR b>>
 public class <<b.Name>>Impl {
 <<FOREACH Operation o IN b>>
 public <<o.Type>> <<o.Name>>(<<o.ParamListAsString>>) {
 <<IF b.hasAspect(“logging”)>>
 Console.WriteLine(“calling <<o.Name>>”);
 <<ENDIF>>
 <<PROTECTED-REGION MethodImplementationCode>>
 }
 <<ENDFOREACH>>
 }
 <<ENDDEFINE >>
<<ENDFOREACH>>

völter

 i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e
 w w w . v o e l t e r . d e

12 / 13

Here, the template contains an IF statement that asks the model whether a bean has the
logging aspect, and if so, the log statement is included. Note that, again, we have localized a
cross-cutting concern in one place, in the generator template.

You might say that this can only handle very simple, coarse-grained aspects, such as
method calls. You might think it is hard to implement loggings at the location from where a
method is called. Well, this actually depends on the amount of code we generate. If we
don’t generate method invocations from models, then we can’t plug in aspects there using
the generator. However, if we generate real behavioral code for example from state charts
or activity diagrams, or with the help of UML 2’s action semantics, then there is nothing
that prevents us from generating whatever aspects we want.

Summary
This article wanted to provide some overview over how handling of cross-cutting concerns
can be implemented without AspectJ and the like. However, I don’t want to generate the
impression that I consider AOP unncessary, since it can all be simulated without it. In fact,
I think AOP will be one of the major improvements to current programming language
practice. Today, however, in many projects it is not possible to use AOP because of the
limited availability of tools and the general reluctance to use new approaches in mission-
critical projects. I hope this article proposed some ideas of how some of the benefits of AOP
can be realized based on clever design, architecture and implementation. Let me know
what you think.

Acknowledgements
Many thanks to Alexander Schmid who reviewed earlier versions of the article.

References
AOMP Kiczales et. al., The Art of the Metaobject Protocol, MIT Press

1991

AOSD http://aosd.net

FooteReflection Brian Foote, Reflection Pages, www.laputan.org

GoF Gamma et. al., Design Patterns, Addison-Wesley 1994

JBoss www.jboss.org

OMGMDA www.omg.org/mda

POSA 1 Buschmann et. al., Pattern-Oriented Software Architecture
Volume 1, Wiley, 1996

RammerRemoting Ingo Rammer, Advanced .NET Remoting, Apress, 2002

völter

 i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e
 w w w . v o e l t e r . d e

13 / 13

Struts The Struts Framework, http://jakarta.apache.org/struts

VinoskiHenningCORBA Vinoski, Henning, Advanced CORBA Programming with
C++, Addison-Wesley, 1999

VoelterCodeGen Markus Voelter, Code Generation, an overview over tools and
techniques, http://www.voelter.de/data/presentations/
ProgramGeneration.ppt

VoelterEtAlComponents Voelter et. al., Server Component Patterns, Wiley 2002

VoelterGaertnerJenerator Voelter, Gaertner, Jenerator – Generative Programming for
Java, http://www.voelter.de/data/pub/
jeneratorPaper.pdf

