
Empowerment of Subject-Matter Experts
Why you should completely isolate subject matter
from technical concerns – and how.

Markus Voelter
voelter@acm.org
http://voelter.de

mailto:voelter@acm.org
http://voelter.de/

Engineer at
XYZ Company

User

CNC Machine
Manufacturer

System Dev
Explain the need

Updated Firmware

Create
Design

Manufacture
Parts

… 4 weeks later …

NO!
CNC mills are user-programmable.

© ALMA

Astronomers send their
observation requirements
to software devs

© ALMA

Astronomers send their
observation requirements
to software devs

 NO!
Modern observatories are
user-programmable.

Domain Language
Models/

Programs/
Configurations

Subject Matter Expert

Software System

use create/modify/
test/run

feedback

Domain Expert

understand
deeply

Software Folks

abstract

build

collaborate, iterate

co
ve

rs O
PTIM

IZE

AND NOW
Something
completely
di f ferent.

Domain

Subject Matter Expert

Understand

Software System

Requirements
Prose

write

Software Folks

create
understand?

Insurance Products
Telecom Pricing Policies
Tax Calculations
Salary Calculations
Tachograph Rules
Clinical Drug Trials
Digital Therapeutics

(internal to the company)

for every specific detail
of the domain

collaborate, iterate

try out, validate

I N E F F I C I E N T

Example of concrete requirements Example of the language needed to express such
requirements (and similar ones in the domain):

Currencies
Dates
Percentages

Arithmetics
Comparisons
Conditionals
 (+ways to make lots of them scale)
Rounding
Limiting

Summations

Temporal Data (timelines)
Year/Month-index data structures

Data/Lookup Tables

Versioning (each year things change)

TestingSubject Matter Expert

Domain Expert
Software Folks

Express this
and all the other laws With this

Lots of it.
Changes all the time.

Less of it.
Much more stable.

WHY DON’T WE LET THE
EXPERTS “PROGRAM”

SUBJECT MATTER
DIRECTLY?

Programmability essential
property of system

Programmability seen as
optional / „strange“

vs.

CNC machines
Radio Telescopes

Game Engines

Insurance Products
Telecom Pricing Policies
Tax Calculations
Salary Calculations
Tachograph Rules
Clinical Drug Trials
Digital TherapeuticsSHOULD YOU USE IT?

My goal today:

Convince you to consider this approach.

WHEN SHOULD YOU?

There’s a role subject matter expert distinct from software developers.
There is sufficiently complex and large subject matter in the domain.

There is sufficient variability or change over time within the domain.

The domain as such is long-lived.

There are lots of instances in the domain.
Different specific things
that can be expressed
in a similar way.

Insurance Products
Telecom Pricing Policies
Tax Calculations
Salary Calculations

Tachograph Rules
Clinical Drug Trials
Digital Therapeutics

And the organisation that develops
the language plans to work in that
domain for a reasonable time.

Subject Matter Experts are empowered – no longer 2nd class “behind” devs.

Devs can focus on technical concerns, don’t have to understand ”everything”.

Subject matter is portable, the legacy problem is much reduced.

Collaboration between SMEs and devs better because for “formal contract”.

The overall (subject matter) development process becomes faster and more agile.

Tradeoffs
Understand the domain (should do this anyway)
Build and evolve language & tooling
Training + culture shift for SMEs and devs

Fachkräftemangel
Competitiveness

we have to
change somehow
to adress these!

→ WHEN

Why SHOULD YOU?

https://subjectmatterfirst.org

https://subjectmatterfirst.org/

?HOWto know what goes into the language?
to do this, technically?

?HOW do you know what goes into the language?
I wrote

a whole
book

about
that J

http://voelter.de/htuaa

50% off
https://leanpub.com/markusvoelter-htuaa/c/wjax2023

http://voelter.de/htuaa
https://leanpub.com/markusvoelter-htuaa/c/wjax2023

?HOW do you know what goes into the language?

Domain analysis is about understanding the
structures, rules, constraints and behaviors of a
domain precisely and completely enough to
make it accessible to people and software tools.

make it accessible to software tools.
data structures
constraints & rules
semantics
models, languages
{

APIs
Software Structures
Checkers, Compilers & Interpreters
UIs & Simulators
Transport Protocols
{

Iterate!

Written Material
Hidden Languages
Consistent Terminology
Working Sessions
Active Listening
Consistency vs. Change
Dealing with Uncertainty
Capture Results

Time to Think!
Removing Cruft
Abstraction
Test Support
Domain Crosscuts
Ups and Downs

Domain Specification
Domain Implementation
Let Users Play
Analyse Usage
Dealing with Feedback
Great Demos
Writing

?HOWto know what goes into the language?
to do this, technically?

Test

IDE Target System

Editing Structure
Check

Static
Validation Compiler

S
Val

Exec

Editing Structure
Check Exec

Editing Structure
Check

Runtime
Validations Exec

R
Val

Frameworks, Libs

UI DB API …

MODEL

Editing Structure
Check Exec

Language-Definition
Languages / Tools

Your Language

Models

XML
Json

…

Schema

Document

antlr & Co

Grammar

Code

MOF & Co

Metamodel

Model

OWL & Co

Ontology

Instance

M3

M2

M1

Runtime Data
M0

Language-Definition
Languages / Tools

Your Language

Models

Thing

Property

*
*

targetsuper

Containment Ref

Link

M3

M2

M1

M0

Runtime Data

Language-Definition
Languages / Tools

Your Language

Models

Thing
*

target

*

Line Rect Arc
start: Point
end: Point

Link

center: Point
…

topLeft: Point
botRgt: Point

Syntax

Text
Tables

Diagrams
GUIsShape

Geometry

M3

M2

M1

M0

Runtime Data

Validation

Semantics

Language-Definition
Languages / Tools

Your Language

Models

Shape

Line Rect Arc
start: Point
end: Point

Geometry

center: Point
…

topLeft: Point
botRgt: Point

l1
start = [0,0]
end = [5,5]

l2
start = [5,5]
end = [5,10]

a1
center = [20,20]
…

G

M3

M2

M1

M0

Runtime Data

TOOLS

Language-Definition
Languages / Tools

Your Language

Models

Runtime Data

XML
Json

…

Schema

Document

antlr & Co

Grammar

Code

MOF & Co

Metamodel

Model

OWL & Co

Ontology

Instance

The LIonWeb initiative aims to facilitate the
community-based development of language
engineering and modeling tools on the web.
1. Protocols for communication between

participating software components
2. Meta-meta model as well as a reference

architecture
3. APIs to access models and metamodels and

to encapsulate the protocols
4. Hub for the developers of such components

and to empower other software developers
to develop web-based modeling solutions.

LionWeb Language Interfaces on the Web

http://lionweb.io

Roll your own – what do you need?

https://medium.com/@markusvoelter/the-minimum-
infrastructure-for-running-languages-and-models-da922aa3b4b4

Find more details at:

• A formalism to define meta models
• Data structures to represent models in memory,
• An API to read, traverse and modify models,
• Formats to persist them somehow using a metamodel-specific

serialization format (not a syntax),
• A rudimentary but generic way of editing them.

A robust M
3

M
odel
API

M
eta

M
odel

Def

} Store
Query

Notification

Closing Thoughts

How is this related?

Definition (Wikipedia)
• place the primary focus on the core domain and domain logic;
• base complex designs on a model of the domain (UL);
• initiate a creative collaboration between technical and domain experts

to iteratively refine a conceptual model that addresses particular
domain problems.

PLUS (me)
• reify the conceptual model into a

DSL that allows the domain ex-
perts to directly express subject
matter in an executable and
testable way.

More Wikipedia: Critics of DDD argue that developers must
typically implement a great deal of isolation and encapsulation to
maintain the model as a pure and helpful construct.

Critics?
I think this
isolation is
a massive
benefit.

Working with DSLs is a bit like
DDD++ and I am surprised not
more DDDers care.

https://www.linkedin.com/pulse/relationship-between-domain-driven-design-languages-markus-voelter

Automation & Tools

Marek Ślusarczyk

http://www.microstock.pl/

Marek Ślusarczyk

We do this in the space of technology
as well as build, package, test, deploy.

But not for subject matter.

THAT‘S A MISTAKE!

You distinguish commonalities from variability and options.

You build platforms and automate the variability.

You tool up.

You hire toolsmiths.

You invest in tool-making machines.

You understand production logistics.

http://www.microstock.pl/

One last thought on
Subject Matter

Technical Stuff

Subject Matter

Is this really a qualitative difference
compared to well-structured “normal”
code?

What do you do if you want to
change the modeling technology?

Yes! You know the semantics of
everything! And there is no
technical stuff mixed into subject
matter. You can always transform
it into whatever other form you
need.

Significantly reduces the
legacy problem.

Technical Stuff

Subject Matter

Yes! You know the semantics of
everything! And there is no
technical stuff mixed into subject
matter. You can always transform
it into whatever other form you
need.

Technical Stuff

Subject Matter

Yes! You know the semantics of
everything! And there is no
technical stuff mixed into subject
matter. You can always transform
it into whatever other form you
need. Or from.

https://www.infoq.com/articles/ai-based-prose-programming-for-subject-matter-experts/

And no, we cannot replace
the whole thing with AI!

“
”

Insurance Products
Telecom Pricing Policies
Tax Calculations
Salary Calculations
Tachograph Rules
Clinical Drug Trials
Digital Therapeutics

Large-Scale Printer Architecture
E/E architecture for Cars
Municipality Management Systems
Public Benefits Rules Spec

… many more …

Domain-Specific Languages
MD(S){D|E}
(Meta)Data-driven Systems
Configurable Systems
Platforms

} All have been
implemented this way!

TAKEAWAYS

Don’t be put off by “language” and “meta” and such.
 Things have come a long way since your compiler course at university.

Be on the lookout for domains where SME “programming”
could be a good fit. The approach can be a significant boost.

Familiarize yourself with some of the tools in the space
of language development and code generation. These are
a useful ingredient for a developer’s toolbox.

Read the HTUAA book J it‘s useful even if you don‘t build a
language and „just“ want to understand a domain for „regular“
development.

And: this stuff is really fun and satisfying.

T
A
K
E
A
W
A
Y
S

